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Figure 1: Left: Overview of our method. We propose to expand a part of the integrand g(x) that significantly varies across pixels into a
weighted sum of lossless basis functions. The resulting basis expansion is designed to satisfy the similarity assumption between neighboring
pixels i, j, making difference estimates effective with shift mapping. Right: Comparison between vanilla gradient-domain rendering and our
method for a scene with highly varying materials across pixels. Our method accurately captures variation among pixels without blurring
sharp features after L1 Poisson reconstruction.

Abstract
Gradient-domain rendering utilizes difference estimates with shift mapping to reduce variance in Monte Carlo rendering. Such
difference estimates are effective under the assumption that pixels for difference estimates have similar integrands. This as-
sumption is often violated because it is common to have spatially varying BSDFs with material maps, which potentially result
in a very different integrand per pixel. We introduce an extension of gradient-domain rendering that effectively supports such
per-pixel variation in BSDFs based on basis expansion. Basis expansion for BSDFs has been used extensively in other problems
in rendering, where the goal is to approximate a given BSDF by a weighted sum of predefined basis functions. We instead utilize
lossless basis expansion, representing a BSDF without any approximation by adding the remaining difference in the original
basis expansion. This lossless basis expansion allows us to cancel more terms via shift mapping, resulting in low variance dif-
ference estimates even with per-pixel BSDF variation. We also extend the Poisson reconstruction process to support this basis
expansion. Regular gradient-domain rendering can be expressed as a special case of our extension, where the basis is simply
the BSDF per pixel (i.e., no basis expansion). We provide proof-of-concept experiments and showcase the effectiveness of our
method for scenes with highly varying material maps. Our results show noticeable improvement over regular gradient-domain
rendering under both L1 and L2 reconstructions. The resulting formulation via basis expansion essentially serves as a new way
of path reuse among pixels in the presence of per-pixel variation.

CCS Concepts
• Computing methodologies → Ray tracing;
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1. Introduction

Gradient-domain rendering [LKL∗13,KMA∗15,HGP∗19] is an ef-
ficient rendering algorithm for scenes with smooth features. The
main idea is to estimate the differences between neighboring pix-
els, in addition to the pixels themselves, and reconstruct the image
based on those estimates. The original gradient-domain rendering
method has been extended to nearly all popular Monte Carlo ren-
dering methods [MKA∗15, HGNH17, GHV∗18, SSC∗17, BPE17,
MKD∗16], providing significant variance reduction over regular
Monte Carlo counterparts in many cases.

Gradient-domain rendering improves Monte Carlo rendering
mainly because of low-variance difference estimates with corre-
lated samples. Correlated sampling is achieved by a technique
called shift mapping, which maps a sample in one pixel to a sim-
ilar sample in a neighboring pixel. Difference estimates by shift
mapping will be effective when neighboring pixels have similar in-
tegrands since samples before and after shift mapping have sim-
ilar contributions and thus they cancel each other in the estima-
tor. In many practical scenarios, however, this assumption is of-
ten violated because it is common to have spatial variation of
materials and shading normals across neighboring pixels. While
gradient-domain rendering can still render images even in such
cases, its performance degrades. A practical trick of factoring out
albedo [ZSWL21] does not work if the variation does not come
from albedo (e.g., shading normals).

We propose an extension of gradient-domain rendering based
on basis expansion, which allows us to handle per-pixel variation
across pixels while maintaining the benefits of gradient-domain
rendering. Our extension considers an integrand a product of two
functions - one that can vary significantly across pixels and the
other that is assumed to be similar among pixels. An example of
such an integrand is a product of a BSDF and incident illumina-
tion, where the BSDF can vary rapidly among pixels, but incident
illumination is generally smooth over pixels. We propose to apply
lossless basis expansion to the fast-varying part of the product to
capture a variation among pixels as a variation of coefficients on
the bases. Unlike regular basis expansion, our lossless basis expan-
sion results in an exact recovery of a given function since it adds
back the remaining differences (residuals) to the basis functions.
The product of this lossless basis expansion and the slowly varying
part of the integrand will become similar among neighboring pix-
els, effectively allowing us to cancel more terms via shift mapping
in gradient-domain rendering. We also re-designed the Poisson re-
construction in gradient-domain rendering to support this basis ex-
pansion and reconstruct the final image by simultaneously taking
into account the results of all the basis integrals. Under our formu-
lation, gradient-domain rendering is a special case where no basis
expansion is performed. Our extended gradient-domain rendering
can resolve common artifacts in gradient-domain rendering with
per-pixel variations, making it applicable to a larger set of practi-
cal scenes. Figure 1 shows one of the comparisons of our method
with order 2 spherical harmonics against regular gradient-domain
rendering. Our result accurately captures per-pixel variation while
keeping the benefits of gradient-domain rendering.
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Figure 2: Failure mode of gradient-domain rendering. The top
right visualizes the integrands for lighter and darker blocks of
the checkerboard pattern, and the middle and bottom rows show
the reconstruction using per-pixel Monte Carlo integration, regu-
lar gradient-domain rendering, and our method with their errors
compared to the ground truth. Gradient-domain rendering suffers
from artifacts due to high variance in difference estimates around
edges. Our method almost perfectly reconstructs the ground truth.

2. Motivation

Let us consider a problem of solving an array of integrals Ii of func-
tions fi(x) indexed by an integer i as

Ii =
∫
Xi

fi(x)dx. (1)

where Xi is the domain of integration. A prominent example is ren-
dering based on the rendering equation [Kaj86] where we need to
solve an integral Ii of the product function fi of the incoming ra-
diance and the cosine-weighted bidirectional scattering distribution
function (BSDF) at each pixel i.

Monte Carlo integration estimates each integral Ii by taking the
average of stochastic evaluations of the integrand fi as in

Ii ≈ ⟨Ii⟩MC =
1
N

N

∑
k=1

fi(xi,k)

pi(xi,k)
(2)

where N is the number of samples and the samples {xi,k} are dis-
tributed according to a probability density function pi(x). While
we can solve each integral Ii independently with this approach, we
often have domain-specific knowledge regarding how integrals Ii
and I j (i ̸= j) differ from each other. For example, integrals for
neighboring pixels Ii and I j in rendering are usually similar except
for those around discontinuities on the image (e.g., geometric dis-
continuities). Independent estimates for Ii and I j do not take such
similarities into account.
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Gradient-domain rendering [LKL∗13,HGP∗19] exploits similar-
ities among neighboring Ii and I j by coupling Monte Carlo esti-
mates of differences I j − Ii through a Poisson image reconstruction
process. The differences I j − Ii are estimated by correlating Monte
Carlo samples for I j and Ii via shift mapping. Shift mapping as-
sumes that the integrand fi is similar to a neighboring integrand f j
for similar x, and this assumption can be informally written as

xi ≈ x j ⇒ fi(xi)≈ f j(x j). (3)

where x j = Ti j(xi) is a shift function Ti j(x) [LKL∗13] that maps
xi in the pixel i to x j in the pixel j. The difference of the sample
contributions fi(xi) and f j(x j) will be small when shift mapping
results in xi ≈ x j and if the above assumption is satisfied.

The difference for I j − Ii is equal to the summation of two in-
tegrals symmetrically to properly account for shift operation from
both directions:

∆i jI =
∫
Xi

wi j(x)
(

f j(Ti j(x))
∣∣∣∣dTi j(x)

dx

∣∣∣∣− fi(x)
)

dx

+
∫
X j

w ji(x)
(

f j(x)− fi(Tji(x))
∣∣∣∣dTji(x)

dx

∣∣∣∣)dx
(4)

where
∣∣∣ dTi j

dx (x)
∣∣∣ denote the Jacobian determinant for Ti j with respect

to x. The weights wi j,w ji [KMA∗15] ensure both efficient esti-
mates in overlapping domains and prevent invalid or non-reversible
shifts from contributing to the final estimate.

One can obtain unbiased estimates by sampling both integrals
according to their respective sampling distribution pi, p j

I j − Ii ≈
〈
∆i jI

〉
MC

=
1
N

N

∑
k=1

wi j(xi,k)
f j(Ti j(xi,k))

∣∣∣ dTi j(xi,k)
dxi,k

∣∣∣− fi(xi,k)

pi(xi,k)

+
1
N

N

∑
k=1

w ji(x j,k)
f j(x j,k)− fi(Tji(x j,k))

∣∣∣ dTji(x j,k)
dx j,k

∣∣∣
p j(x j,k)

(5)

where N denotes the number of samples. When the assumption
in Equation (3) holds and shift mapping results in xi,k ≈ Ti j(xi,k),
x j,k ≈ Tji(x j,k), this difference estimator

〈
∆i jI

〉
will have low vari-

ance because∣∣∣∣dTi j(xi,k)

dxi,k

∣∣∣∣≈ 1 and
∣∣∣∣dTji(x j,k)

dx j,k

∣∣∣∣≈ 1

f j(Ti j(xi,k))

∣∣∣∣dTi j(xi,k)

dxi,k

∣∣∣∣− fi(xi,k)≈ 0.
(6)

Gradient-domain rendering then reconstructs all Ii based on the dif-
ference estimates

〈
∆i jI

〉
. With L2 loss, it can be expressed as

⟨I⟩G = min
I ∑

i, j
∥I j − Ii −

〈
∆i jI

〉
MC ∥2 +λ∑

i
∥Ii −⟨Ii⟩MC ∥2. (7)

The first term aims to minimize the gap between the reconstructed
difference and the difference estimate. The second term with the
parameter λ regularizes the reconstruction towards the primal per-
pixel Monte Carlo estimates for each Ii.

Problem Statement. While gradient-domain rendering works
well when Equation (3) holds, this assumption may not hold univer-
sally, thereby constraining its application in practice. For example,
it is common to have a spatial variation of albedo and/or normals
that may result in different integrands per pixel. Figure 2 shows a
simple example where fi varies like a checkerboard pattern over i.
In this example, fi is a product of two functions

fi(x) = gi(x)hi(x) (8)

where gi(x) varies like a checkerboard (i.e., differs among pixels
around edges) but hi(x) = x is identical for all i (i.e., no variation
among pixels). This example models a typical scenario in render-
ing where gi(x) is a spatially varying feature such as the BSDF term
per pixel and hi(x) is a mostly smooth feature such as incident il-
lumination. The integrand fi(x) does not satisfy the assumption in
Equation (3) whenever pixels Ii and I j have different checkerboard
colors, and only a part of the integrand hi(x) satisfies the assump-
tion. As such, gradient-domain rendering fails to handle even this
simple example and results in large errors whenever the integrand
fi(x) varies among neighboring pixels. We present an extension of
gradient-domain rendering that can efficiently handle a larger set of
problems including this simple example.

3. Basis Expansion for Gradient-Domain Rendering

To introduce our idea, let us work through the example in Figure 2.
Suppose that we represent gi(x) as a weighted sum of two basis
functions b0

i (x) and b1
i (x) as in

gi(x)
def
= α

0
i b0

i (x)+α
1
i b1

i (x) (9)

where α
0
i and α

1
i are the weights. Let us choose the basis functions

b0
i (x) and b1

i (x) such that each one of them is equal to gi(x) within
the corresponding checkerboard block. The weights α

0
i and α

1
i in

this case can be trivially defined as

α
0
i =

{
0 (i ∈ darker block)
1 (i ∈ lighter block)

α
1
i = 1−α

0
i (10)

which effectively captures the checkerboard pattern via the
weights. Note that b0

i (x) and b1
i (x) are the same across all the pix-

els (i.e., does not vary over i), and the per-pixel variation is now
encoded by the weights α

0
i and α

1
i .

Under this basis expansion of gi(x), the integral Ii could also be
decomposed into a weighted sum:

Ii =
∫
Xi

hi(x)gi(x)dx =
∫
Xi

hi(x)
(

α
0
i b0

i (x)+α
1
i b1

i (x)
)

dx

= α
0
i

∫
Xi

hi(x)b
0
i (x)dx+α

1
i

∫
Xi

hi(x)b
1
i (x)dx = α

0
i I0

i +α
1
i I1

i

(11)

where we wrote I0
i =

∫
Xi

hi(x)b0
i (x)dx and similarly for I1

i . The
problem changed from solving one integral of hi(x)gi(x) to two
integrals for hi(x)b0

i (x) and hi(x)b1
i (x) weighted by α

0
i and α

1
i . The

new integrands hi(x)b0
i (x) and hi(x)b1

i (x) both satisfy the similarity
assumption in Equation (3) because b0

i (x), b1
i (x), and hi(x) are in

fact exactly the same for all the pixels i in this particular example.
Therefore, gradient-domain rendering can be successfully applied
for each of hi(x)b0

i (x) and hi(x)b1
i (x) independently, and we can

© 2024 The Authors.
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reconstruct I0
i and I1

i to estimate Ii as the weighted sum α
0
i I0

i +α
1
i I1

i
per pixel. We generalize this process as follows.

Step 1: Decompose gi(x) into a weighted sum of basis functions
that satisfy the assumption, i.e. bl

i(xa)≈ bl
j(xb) for xa ≈ xb:

gi(x)
def
=

L

∑
l=1

α
l
ib

l
i(x). (12)

Note that the basis functions do not need to be exactly the same
for all the pixels as long as they satisfy the similarity assumption.
There is also no assumption on the weights α

l
i across pixels.

Step 2: Write down the integral of gi(x) also as a weighted sum:

Ii =
∫
Xi

hi(x)gi(x)dx =
∫
Xi

hi(x)
L

∑
l=1

α
l
ib

l
i(x)dx

=
L

∑
l

α
l
i

∫
Xi

hi(x)b
l
i(x)dx︸ ︷︷ ︸

Il
i

=
L

∑
l=1

α
l
iI

l
i .

(13)

Step 3: Apply gradient-domain rendering on new integrands
bl

i(x)hi(x) independently, reconstruct Il
i , and take the weighted sum

to have Ii = ∑
L
l=1 α

l
iI

l
i . For the problems where hi(x) satisfies the

similarity assumption, the integrand bl
i(x)hi(x) should also satisfy

the assumption.

For the example in Figure 2, in vanilla gradient-domain render-
ing, the difference estimate between pixels sharing the same color
exhibits zero variance, i.e., b0(x)h(x)− b0(x)h(x) = b1(x)h(x)−
b1(x)h(x) = 0 = constant for arbitrary x, Conversely, the gradi-
ent estimate between pixels with different colors entails non-zero
variance, i.e., ±(b1(x)h(x)−b0(x)h(x)) ̸= constant. Consequently,
high-variance (error) information propagates to other pixels at the
reconstruction step. This error manifests as "dipole artifacts" in Fig-
ure 2 under L2 reconstruction. The difference image shows signifi-
cant errors around the boundaries between different colors.

To summarize why basis expansion helps in this case, let us com-
pare the difference between our formulation and vanilla gradient-
domain. Assuming that hi(x) ≈ h j(x), gi(x) = ∑l α

l
ib

l
i(x), g j(x) =

∑l α
l
jb

l
j(x) and bl

i(x)≈ bl
j(x) for all l:

• In gradient-domain rendering, the difference estimate used is

∆i jI =
∫
X

fi(x)− f j(x)dx =
∫
X

hi(x)gi(x)−h j(x)g j(x)dx

≈
∫
X

hi(x)
(
gi(x)−g j(x)

)
dx

which may have large variance when gi(x) ̸= g j(x).
• In our formulation, the difference estimate used is

∆i jI
l =

∫
X

hi(x)b
l
i(x)−h j(x)b

l
j(x)dx

≈
∫
X

hi(x)
(

bl
i(x)−bl

j(x)
)

dx

(because hi(x)≈h j(x))

≈ 0

which results in more cancellations.

3.1. Basis Expansion

Given a function g and a set of basis functions {bl(x)}l , basis ex-
pansion approximates g as a linear combination of bl as

g(x)≈
L

∑
l=1

α
lbl(x) (14)

where L is the number of basis functions of our choice and α
l

defines the weight (or coefficients) for corresponding bl . For or-
thonormal bases, each coefficient is simply a projection of function
g onto the corresponding basis as

α
l =

∫
X

g(x)bl(x)dx ≈
K

∑
k

g(xk)b
l(xk)

p(xk)
. (15)

Basis expansion has been used in various applications in render-
ing. Sloan et al. [SKS23], for example, proposed to use a precom-
puted set of coefficients to represent light transport under an envi-
ronment map. Ng et al. [NRH04] broke down the rendering equa-
tion for direct illumination into a triple product integral comprising
the environment map, visibility, and cosine-weighted BSDF terms.
This decomposition is akin to our decomposition of gi(x) and the
resulting decomposition of the integral. A recent extension of this
approach by Xu et al. [XZW∗22] uses a neural network to train a
more sophisticated set of basis functions for better approximation
of each component.

Manzi et al. [MVZ16] also proposed to incorporate basis ex-
pansion into gradient-domain rendering, but the contexts of basis
expansion fundamentally differ between our method and those of
Manzi et al. Our method defines basis functions to decompose the
integrand to have low-variance difference estimates. This process
involves changes in both difference estimates and reconstruction.
Manzi et al. consider a weighted sum of basis features (vectors) to
regularize reconstruction only, which does not involve any change
in difference estimates.

While those prior works are relevant in that they also use basis
expansion, the contexts of how basis expansion helps are different
and thus only remotely related to our work. For example, having
higher-order basis expansion does not always help in our case be-
cause high-frequency signals tend to violate the similarity assump-
tion as in Equation (3) when shift mapping slightly changes the
sample location. In addition, unlike those prior uses of basis ex-
pansion, we would like to have an exact recovery of gi(x) for each
pixel for consistent reconstruction. The example in Figure 2 is a
case where the exact recovery is trivially available, but we would
like to achieve this for more general cases. We thus propose slight
modifications to this traditional basis expansion to align with our
specific requirements.

Lossless Basis Expansion. We need to choose {bl
i} such that the

weighted sum perfectly recovers gi(x) while also satisfying the
similarity assumption. Observing that approximation by basis ex-
pansion (e.g., spherical harmonics) effectively captures the general
shape of gi while simultaneously satisfying the similarity assump-
tion (i.e., spherical harmonics are the same for all the pixels), we
would like to still utilize such existing basis functions. To achieve
this goal, we consider adding back the residual (i.e., approximation

© 2024 The Authors.
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error) to the basis functions. Given a set of basis function {bl(x)}l
we define the residual as

ri(x) = gi(x)−
L

∑
l=1

α
l
ib

l(x). (16)

To recover gi(x) exactly, we "distribute" ri(x) to all the given bases.
We add ri(x) evenly based on either the absolute value or the
squared value of the coefficient to each basis, which results in

gi(x) =
L

∑
l=1

α
l
ib

l(x)+ ri(x) =
L

∑
l=1

(
α

l
ib

l(x)+
∥α

l
i∥n

∑l′ ∥αl′
i ∥n

ri(x)

)

=
L

∑
l=1

α
l
i

(
bl(x)+

1
αl

i

∥α
l
i∥n

∑l′ ∥αl′
i ∥n

ri(x)

)
(17)

where n ∈ {1,2}. We can redefine our lossless basis for pixel i,
namely {bl

i(x)}l , as

bl
i(x)

def
= bl(x)+wl

iri(x) (18)

where wl
i =

1
αl

i

∥α
l
i∥

n

∑l′ ∥αl′
i ∥n

. This process keeps the basis for every

pixel as close as possible to the given original basis while still main-
taining the equality constraint. We empirically did not observe a
clear advantage of one weighting scheme over the other with n = 1
or n = 2. Consequently, in our implementation, we adhere to the
n = 2, maintaining consistency for evaluation purposes.

This formulation is straightforward to implement with an arbi-
trary choice of the starting global basis. Now the difference of bl

i(x)
between pixel i and j essentially depends on the residual, so select-
ing global bases that result in smaller residuals helps in general. We
have not explored an optimal choice of such global basis functions
and will leave it as future work. It is worth noting that using gi(x)
as the basis itself, as well as the BSDF integration pre-factorization
approach [ZSWL21] are both special cases of our method. In the
case of using gi(x), our method reduces to gradient-domain path
tracing [MKA∗15]. The case of BSDF integration pre-factorization
approach [ZSWL21] is equivalent to our method with a single con-
stant global basis followed by per-pixel residual distribution, result-
ing in a unit cosine-weighted BSDF as a single lossless basis in our
case. Our formulation thus generalizes those prior approaches. Fig-
ure 3 shows our method with different orders of spherical harmon-
ics as global bases. General material variation, including albedo,
can be effectively handled with more bases. It is worth iterating
that a higher-order basis does not always mean better reconstruc-
tion in our method and the performance of higher-order bases is
empirically comparable to lower-order ones in some scenes.

3.2. Reconstruction

Once we decomposed gi, we can estimate the difference estima-
tor for Il

j − Il
i ≈

〈
∆i jIl

〉
as in Equation (5) using the same set of

samples and the same shift mapping as in regular gradient-domain,
except we replace fi(x) with hi(x)bl

i(x). It is not necessary to have
additional samples for multiple bases. We then reconstruct the con-
tribution to the pixel coming from this basis integral Il

i .

While directly reconstructing each Il
i independently by following

Equation (7) is straightforward, the results are rather undesirable

Reference G-PT 𝐿! Ours-SH-0 𝐿! Ours-SH-1 𝐿! Ours-SH-2 𝐿!

Figure 3: Top: Comparison of our method with different orders of
lossless basis alongside G-PT, with 128 samples per pixel under
L1 reconstruction. Bottom: Respective Convergence MAPE plot.
Our method handles both the albedo and normal map better with
higher-order bases.

because our end goal is to reconstruct Ii, not individual Il
i . If the

coefficient α
l
i of any particular basis l for pixel i is small, Il

i is not
as important for our final estimate Ii because of Equation (13). As a
result, we could give less weight to regularization related to Il

i and
allow the reconstruction to be more focused on other indices.

We introduce a new loss that takes the coefficients α into ac-
count. Under L2 loss, our reconstruction is defined as{〈

Il
〉

G′

}
l
= min

{Il}l
∑
i, j

1
L

L

∑
l=1

∥Il
j − Il

i −
〈

∆i jI
l
〉

MC
∥2

+λ∑
i
∥

L

∑
l=1

α
l
iI

l
i −⟨Ii⟩MC ∥2

(19)

where Il
i =

∫
Xi

hi(x)bl
i(x)dx is as defined in Equation (13). The

subscript G′ is to differentiate the estimator for Il
i from the naive

Poisson reconstruction. The first difference term is the same as in
Equation (7) except now it also considers averaging the loss from
all the bases. The second term, instead of regularizing each ba-
sis directly with the primal estimate, regularizes the reconstructed
image with the primal image estimate. While another feasible op-
tion is to regularize the weighted basis with the weighted primal
estimate, we use the current approach because it has only one λ

parameter that empirically affects the results in the same manner
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as in regular gradient-domain rendering. The final integral esti-
mator is simply ⟨Ii⟩GB = ∑

L
l=1 α

l
i

〈
Il
i

〉
G′

. Note that the estimated{〈
Il
〉

G′

}
l

are unbiased under L2 because the expected values of

Il
j − Il

i −
〈

∆i jIl
〉

MC
and ∑

L
l=1 α

l
iI

l
i −⟨Ii⟩MC are both zeros by con-

struction. Thus

E
[
⟨Ii⟩GB

]
= E

[
L

∑
l=1

α
l
i

〈
Il
i

〉
G′

]
=

L

∑
l=1

α
l
iE
[〈

Il
i

〉
G′

]
=

L

∑
l=1

α
l
iI

l
i = Ii

(20)
which implies that our estimator ⟨Ii⟩GB is unbiased under L2 recon-
struction.

3.3. Application to Rendering

We apply our framework to rendering based on the rendering equa-
tion [Kaj86] where we have

Lo(x,φ) = Le(x,φ)+
∫

Ω

Li(x,ω)︸ ︷︷ ︸
h(ω)

fr(x,φ,ω)|n ·ω|︸ ︷︷ ︸
gφ(x,ω)

dω (21)

where x is the position, φ,ω are the outgoing and incoming direc-
tions respectively. We assigned incident radiance Li to h and the
cosine weighted BRDF term fr(x,φ,ω)|n ·ω| to g. This choice is
justified by common scenarios where incident illumination varies
smoothly (except for geometric discontinuities) and the BRDF term
may vary rapidly over the image due to material variation. We ig-
nore the emission term in our formulation for simplicity.

With a pinhole camera, we have a 2D array of integration prob-
lems for image I that involve the first hit vertices xi for i ∈ [1,W ]×
[1,H]:

Ii =
∫

Ω

Li(xi,ω)gφi(xi,ω)dω

def
=

∫
Ω

hi(ω)gi(ω)dω
def
=

∫
Ω

fi(ω)dω

(22)

where we defined

hi(ω)
def
= Li(xi,ω) gi(ω)

def
= gφi(xi,ω) fi(ω)

def
= gi(ω)hi(ω)

(23)
to align with our notations hi, gi, and fi. Anti-aliasing could be
achieved by downsampling after rendering a higher-resolution im-
age with this formulation.

Note that h(ω) is an integral over all possible paths p̄ traced from
x towards direction ω. Shift mapping Ti j(ω) as defined in Equa-
tion (4) in a more complete context changes both ω and path p̄.
Although the full path formulation is more complete, we focus on
the formulation in the angular domain rather than the path integral
domain for simplicity, treating hi(ω) as a function that returns a
stochastic value. As long as the similarity assumption can be de-
signed to hold with path-space shift mapping (i.e., the value return
from hi and h j satisfies hi(ω) ≈ h j(Ti j(ω)) for Ti j(ω) ≈ ω), our
current formulation still satisfies the similarity assumption. There
are several popular choices for shift function Ti j and we refer read-
ers to the survey by Hua et al. [HGP∗19] for more details.

The reconstruction step is as explained already. Our framework

G-PT 𝐿! Ours 𝐿!
(No Mixed)

Ours 𝐿!
(Mixed)

G-PT 𝐿" Ours 𝐿"
(No Mixed)

Ours 𝐿"
(Mixed)

Figure 4: Our result (128 spp) with/without mixing with G-PT. Our
method works well for continuous surfaces with high-frequency tex-
ture maps. Artifacts that appear around geometry discontinuities
could be effectively handled by combining with G-PT. Note that our
method under L1 reconstruction performs well even without such a
combination.

does not need much change over the existing pipeline of gradient-
domain rendering, except that we need to incorporate the basis
expansion. Our method generally works well for high-frequency
albedo and normal maps. However, our difference estimators may
still have high variance around geometric discontinuities where in-
coming radiance hi changes rapidly, which invalidate our assump-
tions. Fortunately, because shift mapping already produces samples
that can be used for regular-gradient domain rendering, we option-
ally mix the result of our estimator and regular gradient-domain
estimator with inverse variance weight estimated with at least two
batches of partial results. We found that this optional combination
with G-PT empirically works well. Figure 4 shows the comparison
of our method with and without combining with G-PT. It is worth
noting that in L1 reconstruction, our method without such a com-
bination still outperforms regular G-PT because the propagation of
error in L1 is typically not as significant as in L2.

4. Implementation

Baseline. We implemented our own CPU gradient-domain path
tracer (G-PT) [KMA∗15] in LuisaRenderer [ZZC∗22] and our
method on top of the same system. Our implementations are based
on the method by [KMA∗15] and we chose to omit next-event esti-
mation for simplicity. We employed the reversible path-space shift
mapping techniques to follow the suggested implementation by
[KMA∗15]. We only made slight modifications to regular gradient-
domain path tracing to avoid some redundant calculations for our
method: splitting the throughput into two parts and storing them:
Basis/BSDF evaluation at the primary hit, and incoming through-
put after the primary hit. When a path hits a light source, we only
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need to multiply the basis/BSDF evaluation of the first hit with the
throughput after the hit once. Primal estimates and difference esti-
mates for each basis are stored in a buffer for the later reconstruc-
tion stage. We use the same sample to evaluate all lossless bases.
The only overhead during the rendering stage compared to vanilla
G-PT is basis evaluation, which is about 8% of the total rendering
time with 9 basis functions.

Reconstruction. We used PyTorch for both L1 and L2 reconstruc-
tions. Since we deal with convex optimization, we used the L-
BFGS optimizer due to its efficiency. It has been observed that L1

reconstruction often yields visually appealing results but may intro-
duce bias in gradient-domain rendering. This bias is typically mani-
fested as an overall darker image compared to unbiased reconstruc-
tion or local blurring when high-frequency details are present. We
have observed that employing L1 loss for differences and L2 loss for
regularization addresses the brightness issue while still producing
visually pleasant results. This is because the visual artifacts intro-
duced in L2 reconstruction are a consequence of over-penalization
when noisy difference estimates are present. Therefore, we adapt
L2 regularization for both L1 and L2 reconstruction in both vanilla
G-PT and our methods. We set λ = 0.1 for L2 reconstruction and
λ =

√
0.1 for L1. Using the same λ has demonstrated near-optimal

performance in our test scenes for both our method and G-PT, con-
sistent with our conclusions in Section 3.2.

Mixture with G-PT. To combine with a regular gradient-domain
estimator using inverse variance weight, we divide samples into at
least 2 batches and estimate the sample variance for ⟨I⟩GB and ⟨I⟩G.
In practice, we find that even 2 batches work effectively well for
high sample counts, so we set the batch number to max(2,⌊ N

64⌋),
with N being the number of samples used for rendering, demon-
strating good performance in practice.

Choice of Basis. To show that our method could easily adapt dif-
ferent basis functions, we test two different choices of bases: 2-
degree spherical harmonics (SH) which has 9 bases and 9 indepen-
dent box functions that evenly partition the spherical domain simi-
lar to the scaling function of the Haar wavelet. We used the Monte
Carlo integration approach as in Equation (15) to solve for α

l
i with

BSDF sampling as a precomputation. We set the number of sam-
ples K = max(150,3N) with K defined in Equation (15) and N is
the number of samples for rendering. This precomputation typically
takes 2−3% of our total rendering time. Once we have coefficients
stored in buffers, one for each l, bl

i(ω) can be efficiently calculated
based on Equation (18).

5. Results

All our experiments run on a desktop with Intel(R) Core(TM)
i7-5930K CPU @ 3.50GHZ with 12 threads and NVIDIA RTX
2080Ti GPU. GPU is used only for reconstruction as for reference
implementation by [KMA∗15].

As our proposed method is designed to address scenarios involv-
ing high-frequency material maps, we initiate the experimentation
by modifying the simple Cornell-Box scene. This experiment acts
as a proof of concept and evaluates the ability of our method to

Albedo Variation

G-PT (L2) Ours (L2)

0.1463 0.0881

Normal Variation

G-PT (L2) Ours (L2)

0.2878 0.1877

Roughness Variation
(Failure)

G-PT (L2) Ours (L2)

0.0935 0.1024

Figure 5: Cornell-box test scenes with high-frequency albedo, nor-
mal, and roughness variation respectively. The top row shows the
rendering result of G-PT and our method with spherical harmon-
ics. The bottom row shows the corresponding MAPE error im-
age. All scenes are rendered with 128 samples by our method and
147 samples by G-PT for same-time comparison. We see that with
high-frequency albedo and normal map toggled, our method shows
consistent improvement. When the roughness map is toggled our
method performs comparable to G-PT, while the error is relatively
low compared to the other two cases.

handle changes in albedo, normal, and roughness with our chosen
global basis. Our initial step involves generating a high-frequency
checkerboard for albedo, creating a normal map by treating the
checkerboard with Gaussian blur as the height map, and adjust-
ing roughness by remapping the black and white range between
0.3 and 1. We conduct tests with only one property toggled at a
time. The results are visually demonstrated in Figure 5, and the
numerical result is shown with convergence plots in Figure 6. Our
experiments under both L1 and L2 reveal that our method exhibits
superior performance in handling changes in albedo and normal.
While we observe a decreased performance compared to G-PT for
high-frequency roughness, it is noteworthy that the error in this case
is already low with G-PT itself compared to other scenarios.

As our current lossless bases focus on maintaining information
in low frequency, the variance of the difference is dominated by
the higher frequency "noise" defined in Section 3.1. Consequently,
the "failure" case in Figure 5 where using constant albedo and nor-
mal with varying roughness only may not be conclusive, as high-
frequency signals remain "similar" across different pixels. There-
fore, we further explore how high-frequency noise affects the per-
formance of our method. In the ablation study, we separate rough-
ness from the choice of the checkerboard-patterned surface map,
toggling both the albedo and normal map and gradually setting
roughness as a global surface variable. The results are demonstrated
in Figure 7. We observe that with decreasing roughness, the perfor-
mance of our method decreases as expected due to high approxi-
mation error in our current choices of bases.

To test our method in a more realistic setting, we modify scenes
from the rendering resource [Bit16] by applying different materi-
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Figure 6: Convergence plot (MAPE vs. Time) for high-frequency albedo, normal, and roughness toggled respectively with the Cornell box
scene. The convergence plot with red represents G-PT, green for our method with box function, and blue for our method with spherical
harmonics. Notice the error in the roughness toggled plot while G-PT performs better, the error is relatively low compared to the other cases.

Roughness: 0.2

G-PT (L2) Ours (L2)

0.2354 0.1634

MAPE Reduction: 
30.5%

Roughness: 0.6

G-PT (L2) Ours (L2)

0.2215 0.1275

MAPE Reduction: 
42.4%

Roughness: 1.0

G-PT (L2) Ours (L2)

0.2079 0.1116

MAPE Reduction: 
46.3%

Figure 7: Visualization of error images with G-PT and our recon-
struction with gradually changing roughness from 0.2 to 1.0. Our
method still shows variance reduction even in low roughness set-
tings with high-frequency albedo and normal maps. While higher
roughness value allows more informative basis expansion will re-
sult in better variance reduction overall.

als with varying albedo, normal, and roughness on six test scenes:
Staircase, Bedroom, Kitchen, Living-Room, Bathroom, and addi-
tionally Lone-Monk. We demonstrate our results in Figure 8 with
the same-time convergence plot in Figure 10. For Staircase, Bed-
room, Kitchen, and Lone-Monk, our method is both numerically
and visually better than G-PT for both L1 and L2, respectively.
Upon closer inspection of the Staircase scene, areas under low light
conditions, which originally suffered from over-blurring in L1 re-
construction and displayed noisy artifacts in L2, are effectively cap-
tured by our method. In the Kitchen scene, where we apply a vary-
ing grid pattern texture map with varying albedo and roughness,
vanilla G-PT struggles with noisy gradients around feature discon-
tinuities. Our method decouples these discontinuities and results in
an overall much cleaner result. In the Bedroom scene with a high-
frequency normal map, as anticipated, we achieve further variance
reduction, particularly when high-frequency features dominate the
screen. The improvement in the lone-monk scene is somewhat lim-

ited due to a lower frequency material map compared to previous
scenes. Our method still preserves more details under L1 and effec-
tively removes artifacts around sharp features under L2 (commonly
termed as dipole artifacts).

We also include some failure cases. In Figure 9, the living-room
scene, while qualitatively comparable to G-PT due to darkness in
the texture and lack of image features, shows in the error image
and the convergence plot that our method with both BOX and SH
still outperforms G-PT. The bathroom scene in Figure 9 demon-
strates a "failure" case, where varying features are far apart from
each other in general. However, our method still performs visually
competitively (notice the wooden pattern around the bathtub) and
quantitatively better convergence than G-PT under the same-time
comparison.

6. Limitation and Future Work

Similar to related work in gradient-domain rendering [ZSWL21,
MVZ16, KHL19], our method currently does not support depth of
field or motion blur effect, as well as direct Monte Carlo integra-
tion within each pixel to have antialiasing. This issue is common to
any technique that uses pixel-based information, such as per-pixel
shading normal or albedos, so it is not unique to our method. For
cases where we would like multiple subpixel samples, the compu-
tation for coefficients must be done for each sample, which intro-
duces extra computation and memory costs. Using a common set
of coefficients by varying residual distribution does not help due
to our assumption that coefficients could vary significantly across
pixels. One potential solution is to precompute the coefficients for
arbitrary normal directions, but we leave it as future work. We want
to mention that for antialiasing, rendering at a high resolution and
downsampling is often the preferable approach because tone map-
ping should be done before antialiasing to properly deal with alias-
ing in HDR images. Our current method is compatible with this
common practice.

Our method does not consider stochastic BSDF evalua-
tion [HHdD16]. It could still help in variation reduction when con-
ditional BSDF evaluation on the incoming direction has sufficiently
low variance. Our current implementation does not handle specular
reflection towards secondary hits and beyond. When encountered,
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𝐿!
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0.0241
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𝐿!
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0.0435
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0.0404
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MAPE
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Ours-SH (𝑳𝟏)

LONE-MONK

G-PT (𝑳𝟏)

G-PT
𝐿!

621.80
0.1875
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𝐿!

610.31
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0.0251
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0.0473
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Ours-BOX
𝐿!

561.78
0.1062
0.0081

Ours-SH
𝐿!

563.71
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0.0060

G-PT
𝐿"

566.86
0.1390
0.0117

Ours-BOX
𝐿"
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0.0079

Ours-SH
𝐿"
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0.0063

Reference
Loss Type
Time (s)
MAPE

RelMSE

Reference
Ours-SH (𝑳𝟏)

STAIRCASE

G-PT (𝑳𝟏)

Figure 8: Equal time visual comparison reconstruction result for G-PT, our method with spherical harmonics and box basis. We include
rendered result and error image visualization with MAPE metric for both L1 (red box) and L2 (green box) reconstruction. corresponding
MAPE and RelMSE for the full image are provided as numerical reference. In almost all cases our method with spherical harmonics performs
best both visually and numerically. Note that in most of the cases box function still outperforms regular G-PT.

it automatically falls back to regular gradient-domain rendering for
such pixels. Although we could apply our method at the first hit
with non-perfect specular BSDF, in general, such a scenario can
only be handled properly with world space techniques, which we
leave as future work.

Our numerical experiments show that spherical harmonics con-
sistently outperform the box function. However, we have not iden-
tified any theoretical reason behind it. By designing a better choice
of global bases under the same lossless basis construction, as dis-
cussed in Section 3.1, we could ideally achieve even further im-
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Ours SH (L1)
374.28

MAPE:0.09793
relMSE:0.00794

G-PT (L1)
399.01s

MAPE:0.12787
relMSE:0.00976

Ours Box (L1)
384.20s

MAPE:0.10596
relMSE:0.00892

Ours SH (L1)
184.03s

MAPE:0.13050
relMSE:0.02185

G-PT (L1)
181.62s

MAPE:0.14109
relMSE:0.02294

Ours Box (L1)
183.17s

MAPE:0.13808
relMSE:0.02460

Figure 9: The scene on the left (LIVING-ROOM) indeed contains high-frequency information. While the lack of visible features and dark
texture limits the qualitative improvement, we can still visualize the quantitative improvement from the error image. The scene on the right
(BATHROOM) lacks high-frequency features. Although the tiles on the floor are patterned and have similar colors, they dominate many
pixels, restricting the benefit of our algorithm. It is worth noting that our method with spherical harmonics (SH) still reduces error for the
wooden pattern on the side of the bathtub, and overall, it still performs numerically better than the baseline G-PT.

provement. Additionally, while our results experimentally show
performance improvements, we currently lack theoretical under-
standing compared to G-PT. We ideally would like to have a prov-
able improvement over G-PT since G-PT is a special case of our
method. Although our combination with G-PT helps get rid of ar-
tifacts introduced by our method, a better reconstruction technique
or a better design of pixel-wise basis could yield a more stable re-
construction step.

Inspired by prior work on advanced reconstruction in gradient-
domain rendering [MVZ16, KHL19, GLL∗19], we believe that in-
corporating more advanced reconstruction techniques into our ba-
sis integral formulation could lead to immediate improvements.
One can interpret our decomposition of gradient-domain render-
ing as a more effective path reuse among pixels, which may
have applications in some recent work on spatial-temporal path
reuse [LKB∗22, OLK∗21, BWP∗20]. While our current method is
designed for offline use, we envision that a more specialized loss-
less basis expansion focused on cosine-weighted BSDFs evaluation
could potentially facilitate real-time applications in the future.

Another future work is in the realm of generalized denois-
ing. Modern denoising methods rely on auxiliary image space
data [Áfr23, KHL19, ZJL∗15] to capture pixel-dependent informa-
tion and to avoid over-blurring of sharp features. However, high-

frequency variation, even if present in those auxiliary data does not
necessarily indicate entirely different pixel intensities. For exam-
ple, it is often the case that incident illumination is smooth even
when albedo changes rapidly [WRC88,KGPB05]. Our basis expan-
sion approach decouples this high-frequency per-pixel variation,
and this concept can be useful to apply to denoising. Our frame-
work itself should also be applicable to any problems where we
need to solve multiple integrals that are correlated to each other.
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