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Abstract
Playing the guitar is a dexterous human skill that poses significant challenges in computer graphics and robotics due to the
precision required in finger positioning and coordination between hands. Current methods often rely on motion capture data to
replicate specific guitar playing segments, which restricts the range of performances and demands intricate post-processing.
In this paper, we introduce a novel reinforcement learning model that can play the guitar using robotic hands, without the
need for motion capture datasets, from input tablatures. To achieve this, we divide the simulation task for playing guitar into
three stages. (a): for an input tablature, we first generate corresponding fingerings that align with human habits. (b): based
on the generated fingerings as the guidance, we train a neural network for controlling the fingers of the left hand using deep
reinforcement learning, and (c): we generate plucking movements for the right hand based on inverse kinematics according to
the tablature. We evaluate our method by employing precision, recall, and F1 scores as quantitative metrics to thoroughly assess
its performance in playing musical notes. In addition, we conduct qualitative analysis through user studies to evaluate the visual
and auditory effects of guitar performance. The results demonstrate that our model excels in playing most moderately difficult
and easier musical pieces, accurately playing nearly all notes.

CCS Concepts
• Computing methodologies → Animation; Reinforcement learning;

1. Introduction

Human dexterous multi-fingered hands exhibit remarkable pre-
cision and agility across a myriad of tasks. However, emulat-
ing this level of finesse and dexterity in robotic hands presents
multifaceted challenges, spanning from task comprehension to
decision-making, and ultimately, precise task execution. Exten-
sive research endeavors have been dedicated to various capabil-
ities of robotic hands, encompassing in-hand manipulation for
regular shapes [ABC∗20, HAM∗23] and its extension to diverse
geometries [QKC∗23, LFL∗23], finger motions for object grasp-
ing [CKA∗22,WGL22,CWL23], and the generation of finger move-
ments for piano playing [ZSG∗23]. Nonetheless, despite these ad-
vancements, existing methods still encounter significant hurdles in
achieving parity with human capabilities. In this work, we aim to
emulate human-like dexterous guitar-playing capabilities through
precise control and motion planning for hands and fingers using
both kinematic and physics-based methods.

For simulating the guitar playing process, there is a limited
number of research [ES03] due to its complexity and precision,
in stark contrast to the many studies on simulating guitar sounds
[KCN24, DA20, WK23]. Traditional methods often rely on motion
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capture technology to convert the movements of real guitarists into
data, which are then mapped onto virtual characters to simulate
authentic playing actions. This approach not only heavily relies on
motion capture data with limited generalization but also requires
tedious post-processing to convert it into usable animations. To
address this limitation, we introduce a new model for playing the
guitar with robotic hands based on reinforcement learning and in-
verse kinematics [DVS01]. To the best of our knowledge, our work
is the first to control robotics hands for playing guitar from an input
of tablature, and thus, does not rely on any external data for motion
control.

To create a realistic live performance using robotic hands, we ask
the left hand to press strings on the guitar neck to change pitch and
the right hand to pluck strings to produce sound. However, there are
several challenges need to be addressed. For a given input tablature,
correct finger allocations for each note are essential. From the as-
signed fingerings, the left-hand fingers must press their designated
frets, mirroring human-like precision. Meanwhile, the right-hand
fingers must synchronize their plucking actions precisely with the
tablature to produce sound. Achieving this demands meticulous
control and seamless coordination between the two hands.

In this work, we present a model for controlling guitar playing
with robotic hands based on deep reinforcement learning and in-
verse kinematics. To arrange finger positions, we use a brute-force
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search algorithm to select the closest finger to the target fret. We
also ensure that when multiple fingers are required, those on the left
side handle higher strings and those on the right side handle lower
strings. After generating fingerings for all notes, we develop a rein-
forcement learning algorithm and employ the Dropout Q-Functions
(DroQ) [HIH∗22] algorithm to learn control policies for control-
ling the fingers of the left hand. We then plan the trajectory for
the plucking motions of right-hand fingers and leverage the inverse
kinematics to compute their joint angles. Based on the frets press-
ing and plucking configurations, we generate guitar tones using
the Karplus-Strong [Str83] algorithm. We quantitatively assess our
method using precision, recall, and F1 scores, while qualitatively
evaluating it through a user study focusing on the visual and au-
ditory aspects of guitar performance. The results demonstrate that
our model excels in playing most moderately difficult and easier
musical pieces, accurately playing nearly all notes. The source code
of our method is publicly available at https://github.com/
MRXuanL/GPS-GuitarPlaySimulation.

2. Related Work

In the realm of robotics and computer graphics, simulating human
dexterity skills presents a formidable challenge. While some models
focus on directly generating outcomes [RBL∗21,LXJ∗23,WWY23],
the core of simulating these skills lies in crafting controllers capable
of guiding characters through diverse activities and decision-making
in various scenarios. In this section, we explore the primary methods
employed to generate such controllers. One significant subdivision
within this field is instruments playing simulation. Due to the high
level of difficulty inherent in this domain, only a handful of re-
searchers have ventured into it.

2.1. Human Dexterity Skill Simulation

2.1.1. Traditional Methods.

Human dexterity skills are very complex and challenging to sim-
ulate accurately. Since the advent of motion capture technology,
researchers have begun utilizing this technique to capture the real-
world skill processes of humans and map them onto controllers
to reproduce human skill activities. However, animations gener-
ated using this method often remain confined to specific segments,
making it difficult to flexibly apply them to other scenarios. There-
fore, trajectory optimization-based methods have emerged, offering
new avenues to address this issue [KLXvdP21, MWTK13, WPP14].
However, when facing high-dimensional spaces, this approach often
requires significant computational resources and time, making it
unsuitable for real-time scenarios. By employing inverse kinemat-
ics [DVS01, ALCS18], the method offers strong real-time capabili-
ties but lacks natural fluidity.

2.1.2. Motion Capture-Based Methods.

With the continuous advancement of machine learning techniques,
reinforcement learning has opened up new avenues in the field of
skill simulation, such as imitation learning [BCHF19, CMM∗18].
Zhang et al. [ZYM∗23] utilized tennis match videos to master di-
verse tennis skills, while Xie et al. [XSLVDP22] enabled characters
to perform complex football juggling skills. Hassan et al. [HGW∗23]

trained a controller through imitation learning on motion capture
data from the SAMP dataset [HCV∗21], enabling characters to in-
teract with the scene, lift heavy objects, move around, and assume
different poses on furniture. However, this method had limitations
as it was confined to skills in the dataset, lacking generalization
to broader contexts. A recent method [PGH∗22] utilized imitation
learning to pre-train a strategy on a large-scale dataset of simple
human actions and applied these strategies to more complex tasks
such as running, hitting, turning, and kicking. Won et al. [WGH22]
proposed an algorithm that utilizes conditional variational autoen-
coders (VAEs) [VK20] to learn various behaviors similar to those
in the training dataset, enabling the execution of downstream tasks
such as maze navigation and path following.

2.1.3. Data-Independent Methods.

The primary drawback of motion capture-based methods lies in
the scarcity of datasets. Without a suitable dataset as a foundation,
it becomes challenging to simulate similar strategies. Hence, skill
simulation methods independent of motion capture data exhibit a
distinct advantage. These approaches leverage reinforcement learn-
ing principles, rewarding actions aligning with predefined standards
while penalizing those that deviate, thereby incentivizing the agent
to perform desired skill actions, such as locomotion [PVDP17] and
using chopsticks [YYL22]. However, mastering highly complex ac-
tions using this method may pose challenges. To address this issue,
a curriculum-based learning approach has emerged. This method
typically designs multi-stage learning curricula based on the charac-
teristics of the skill [CEG∗20,XLKvdP20], aiming to systematically
accomplish task learning. Tao et al. [TWGvdP22] proposed a three-
stage reinforcement learning framework, which meticulously shapes
the reward mechanism for characters to get up from the ground,
ultimately enabling the characters to display diverse postures of
standing up after continuous learning. Given the current scarcity of
guitar-playing datasets, we employ a reinforcement learning method
independent of data and divide the learning task into multiple stages
for sequential learning and optimization.

2.2. Instrument Playing Simulation

Instrument playing simulation mainly comprises sound simula-
tion and motion simulation. Among them, sound simulation has
garnered significant attention. In the early stages, sound simula-
tion primarily relied on physics-based methods, including addi-
tive, subtractive, and phase modulation synthesis [All80, Cho73].
However, in recent years, deep learning techniques have gradu-
ally been employed in this field to achieve more realistic sound
simulation [KNK∗22, SY16, DZBKM22]. We employ the Karplus-
Strong [Str83] algorithm to simulate the sound of the guitar, pro-
viding adequate sound support for our guitar-playing simulation.
Motion simulation, on the other hand, focuses on simulating the
process of playing musical instruments. However, due to its diffi-
culty and complexity, few people have ventured into or mentioned
motion simulation of playing instruments. In the early days, peo-
ple attempted to simulate playing musical instruments using both
humanoid and non-humanoid hardware machines [BW16]. These
machines typically depended on specific control programs, lacking
versatility. While some non-humanoid machines could play instru-
ments, their style differed greatly from human playing, emphasizing

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://github.com/MRXuanL/GPS-GuitarPlaySimulation
https://github.com/MRXuanL/GPS-GuitarPlaySimulation


Chaoyi Luo & Pengbin Tang & Yuqi Ma & Dongjin Huang / Learning to Play Guitar with Robotic Hands 3 of 14

Left hand Right hand

Brute-Force

Search

Fingering Generation Fretting ControlTablature Plucking Motion Planning

DRL IK

Figure 1: System overview. For a given input tablature, our system utilizes a brute-force algorithm to generate the fingering for playing the
guitar. Subsequently, it employs Deep Reinforcement Learning (DRL) to train a policy to control the left hand pressing the strings, while using
Inverse Kinematics (IK) to control the right hand plucking the strings.

auditory output rather than authentic performance. We recommend
a review paper [KdlCCP∗24] which provides an extensive analysis
of both sound and motion simulation techniques.

In the field of instrument playing simulation, significant attention
is directed towards simulating pianos [LC13, ZMM11, XLW∗22].
Researchers such as [Yeo21] utilized inverse kinematics to plan the
finger trajectories of a robotic hand for piano playing, while others,
like [ZWS∗23], developed a reinforcement learning environment
specifically for piano playing. However, in the field of guitar playing
simulation, current research primarily relies on mechanical means
for guitar playing [KK19] or employs traditional methods such as
motion capture technology or inverse kinematics to simulate guitar
performance. The prior art of guitar-playing simulations like ElK-
oura and Singh [ES03] built a hand motion dataset and employed
the K-nearest neighbors algorithm to reconstruct hand postures from
the dataset, avoiding the unnatural gestures of inverse kinematics
(IK). This method relies on the captured dataset to drive finger
motions through interpolation, which can result in unnatural move-
ments and poses challenges when required motions fall outside the
dataset. Additionally, their approach models the fretting motions of
fingers by kinematically guiding them to specified positions without
accounting for real-world physical dynamics.

In contrast, we present a guitar-playing simulation model with re-
inforcement learning for the first time, to the best of our knowledge,
capable of reading tablature and, after training, guiding robotic
hands to play the guitar with more realistic and natural motions
without the need for pre-existing datasets.

3. System Overview

Our goal is to generate an automated control strategy for playing
guitar with robotic hands from input tablatures. To this end, we
develop a system that contains three main components as shown in
Figure 1. For readers who may be unfamiliar with terminology in
playing guitar, a brief explanation is provided in Appendix A.

Fingering generation. Our aim is to ensure that each note in the
guitar tablature is assigned to a finger for playing while avoiding
conflicts between fingers. For instance, no finger should handle two
notes simultaneously at any given moment (excluding barre chords).

Additionally, we strive to generate fingerings that are both simple
and in line with human playing habits.

Fretting control. After generating fingerings, we determine the
fret for each note along with its corresponding fingering. Conse-
quently, when a note needs to be played, we must ensure that the
robotic hand swiftly approaches and accurately presses the corre-
sponding fret with its fingertips. To achieve this goal, we employ
reinforcement learning techniques to control the left hand’s fretting
actions, ensuring the accuracy and fluidity of the performance.

Plucking motion planning. In order to generate plucking motion
for the right-hand fingers, we first design the trajectory of plucking
motion for the tip of the fingers. Based on the trajectory, we then
employ inverse kinematics to compute the joint angles for the fingers
of the right hand, enabling precise control during plucking.

4. Fingering Generation

After inputting a tablature, we must ensure that each note is played
with coordination between the fingers of both hands. There are
three issues to be addressed: (1) no single finger can play two notes
simultaneously, (2) finger assignments should minimize energy ex-
penditure, meaning that the distance the fingers need to travel to
reach the designated fret should be minimized, and (3) finger assign-
ment should align with human playing habits.

To address the first issue, we sort the notes according to their start
times and then iteratively assign fingers to each note. Each finger
has a last usage time, and if the start time of a note is earlier than the
last usage time of a finger, it indicates that the finger is still assigned
to another note and cannot be used. In this case, we must choose
another finger. If a finger can be assigned to the current note, its last
usage time is updated to the start time of the note plus the duration
of the note to avoid conflicts.

To minimize energy expenditure for the current given note, we
seek to assign the closest finger to the target fret position. To this
end, we keep recording the assumed hold position in real time as P.
The hold position refers to the location on the fingerboard where the
index finger of the left hand is placed. Based on the proximity of
fingers to this holding position, it is natural to set the fret positions
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Figure 2: Fingers are numbered from 1 to 4. When playing the G
chord, it is typical to use the little finger to hold down the first string
and the ring finger to hold down the sixth string, rather than the
other way around. Similar to the case of the A chord, the index,
middle, and ring fingers are used to hold down the fourth, third, and
second strings, respectively.

Pi with i ∈ 1,2,3,4 for the index finger, middle finger, ring finger,
and little finger as P, P+1, P+2 and P+3, respectively. Given the
target fret position Pt for the current note, we find the closest finger
to the target as argmini(|Pi −Pt |). This can be efficiently computed
by leveraging the brute-force search among four fingers.

While the above criteria assign correct fingers to the target fret
positions according to the given note, they ignore human playing
habits. When multiple notes share the same fret, considering the
G and A chords as illustrated in Figure 2, it is typical to designate
fingers on the right side of the hand to play the lower-positioned
notes, and fingers on the left side to play the higher-positioned notes.
Therefore, in such cases, we sort currently available fingers and
follow the above preference for the assignment of fingers.

Based on the above operations, we can effectively allocate fingers
for each note. This allows us to guide the fingers of robotic hands to
press the correct fret for a note. We then use this as the training data
for controlling the robotic hands with reinforcement learning.

5. Fretting Control

After generating fingering, we know the exact position of the fingers
to be placed. However, the orchestration of finger movement, encom-
passing rotation of joints and translation of the left hand, remains
a challenge. To address this, we train a neural network with rein-
forcement learning to develop a precise fretting strategy for robotic
hands within a virtual simulation environment. In this environment,
we attach touch sensors to all frets of every string to precisely detect
the pressing of frets during simulation as shown in Figure 3. These
frets are considered as the press status when their force exceeds the
given threshold. With this virtual environment setting, it is ready for
us to simulate robotics for training.

In reinforcement learning, the design of effective reward func-
tions stands as a pivotal element, shaping the decision-making pro-
cess for robotics hands and influencing the attainment of desired
outcomes. Our designed reward function contains three key com-
ponents: r f inger, rkey, and renergy. We describe each component as
follows.

(a) (b) (c)

Figure 3: (a) displays the locations and sizes of all the added touch
sensors, (b) indicates the target fret (red) that needs to be pressed
with a finger, and (c) reflects which fret is currently being pressed
(green) by the finger in real-time.

Figure 4: g(x,bound,margin) is a mapping function in dm_control.
The reward reaches its maximum when the value of x is in the range
of 0 to bound, and decreases to 0.1 when x is equals bound+margin.
We will use the reciprocal function as the mapping function and
compare its effect with the Gaussian function in the training process.

Finger reward. This term, r f inger, is intuitively designed to in-
centivize movements of the fingers toward the target fret. Since
each guitar fret has a designated pressing area, any finger that falls
within this area is considered to have successfully pressed the string.
Therefore, instead of using Euclidean distance as in [ZWS∗23], we
define the reward for the finger in three components of the fingertip
position, allowing the robotic hand to locate the target fret more
efficiently, i.e.,

r f inger =
rx + ry + rz

3
with (1)

rx = g(| fx − kx| ,0.5Lkey,0.1) ,

ry = g(| fy − ky| ,0.001,0.1) ,

rz = g(| fz − kz| ,0.001,0.1) ,

where g is a mapping function that converts reward values to the
range of 0 to 1, as shown in Figure 4. ( fx, fy, fz) and (kx,ky,kz)
represent the position of the fingertip and the center position of the
fret, respectively. Lkey stands for the length of the target fret.

Key reward. To explicitly encourage the fingers to maintain
pressure on the target fret while penalizing incorrect presses, we
further introduce a key reward as

rkey = 0.5
( 1

K

K

∑
i

g(|ks−1|,0,1)
)
+0.5(1−1{ f alse positive}) , (2)
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where K represents the number of frets that need to be held at
the moment. ks denotes the normalized force applied to the frets.
1{ f alse positive} equals 1 if any prohibited fret is held, otherwise it is
0. It is worth noting that while sound can only be generated on a
guitar by plucking strings with the right hand, fingers are allowed to
press frets where strings are not plucked.

Energy reward. The above rewards allow fingers to press correct
frets, whereas we observed that when the right hand is plucking
the strings and no string is required to press for the left hand, the
left hand may move unnecessarily. To avoid these scenarios, we
introduce an energy reward renergy to restrict the torque and useless
translation used by the hand, promoting more stable movements
rather than rapid and unpredictable ones. We establish an energy
penalty mechanism to ensure that the fingers can press the strings
more stably with the form

renergy =−k|τ joints|T |v joints| , (3)

where τ joints is a vector of joint torques and v joints is a vector of
joint velocities, | ∗ | outputs a vector contains the absolute value of
each element in the original vector, and k = 0.0025 is a coefficient.
For cases where no frets need to be held by the left hand, we increase
k to 0.005.

With all the defined rewards, we combine them to form the final
reward function in the reinforcement learning as

r = 0.5rkey +0.5r f inger + renergy . (4)

Figure 5: The generation of the trajectories for plucking the strings
1, 2, and 3.

6. Plucking Motion Planning

During guitar playing, coordination between the left and right hands
is crucial. The left hand presses the strings while the right hand
plucks them. Following typical guitar playing technique for pluck-
ing, we assign the thumb to handle strings 4, 5, and 6, while the
index, middle, and ring fingers are responsible for strings 3, 2, and
1, respectively. Through observing guitarists during their perfor-
mances, we observe that the motion trajectory of the fingertips of
the index, middle, and ring fingers when plucking strings resembles

an ellipse, whereas the trajectory of the thumb when plucking strings
is closer to a straight line. These indicate that plucking motions are
relatively consistent trajectories, allowing us to choose a precise
trajectory planning for the plucking motion of the fingers.

For string plucking with the given plucking point, we employ el-
lipses and lines trajectories as the path for the fingertip. For the pluck-
ing motion planning of the thumb finger, it is straightforward to deter-
mine a line between the current tip position of the thumb and the tar-
get plucking point. For other fingers with an elliptical trajectory, we
first define an ellipse trajectory at origin as p = (0,acosθ,bsinθ),
where coefficients are a = 0.005 and b = 0.0025. With this el-
liptical trajectory at origin, we compute a rigid transformation
p′ = T+R ·p such that the trajectory passes the given plucking
points sitei for a target guitar string with a proper tilt of the hand to
avoid colliding with other strings as illustrated in Figure 5, where
the translation and rotation are T = sitei +(0,4.33e−3,−2.5e−3)
and R = Rz(−π/2)Ry(−π/9)Rx(π/9), respectively.

Upon completing the plucking path planning, we apply inverse
kinematics to compute the angles for each finger joint.

7. Experimental Setup and Result

We start with a detailed description of our experimental setup,
mainly including the tablature dataset, the parameters specifications
for the training process, and the evaluation metrics for our system,
after which we demonstrate the performance of our guitar-playing
model via monophonic and polyphonic pieces. Additionally, we
conduct comparative analyses of the results across different pieces.

7.1. Experimental Setup

We focus on several key aspects in the experimental setup, including
the tablature dataset, observation and action space, environment
wrapping and training, sound generation, evaluation methods as
well as parameter configuration.

Tablature dataset. We have created a class called ’Tablature’
specifically for representing guitar tablature, which is built on a
list of musical notes containing information such as duration, start
time, fret position, and the finger used to play. Using this class,
we have compiled eight training pieces to comprehensively assess
the model’s performance on different types of tablatures. These
pieces include ’Chord Transition,’ which tests polyphonic playing
skills, the monophonic exercise ’Scales Practice,’ and moderate-
difficulty pieces like ’Twinkle Twinkle Little Star,’ ’Für Elise,’ and
’Long Long Ago,’ which consist of monophonic tablatures. Addi-
tionally, we have covered pieces with polyphonic tablatures such as
’Farewell,’ ’Happy Birthday,’ and ’Red River Valley,’ showcasing
various types of tablatures that beginners can play. This series of
piece designs aims to systematically evaluate the robotic hand’s
ability to play guitar tablatures.

Observation and action space. State encompasses all informa-
tion about the environment, while observation perceives the agent as
information it can sense. Within the state, we provide data such as
whether guitar frets are pressed, joint velocities, positions, etc., all
displayed in Table 1. From these, we select a subset as observations
of the environment. It is worth noting that "string state" not only
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Table 1: The state, action, and observation space

State space Unit Size

Hand joint positions rad 21
Hand joint velocities rad/s 21
Forearm positions m 3
Forearm velocities m/s 3
Last action – 20
Last reward – 1
Guitar keys(frets) state discrete 120
Finger state(goal) m 15
String state(goal) discrete 120(n+1)
String state(simplified goal) discrete 6(n+1)

Action space Unit Size

Desired hand joint angles rad 17
Desired forearm positions m 3

Observation space Unit Size

Hand joints positions rad 21
Forearm positions m 3
Guitar keys(frets) state discrete 120
Last action – 24
Last reward – 1
Finger state(goal) m 15
String state(goal) discrete 120(n+1)
String state(simplified goal) discrete 6(n+1)

covers the current target string status but also extends to the target
string status for the next n ticks. The value of n determined by the
parameter "n_step_lookahead" in Table 2 aims to enable the robotic
hand to anticipate in advance. For the target string status in "string
state," we provide two options: one representing the target values of
each key as 0 and 1, while the other is a simplified version indicat-
ing the target frets to be pressed on each string. Another aspect we
consider is the "finger state," which involves information about the
current availability of the fingers and their distance to the responsi-
ble fret positions. For the action space, we use the position servo in
MuJoCo [TET22] to control the target angles reached by the joints
of the robotic hand in real-time; see Appendix B for specific details
on the action space.

Environment wrapping and training. Many open-source rein-
forcement learning algorithms operate on gymnasium [TTK∗23]
environments. To facilitate users in training guitar-playing models,
we have specifically wrapped the guitar-playing environment ac-
cording to gymnasium standards. In terms of algorithm selection,
we prioritize the DroQ algorithm from the sbx [RHG∗21] library (an
efficient implementation of stable baselines 3 in jax [BFH∗18]). The
DroQ algorithm, an improvement on the SAC [HZH∗19] algorithm,
offers higher sampling efficiency. By employing the DroQ algorithm,
we can more efficiently optimize the guitar-playing model, enabling
it to demonstrate superior performance in simulated environments.

Sound generation. To test the performance of our model, we
need to simulate the process of the guitar producing sound based

(a) Freedom: False

(b) Freedom: True

Figure 6: We use the G chord as an example to demonstrate the
finger pressable areas with freedom set to true and false. The area
surrounded by red indicates no pressing, while the area surrounded
by green allows pressing.

Table 2: Parameter for training

Env Description

n_step_lookahead lookahead horizon
n_env synced training envs
table tablature to learn
sigmoid mapping function
normalization normalize the states
freedom boost hand freedom
frame rate frame rate of env

DroQ Value

batch_size 512
dropout_rate 0.01
start_step 50000
total_step 5000000
use_noise true
seed 42
buffer_size 1000000
learning_rate 0.0003

on plucking actions. We bind a PyAudio [Pha06] audio stream for
each string of the guitar, serving as a medium for music playback.
When the fingertip of the right hand approaches the plucking point,
we will determine the corresponding pitch frequency based on the
maximum fret pressed on the current string, following the principle
of guitar sound production. We will then utilize the Karplus-Strong
algorithm to simulate the sound waves of the guitar and play them
through the corresponding PyAudio audio stream for each string.

Evaluation methods. We use F1 score, recall, and precision as
metrics to evaluate guitar playing performance. Specifically, preci-
sion reflects the proportion of correct frets pressed by the performer
when holding down a fret, while recall indicates the proportion of
correct frets pressed among all the correct frets in the total target.
The F1 score serves as a balance between precision and recall, de-
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Figure 7: The left hand transitions from pressing down on the 4th string and the 3rd fret (F) to the 4th string and the 2nd fret (E).

Figure 8: The process of plucking strings with the thumb and the other fingers.

fined as F1 = 2× Precision×Recall
Precision+Recall . It is worth noting that pressing a

fret incorrectly on a guitar, without plucking, doesn’t affect the over-
all performance, unlike the piano. Therefore, a higher recall often
implies a potentially better actual performance of guitar playing.

Parameter configuration. During the training process, we offer
various parameters for user selection, all of which are detailed in
Table 2. Among them, the "freedom" parameter is a particularly
emphasized option. This parameter is based on the acoustic principle
of guitars. The sound produced by plucking a string is solely related
to the highest fret pressed on the string even if some lower frets
have been pressed. When setting it to ’False’, the robotic hand can
only hold down the designated frets at each moment, similar to the
playing strategy of a piano. This approach can enhance precision
but may reduce recall. If it sets to ’True’, the robotic fingers can
hold down frets lower than those required, while prohibiting frets
higher than those required. Enabling this parameter will increase
the freedom level of the robotic hand, however, it may decrease
precision and help improve recall. We implement this by punishing
the situation where fingers press forbidden frets in the key reward,
thus restricting the left hand to only press allowable frets. Figure
6 depicts the areas where pressing is possible when the freedom
parameter is set to ’True’ and ’False’.

7.2. Result

We utilize a computer equipped with an Nvidia GeForce RTX 3070
GPU and an AMD Ryzen 5 5600 CPU for model training. To im-
prove data collection efficiency, we employ the sbx library with 4
threads enabled for synchronous training. This results in an average
training time of 6 hours per song, with 5,000,000 training iterations.

Basic playing ability. As a simple example, we choose the
melody ’Long Long Ago’ as a test piece to evaluate the perfor-
mance of our model in left-hand fretting and right-hand plucking.
As shown in Figure 7, 8 for fretting and plucking actions, respec-
tively, our model can generate outstanding results, with the left hand
accurately and swiftly positioning and fretting according to the tar-
get notes, while the right hand synchronously plucked the strings
with the corresponding fingers; please also see the supplemental
video.

Figure 9: Performance of monophonic pieces. We found that the
precision of monophonic pieces is generally very high, meaning that
the model can accurately press down the right notes for the most
part. However, for the piece ’Für Elise,’ the recall is slightly lower
because of its fast speed.

Performance of monophonic pieces. In the performance of
monophonic pieces, players are required to press only one fret with
their left hand at each moment. To delve deeper into its playing ef-
fects, we select several classic melodies, including ’Long Long Ago’,
’Für Elise’, and ’Twinkle Twinkle Little Star’ as examples, and set
the freedom parameter to false for improved precision. Figure 9
illustrates the specific metrics of the monophonic pieces. Through
observation and testing, we noticed that the speed at which melodies
are played significantly affects the playing effect of the robotic hand.
When playing at a slower pace, the robotic hand accurately presses
each fret, delivering an exceptional performance. However, as the
playing speed increases, the performance of the robotic hand notice-
ably deteriorates. This is particularly evident in the faster-paced ’Für
Elise’, where the robotic hand struggles to rapidly and accurately
press the frets, resulting in a lower F1 score. These faster-paced
pieces require the robotic hand to move swiftly while maintaining
a high level of accuracy. However, the physical limitations of the
actuators controlling the joints of the robotic hands, as implemented
by the position servos in MuJoCo [TET22], are constrained by the
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Figure 10: Performance of polyphonic pieces. We observe that the
performance of polyphonic pieces is indeed slightly inferior to that
of monophonic pieces, but their F1 scores still hover around 0.6. In
terms of recall, the scores for these polyphonic pieces are all above
0.6, so in the overall performance, although there are some flaws,
it is still possible to recognize the corresponding pieces with some
effort.

Figure 11: ’Scales Practice’ and ’Chord Transition’ showcase the
model’s ability in playing monophonic and polyphonic pieces. Upon
observation, it becomes evident that the model performs better when
playing monophonic pieces compared to polyphonic ones.

maximum allowed torque due to the inertia of the robotic hands.
In addition, the simulation frame rate is another factor contributing
to this phenomenon. In Figure 9, the same frame rate is used to
simulate different pieces. For faster passages, the relative frame rate
is effectively lower compared to slower segments. This relatively
lower frame rate reduces the opportunities for the robotic hand to
accurately adjust and press the specified frets. As demonstrated in
Figure 16, increasing the frame rate is indeed able to increase the
performance of our method.

Performance of polyphonic pieces. Playing polyphonic pieces
presents a more challenging task for the robotic hand, as it neces-
sitates the ability to maintain multiple pitches simultaneously. We

Figure 12: We utilize a controller trained with ’Scales Practice’ as
the target to play other monophonic pieces. During testing, we found
that ’Little Star’ performed well and had a similar tempo to scales
practice. However, when attempting to play faster-paced pieces like

’Long Long Ago’ and ’Für Elise’, the performance appeared less
satisfactory.

experiment with songs such as ’Happy Birthday,’ ’Farewell,’ and
’Red River Valley’ to assess the proficiency of robotic hands, and
the specific metrics are shown in Figure 10. In an effort to enhance
its performance in playing these complex songs, we adjust a key set-
ting—setting "Freedom" to ’True’. This adjustment aimed to grant
the robotic hand greater freedom, with the hope of achieving more
accurate note reproduction. However, when compared to mono-
phonic pieces, the performance of the robot noticeably declines
with polyphonic ones. Most often, its F1 score remains around 0.6,
indicating frequent omission of notes and an inability to faithfully
replicate the original melody. While the robotic hand may still have
inherent limitations, we are actively striving to bridge the gap and
improve its performance to approach that of human capability.

Performance of scales practice and chord transition. We eval-
uate the performance of ’Scales Practice’ and ’Chord Transition’
to assess overall monophonic and polyphonic playing abilities, re-
spectively. These two skills were chosen to represent the difficulty
levels of monophonic and polyphonic scores. The performance of
the model on these types of scores largely reflects its ability to play
monophonic and polyphonic pieces, as illustrated in Figure 11.

Inference capability. To assess the inference ability of our model,
namely its performance after inputting tablature using a pre-trained
model, we specifically chose ’Scales Practice’ for training piece,
while adopting a series of monophonic pieces for testing purposes.
It can be seen from Figure 12 that when the tempo of the music
sheets remains constant, the model demonstrates commendable
inference capability. However, once the tempo of the piece changes,
the performance of the model relatively declines, resulting in less
accurate playing.

Compare with prior art. We compare the motion quality of our
model to the method described in Handrix [ES03], using the same
fingering. We select two passages from their results video: the chord
transitions and the complex passages. The results show that our
method produces more natural motions compared to those generated
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by the Handrix model. However, for the complex passages, our
model exhibits slightly less precision. The Handrix model achieves
high precision by using an IK-like method to keep the finger close to
the target fret. Since their method reproduces the playing motion by
considering only kinematics without dynamics, their results lack the
ability to replicate human-like, vivid playing motions. For detailed
comparisons, please refer to our supplementary video. Note that to
maintain consistent actions, we adjusted the playback speed of some
parts of the video, as we do not know the exact tempo in the Handrix
video.

User study. We conduct a qualitative assessment of our simula-
tion results with 58 participants, including 27 guitar learners and
31 non-learners, predominantly university students. We designed a
detailed questionnaire to evaluate visual and auditory effects, instruc-
tional significance for beginners, and potential virtual applications,
all rated on a 5-point scale. The statistics of the rating are sum-
marized in Table 3. Most participants expressed positivity toward
the simulation, seeing it as beneficial for beginners and applicable
in virtual environments. However, participants with guitar learn-
ing experience gave slightly lower ratings, possibly due to higher
expectations for accuracy.

Table 3: Rating of the user study.

Assessment Indicators
Learned Not Learned

Avg Var Avg Var
Fretting Action 4.15 0.57 4.34 0.48
Plucking Action 4.07 0.59 4.19 0.74

Musical Auditory 4.19 0.52 4.16 0.45
Beginner Guidance 4.30 0.50 4.26 0.58

Virtual Potential 4.41 0.32 4.32 0.54

8. Ablation and Comparison

To validate the correctness of the design of our system, we select
various parameters for comparative analysis.

Mapping function. We chose "reciprocal" as the mapping func-
tion because finger movements in guitar playing require extreme
precision. Even slight movements can result in pressing the wrong
fret, so we opted for the "reciprocal" mapping function. This func-
tion is characterized by increased sensitivity to changes in rewards
near the target. Figure 13 illustrates the comparison between the
"reciprocal" and "Gaussian" mapping functions during the training
of ’Little Star’. This choice helps the model better capture subtle
variations in finger movements, thereby improving playing accuracy.

Finger reward. During the training of ’Little Star’, we begin by
attempting to utilize the Euclidean distance as the metric for the
reward, but the results are unsatisfactory, with an F1 score consis-
tently around 0.6. To enhance training effectiveness, we adopt a new
strategy introduced in Sec.5. The advantage of this method lies in
relaxing the conditions for fingers to receive full rewards, allowing
them to obtain full scores at different positions within the same fret,
rather than being restricted to the center of the fret. From the com-
parison shown in Figure 14, we can evidently see that the presented
reward leds to a significant improvement in training effectiveness.

Figure 13: It’s evident that when using "reciprocal" as the mapping
function, the convergence speed is notably faster compared to the
"Gaussian" mapping function, and the overall performance is also
better.

Figure 14: When using Euclidean distance as the metric for finger
reward, the convergence speed is very slow. However, when we
adopt our method as the metric for finger reward, namely relaxing
the conditions for fingers to achieve full rewards, the convergence
speed significantly improves, and the overall performance is better.

Freedom. The "freedom" parameter plays a crucial role in opti-
mizing robotic guitar performance. In Figure 15, we illustrate this
by comparing the performance of ’Für Elise’ with the "freedom" pa-
rameter set to ’True’ and ’False’. We observe a significant increase
in recall when "freedom" is set to ’True’, thereby enhancing the com-
pleteness of the performance. Although this adjustment may result
in a slight decrease in precision, its impact on the auditory percep-
tion of guitar performance is not significant. Therefore, reasonably
adjusting the "freedom" parameter allows for a better representation
of the completeness of the piece while maintaining performance
quality.
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for Computer Graphics and John Wiley & Sons Ltd.



10 of 14 Chaoyi Luo & Pengbin Tang & Yuqi Ma & Dongjin Huang / Learning to Play Guitar with Robotic Hands

Figure 15: When we set the freedom parameter to true, the re-
call index of our model presents a significant improvement, greatly
enhancing the integrity of the model’s performance. Although the
precision rate decreased slightly, it did not have a negative impact
on the overall performance of the guitar.

Figure 16: Testing under different frame rates, i.e., 10, 20, and 30
frames per second. The results show that higher frame rates indeed
contribute to improving performance. However, excessively high
frame rates may also lead to instability during training.

Frame rate. A higher frame rate implies a greater frequency at
which the model controls the robotic hands, enabling it to perform
more precise operations. To validate this hypothesis, we test the
performance of the robotic hands playing the guitar at various frame
rates. It can be seen from the Figure 16 a high frame rate does indeed
lead to better performance, but it may also introduce instability.

Discount. We further explore the impact of the discount parame-
ter in reinforcement learning. Initially, experiments used a discount
value of 0.99. However, adjusting it to 0.84 led to significant im-
provements in outcomes, with almost all previously tested training
pieces achieving recall values above 0.85. Figure 17 shows the train-

Figure 17: The results indicate that using a lower discount value can
accelerate the convergence process and relatively achieve higher
effectiveness.

ing outcomes of ’Happy Birthday’ with different discount parame-
ters. We conjecture that this improvement is because the movements
of robotic hands are primarily affected by the reward of the current
note, with lower impact on subsequent notes. Hence, setting a high
discount value may be unnecessary in this scenario. To further vali-
date the model, we introduced more challenging pieces for testing,
and Figure 18 displays the training outcomes of all pieces, sorted by
recall values, using a discount value of 0.84.

9. Conclusion and Discussion

We developed a guitar-playing model for robotic hands, which gen-
erates precise controllers through training and can play the guitar
directly from a tablature. We achieved this by first introducing a
fingering generation algorithm based on a brute-force search with
only the input of tablature. Based on generated fingering, we con-
structed a reinforcement learning algorithm for playing the guitar,
effectively motivating the robotic hands to accurately press the target
frets by setting up reward mechanisms. Furthermore, we utilized
path planning to generate plucking movements for the right-hand
fingers, and then used inverse kinematics to accurately calculate the
joint angles for each moment.

Our guitar playing model demonstrated excellent performance in
both simple monophonic pieces and polyphonic pieces. For more
complex compositions, the majority achieved a recall rate of over 0.7,
indicating that most machine-played pieces can be recognized by the
audience. However, the model has not entirely replicated the strategy
of human left-hand fingering. Humans, while playing, anticipate and
press the frets in advance according to the tablature to ensure the
coherence between notes. Additionally, human performers use their
left thumb to anchor the back of the guitar to prevent displacement.
However, since our guitar model is fixed in position and does not
face displacement issues due to physical factors, the role of the
thumb has not been accounted for. To avoid unnecessary interference
with model training caused by collisions, we ensured that the thumb
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Figure 18: We collect multiple MusicXML [mus24] pieces online as a training dataset. After testing, it is satisfying that most pieces achieve a
recall rate above 0.7, which means the majority of played pieces are accurately identified by the audience.

remains motionless. In the future, we will further optimize the model
to approach human playing strategy more closely.

We discovered that the range of motion of each joint in the robotic
hand significantly affects the performance of our model. Through
repeated adjustments, we identified the optimal range of motion to
achieve effective training results. Although increasing the degrees
of freedom of hand joints allows for more diverse hand shapes
and covers frets that were previously inaccessible, it also enlarges
the action space, increasing the complexity of training. Therefore,
finding a proper balance between joint freedom and action space is
crucial.

The current model is trained from a single song and demonstrates
satisfactory performance with pieces possessing a similar tempo.
However, to develop a model with broader applicability across a
diverse array of musical compositions, it is imperative to expose
the model to a dataset with a more extensive collection of songs.
Consequently, future work can construct a comprehensive dataset
featuring a wide range of musical genres for the purpose of training
and enhancing machine learning models to achieve greater versatil-
ity.

Replicating human dexterous multi-fingered hand motions is a
challenging task. Our work specifically focuses on the intricate hand
movements required for playing guitar, providing key insights into
leveraging reinforcement learning to precisely control fingers in a

physically aware manner. While our fingering generation and fretting
control mechanisms are tailored for guitar playing, the underlying
reward framework is generalizable and can be applied to other
finger control tasks. Future research can explore and validate the
algorithm’s adaptability to various scenarios based on our work.

The guitar playing demonstrated in this paper is still in its infancy,
primarily simulating the techniques commonly used by beginners,
where the left hand is responsible for fretting while the right thumb
plucks 6th, 5th, and 4th strings, and the index, middle, and ring
fingers pluck 3rd, 2nd, and 1st strings, respectively. However, true
guitar-playing skills go far beyond this. In addition to basic fret-
ting movements, the left hand may involve advanced techniques
such as barre chord, hammer-ons, pull-offs and slides during per-
formance, while the right hand’s playing technique is more flexible
and varied, involving techniques like harmonics, tapping, muting,
and strumming to produce a richer and more nuanced performance.

The effects presented in this paper only scratch the surface of
guitar-playing techniques. To truly simulate the diverse techniques
of both hands, setting reward functions alone is far from sufficient.
To achieve visual effects closer to human performance, we may
need to utilize motion capture technology to accurately capture
data on these special playing techniques and train the model using
imitation learning methods. In our future exploration, we will focus
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on combining imitation learning to further refine the guitar playing
effects and bring them closer to the level of human performance.
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Appendix A: Guitar-Playing Terminology

Sound Production Mechanism. The guitar produces sound
through the vibration of its strings. The left hand presses down
on the strings along the fretboard, where the pressed position is
called a fret, changing the pitch by shortening the vibrating length
of the string. The right hand plucks or strums the strings to initiate
the vibrations. Pitch refers to the perceived frequency of a sound,
which determines whether it is high or low in tone.

Monophonic Pieces involve playing one note at a time (the left
hand only needs to press one fret). This technique is often used for
melodies or solo lines.

Polyphonic Pieces involve playing multiple notes simultaneously
(the left hand needs to press multiple frets at the same time). This
creates harmony and is a fundamental aspect of rhythm guitar play-
ing.

In monophonic pieces, typically only one finger of the left hand
is responsible for pressing a specific fret at any given moment. In
contrast, in polyphonic pieces, most of the time, multiple fingers of
the left hand press different frets simultaneously, making it more
challenging than monophonic pieces.

Appendix B: Left Hand Joint Limit

Table 4 shows the joint limits (action space) of the left hand in our
system. WRJ, THJ, FFJ, MFJ, LFJ, and forearm represent the joints
of the wrist, thumb, index finger, middle finger, ring finger, little
finger, and forearm, respectively. The numbers 1, 2, 3, and 4 are IDs
for the joints of each finger. We constrain WRJ2 and all joints of the
thumb to be immobile. FFJ0, MFJ0, and LFJ0 are tendon elements
in MuJoCo, simultaneously controlling the two joints 1 and 2 at the
tips of each finger. Additionally, we constrain the translation of the
forearm as forearmx ∈ [−0.23,0.09], forearmy ∈ [−0.01,0.10], and
forearmz ∈ [−0.1,0.02].

Table 4: Joint Limits / Action Space

Joint Name Joint Range Limits Actual Range Limits

lh_WRJ2 [0.00,0.00] [-0.52,0.17]
lh_WRJ1 [0.00,0.79] [-0.70,0.79]
lh_THJ4 [0.00,0.00] [0.00,1.22]
lh_THJ3 [0.00,0.00] [-0.21,0.21]
lh_THJ2 [0.00,0.00] [-0.70,0.70]
lh_FFJ4 [-0.35,0.35] [-0.35,0.35]
lh_FFJ3 [0.00,1.57] [-0.26,1.57]
lh_FFJ0 [0.00,2.00] [0.00,3.14]
lh_MFJ4 [-0.35,0.35] [-0.35,0.35]
lh_MFJ3 [0.00,1.57] [-0.26,1.57]
lh_MFJ0 [0.00,2.00] [0.00,3.14]
lh_RFJ4 [-0.35,0.35] [-0.35,0.35]
lh_RFJ3 [0.00,1.57] [-0.26,1.57]
lh_RFJ0 [0.00,2.00] [0.00,3.14]
lh_LFJ4 [-0.35,0.35] [-0.35,0.35]
lh_LFJ3 [0.00,1.57] [-0.26,1.57]
lh_LFJ0 [0.00,2.00] [0.00,3.14]
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