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VMF Diffuse: A unified rough diffuse BRDF
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Figure 1: Sand rendered using our new BRDF with illumination from a) the back, b) the front and c) from the side. Both albedo and roughness
are constant and set to (0.518,0.331,0.184) and 0.5 respectively. All changes in brightness come from the BRDF itself.

Abstract
We present a practical analytic BRDF that approximates scattering from a generalized microfacet volume with a von Mises-
Fischer NDF. Our BRDF seamlessly blends from smooth Lambertian, through moderately rough height fields with Beckmann-
like statistics and into highly rough/porous behaviours that have been lacking from prior models. At maximum roughness, our
model reduces to the recent Lambert-sphere BRDF. We validate our model by comparing to simulations of scattering from
geometries with randomly-placed Lambertian spheres and show an improvement relative to a rough Beckmann BRDF with very
high roughness.

CCS Concepts
• Computing methodologies → Reflectance modeling;

1. Introduction

The accurate representation of diffuse surfaces is pivotal for real-
istic rendering in computer graphics. While the Lambertian model
remains prevalent, its lack of realism has led to the development
of more sophisticated alternatives. Notably, the Oren-Nayar model

[ON94] is often used due to its simplicity and ease of control. How-
ever, this model struggles with granular materials like sand due to
the assumption of a Gaussian heightfield. A stochastic evaluation
of multiple scattering from diffuse heightfields [HD15] can permit
a broader spectrum of behaviours, including anisotropy, and can be
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Figure 2: We use Poisson-distributed monodisperse Lambertian
spheres as an approximate physical basis for our BRDF. Variation
of the sphere radius, while keeping the density fixed, varies the de-
gree of porosity. The roughness parameter of our model is used to
navigate this class of stochastic geometry, beginning with Oren-
Nayar (heightfield) behaviours (left) when the roughness is low,
and transitioning into porous-yet-connected regimes (middle) be-
fore exhibiting the Lambert-sphere BRDF (right) at full roughness.

approximated analytically [Cha18]. However, all heightfield mod-
els exhibit unwanted dark artifacts when the roughness is pushed
towards the porous regime because the models can only increase
roughness by becoming unreasonably spiky [d’E21].

To address these limitations, d’Eon [d’E21] proposed the
Lambert-sphere (LS) diffuse BRDF that offers a more granular ap-
pearance. However, the underlying physical basis of this model is
a dilute suspension of non-intersecting spheres (Figure 2: right),
and so does not accurately mimic solid surfaces and is more apt
for subsurface scattering in materials like paint. The behavior of
porous-yet-connected surfaces (Figure 2: middle two images) re-
mains poorly understood and challenging to model with existing
BRDFs.

In this paper, we propose to unify all of these diffuse BRDFs
into a single intuitive model by using the von Mises-Fischer (vMF)
NDF [d’E22] within volumetric microfacet theory [DHd16]. This
produces a BRDF with parametric roughness that can continu-
ously blend from Lambertian to Lambert-sphere, with moderate-
roughness Beckmann heightfields (similar to Oren-Nayar) in the
lower range of roughness values and new porous behaviours in
the upper range. For the latter, we compare the predictions of our
model to MC simulations of scattering from Poisson-distributed
spheres (Figure 2) and find close agreement for roughness values
in the porous-yet-connected regime. This provides physical moti-
vation for our model and, to the best of our knowledge, the first
confirmation that full-sphere NDFs in microfacet (one-sided flake)
theory leads to physically-reasonable predictions.

To make our BRDF practical, we first compute reference values
using the angular-null-scattering approach [d’E23] and then solve
for an approximate analytic form that is reasonably accurate and
efficient. Finally, we also include albedo-mapping functions and a
roughness parametrization that makes our BRDF intuitive and easy
to control.

2. Related Work

BSDFs are a fundamental part of rendering systems, and as such,
many different forms have been proposed to describe materials. The
most popular ones are based on microfacet theory [CT82,vGSK98,
WMLT07, Hei14], although many follow the assumption that mi-
crofacets are perfectly specular. Contrary to this, Oren and Na-
yar [ON94] derived a model that is based on Lambertian Gaussian

heightfields, which simulates up to two bounces from the surface. A
common limitation of these BSDFs is that they cannot model vol-
umetric microgeometry like granular or porous media (Figure 2:
middle) where the heightfield assumption is not appropriate.

Anisotropic radiative transfer was introduced to graphics by
Jakob et al. [JMA∗10] as a two-sided microflake theory that can
simulate dilute suspensions of oriented scattering particles, which
has many applications, such as fabrics [ZJMB11]. The SGGX dis-
tribution [HDCD15] is a convenient parametric NDF for describing
two-sided flake orientations in such media. Layering slabs of two-
sided SGGX flakes has been shown to produce a wide variety of
useful behaviours [WJHY22], including approximating heightfield
BRDFs. However, the microfacet theory at the heart of most pop-
ular BDRFs in graphics fundamentally pertains to heightfields and
is therefore best described by a volumetric model with one-sided
flakes [DHd16], which has been shown to be accurate for both ho-
mogeneous and layered configurations [dBWZ23]. To accurately
model heightfields in the low-roughness regime, we use one-sided
microflakes. However, by choosing an NDF that extends to the full
sphere, our model can also describe porous surfaces.

Volumetric scattering in plane-parallel half spaces can also pro-
duce diffusive BRDFs [HK93]. A great variety of behaviours can be
achieved by varying the phase function and/or varying the medium
properties with depth. However, exact solutions are only known
for isotropic and linearly-anisotropic phase functions [Cha60]. For
phase functions given by three- [HC61] or four-term [Smo76] Leg-
endre expansions, the BRDF takes on a highly complex semi-
analytic form that requires specialized fitting procedures to use
practically [d’E21]. More general phase functions and layered ma-
terials require precomputations using discrete ordinates [Sta01] or
adding-doubling [JdJM14].

Various empirical models for diffuse rough surfaces exist. Min-
naert [Min41] extended the Lambert BRDF to describe lunar sur-
faces. Several models have assumed isotropic subsurface scatter-
ing and extended Chandrasekhar’s BRDF in various forms [Hap81,
WNO98]. Burley [Bur12] introduced a BRDF based on measured
data which includes a diffuse Fresnel factor. The core assumption of
our model is the vMF NDF, which was chosen because it behaves
much like the Beckmann NDF for low roughness (to align with
Oren-Nayar) and because it approaches an isotropic distribution at
full roughness, which recovers the LS BRDF. We employ stochas-
tic geometry, as opposed to measured data, to verify that this choice
is physically reasonable (assuming a Lambertian microsurface and
geometrical optics).

Recently, [LRPB23] introduced a microfacet model for thin
porous layers. Since their model covers sparse granular media only,
we consider it orthogonal to our work.

3. The vMF Diffuse BRDF

In this section, we propose a new analytic BRDF for rough diffuse
materials. Our BRDF has two parameters: c the spectral albedo of
the Lambertian microsurface, and a roughness parameter 0≤ r ≤ 1.

© 2024 The Authors.
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3.1. The vMF NDF

To produce a single parametric BRDF that transitions from smooth
Lambertian, through moderate-roughness Beckmann and all the
way to Lambert-sphere behaviours, we combine microfacet the-
ory with the von Mises-Fischer (vMF) NDF. Unlike Beckmann
and GGX NDFs for heightfields, the vMF NDF extends to the full
sphere of microfacet orientations. Dupuy et al. [DHd16] noted that
the volumetric formulation of Smith microfacet theory (one-sided
flakes) requires no fundamental changes to support full-sphere
NDFs. However, no practical algorithm for evaluating such BRDFs
was presented until recently.

Using a generalization of null-scattering in the angular domain
to homogenize the NDF, d’Eon [d’E23] presented an unbiased
method to evaluate microfacet BRDFs. This approach supports
completely general NDFs (including full-sphere NDFs) and avoids
prior requirements to derive cross-sections and sampling proce-
dures for the distribution of visible normals. However, the approach
is stochastic and can result in high noise and low performance, de-
pending on the properties of the surface and structure of the input
NDF. Therefore, we use this approach only to compute reference
values of the target BRDF, and then use this data to fit approximate
analytic functions.

3.1.1. Roughness Parametrization

The vMF NDF [GP16,GQGP16], can be defined as [d’E16,d’E22]

DvMF(u) =
csch

(
2

α2

)
e

2u
α2

2πα2 (1)

where u = cosθ describes the orientation of microfacets, measured
from the macroscopic average, and the shape parameter α > 0 is
chosen such that DvMF(u) is asymptotic to the Beckmann NDF
for small α. Note that, unlike the Gaussian NDF for two-sided
flakes [ZJMB11], the vMF NDF allows D(ω) ̸= D(−ω), which is
required for making a volume act like a surface [DHd16].

Both the Beckmann and vMF NDFs are valid NDFs for parame-
ter 0 ≤ α <∞, which is an inconvenient parameter space to texture
and control. We found that using a reparametrization

α =− log(1−
√

r), r ∈ [0,1], (2)

offers a more intuitive mapping using a new roughness variable r.
This mapping was chosen so that the total diffuse albedo of the
BRDF (which is one way to measure how the roughness influences
the scattering of light) changes as linearly as possible with r.

3.1.2. The vMF Cross Section

In the analytic fitting that we present below, we found that the
anisotropic cross section of the vMF NDF was a useful parame-
ter. However, it is known exactly only as an infinite series or as a
1D integral [d’E16]
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where 0F̃1 is the regularized confluent hypergeometric function.
Therefore, we employ an approximation for σ inspired by previ-
ous work [d’E16]. For low values of α we use a modification of the

Beckmann cross section following d’Eon [d’E16],
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 , 0<α< 0.25,

(4)

which reduces at zero roughness to σ
vMF(u,0) = uΘ(u), us-

ing Heaviside’s function Θ(x). For 0.25 < α < 0.9, a spherical-
harmonic expansion of high order can be used [d’E16], or the fol-
lowing

σ
vMF(u,α)≈ 0.25+(0.4975−0.273731(α−0.1)1.7)u+

(0.153918−0.139522(α−0.1)1.2)(3u2 −1)−
(0.013762+(0.013922α−0.027553)α)

(3−30u2 +35u4)+0.048357
∣∣∣(1−α)4u8
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0.033493(1−α)4 cos(7.7u). (5)

For larger α ≥ 0.9, we use
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which has the limit σ
vMF(u,∞) = 1/4 for r = 1.

3.2. Approximation in Fourier Space

Our BRDF can be stochastically evaluated using the angular-null-
scattering method [d’E23] by combining the vMF NDF (Equa-
tion 1) with one-sided Lambertian flakes. This approach becomes
prohibitively costly for all but very large roughness values, due to
the rejection sampling in the null algorithm. Therefore, we precom-
puted a set of reference evaluations of our BRDF and then fit an-
alytic functions to that data to define an approximate parametric
model.

We employ a decomposition of the BRDF over scattering order,
similar to Oren and Nayar [ON94], in order to reduce the dimen-
sionality of the functions that require approximation. Where Oren
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Figure 3: Energy contribution of each component with varying
albedo and roughness. While the majority of the energy is ac-
counted for in the single scattering, for materials with high albedo
and high roughness a significant amount of the energy is present in
fm.
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and Nayar include two orders of scattering, we include a large num-
ber to ensure that the highly porous regime does not lose energy.
The BRDF is then written as

fr(ω⃗i, ω⃗o)= c f1(ω⃗i, ω⃗o)+c2 f2(ω⃗i, ω⃗o)+c3 f3(ω⃗i, ω⃗o)+ fm(ω⃗i, ω⃗o),
(7)

where fm(ω⃗i, ω⃗o) includes fourth- and higher-order scattering from
the surface. The contribution of each component can be seen in
Figure 3.

An additional dimensionality reduction is gained by using a
Fourier expansion, similar to the Lambert-sphere BRDF [d’E21].
For the first three scattering orders, and for each pair of incoming
and outgoing cosines (ui = cosθi,uo = cosθo), we computed az-
imuthal integrals of the BRDF and expressed each using a discrete
cosine series over azimuth φ

fi(ω⃗i, ω⃗o)≈ f (0)i (ui,uo)+ f (1)i (ui,uo)cos(φ)+ f (2)i (ui,uo)cos(2φ).

Noting that negligible energy is present in higher order compo-
nents of the expansion, an accurate analytic form of the first three
bounces from the microsurface is achieved when the functions
f ( j)
i (ui,uo) are all accurately approximated. Having removed de-

pendence on azimuth φ and albedo c, these functions are functions
of only three parameters (ui,uo,r).

For the specific approximations that follow, we took inspiration
from the functional forms that appeared in the exact solution for
the Lambert-sphere BRDF. Since this BRDF appears as a special

(a) f (0)1 (ui,uo)uo

(b) f (1)1 (ui,uo)uo

(c) f (2)1 (ui,uo)uo

Figure 4: MC Reference (top) vs approximate (middle) Fourier
components of f1(ω⃗i, ω⃗o)∗ cosθo for single scattering. Error (bot-
tom) shows a close match over a range of roughness values and
pairs of cosines. Each square shows uo ∈ [0,1] on the horizon-
tal and ui ∈ [0,1] on the vertical, with ui = uo = 1 in the top
right corner. The roughness values from left to right are r ∈
{0.025,0.05,0.075,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}.

case of our new BRDF, it seemed likely that a similar computa-
tional complexity (with similar functions appearing) would likely
be required to accurately fit the reference data.

Each approximation that follows was found by trial and error by
searching for a parametric form with as few coefficients as pos-
sible showing low error over a wide range of roughnesses. This
was judged visually by comparing the Fourier coefficients over a
fixed set of roughnesses and displaying both reference and fitted
values together with a difference image. For each component, we
attempted to find the simplest equation that did not show notice-
able error in the difference image (e.g. Figure 4). However, it may
be possible that simpler expressions could accurately describe our
BRDF.

Once a low-error form was selected, simple approximate func-
tions for the coefficients as a function of roughness were fit using
simple expressions. While these expressions offer little direct in-
sight on their own, it is interesting to note the similarities to some
expressions appearing in the simpler special case of the Lambert-
sphere.

3.3. First-Order Collision

For rays that intersect the surface exactly once, we observed that
the zeroth-order Fourier component is well approximated by

f (0)1 (ui,uo)≈
1
π

σ
vMF(ui)σ

vMF(uo)

uiσ
vMF(−uo)+uoσvMF(ui)

×(
C100 +C101uiuo +C102u2

i u2
o +C103(u

2
i +u2

o)
)
,

C100 = 1+
0.84r4 −0.1r

9r3 +1
, C101 =

−9.47r3 +20.4r2 +0.0173r
7.46r+1

,

C102 =
2.37r2 −0.927r

r2 +1.24
, C103 =

−1.54r2 −0.11r
7.1r2 −1.05r+1

.

The term involving the cross sections was inspired by consider-
ing single-scattering from a medium with angle-dependent cross-
section, integrating over all depths in a half space to find

1
uiuo

∫ ∞

0
e−zσ(−ui)/ui e−zσ(uo)/uo dz =

1
uiσ(−uo)+uoσ(ui)

. (8)

For the first-order component, we propose the approximation

f (1)1 (ui,uo)≈
1
π

[σvMF(ui)σ
vMF(uo)]

C112

uiσ
vMF(−uo)+uoσvMF(ui)

√
1−u2

i

√
1−u2

o×

(C110 +C111uiuo) ,

C110 =
0.54r−0.182r3

1.32r2 +1
, C111 =

−0.375r3 +0.62r2 −0.097r
0.4r3 +1

C112 =−0.681r2 +0.862r+0.283.

For the second-order component, we propose the approximation

f (2)1 (ui,uo)≈

(
1−u2

i

)(
1−u2

o

)
(C120 +C121ui)(C120 +C121uo)

π(ui +uo)
,

C120 =
5.1r2 +2.25r

32.4r2 +9.8r+1
, C121 =

6r3 −4.32r
287r3 +9.7r+1

.

The accuracy of these three approximations is illustrated in Fig-
ure 4. Note that for r = 0, all but C100 = 1 go to zero and Lambertian
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(a) roughness r = 0.5
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(b) roughness r = 0.6

Figure 5: Comparison of stochastic geometry (top rows) to our
BRDF prediction (second last row), with an error image (bottom
row which subtracts the BRDF and finest-level reference), for two
roughness values in the porous-yet-connected regime. With the ex-
ception of the hot-spot effect shown on the left column, which is not
predicted by our model, note the low error between our BRDF and
ground truth for a variety of lighting directions.

behaviour is recovered exactly (noting also that σ
vMF(u)→ uΘ(u)

as α → 0, where Θ is Heaviside’s function).

For the higher-order terms, the same approach was taken and
expressions of similar complexity appear. We include these in Ap-
pendix A.

4. Validation

To provide physical motivation for our BRDF, we performed brute-
force MC simulation of parallel light rays reflecting from an en-
semble of stochastic geometries and compared the results to our
BRDF. We chose Poisson-distributed monodisperse spheres, where
variation of the radius induces a variation in roughness (see Fig-
ure 2). This class of geometry was chosen because it is efficient to

θi = 0.0

Si
ng

le
Sc
a

er
in
g

Surface Trace Ours Beckmann Error (Ours) Error (Beckmann)

D
ou

bl
e
Sc
a

er
in
g

Tr
ip
le

Sc
a

er
in
g

θi = 0.8

Si
ng

le
Sc
a

er
in
g

Surface Trace Ours Beckmann Error (Ours) Error (Beckmann)

D
ou

bl
e
Sc
a

er
in
g

Tr
ip
le

Sc
a

er
in
g

Figure 6: Comparison of the hemispherical reflectance of stochas-
tic geometry ("surface trace") to our BRDF (with r = 0.4) and a
Beckmann heightfield model (with roughness α = 1.4) for fixed in-
coming angle θi. Note how for the second bounce the heightfield
model over-predicts the reflectance, where our porous BRDF ex-
hibits lower error.

sample from and because it interpolates between the two rough-
ness extremes of our BRDF: in the limit of infinite radius, the
geometry approaches a flat Lambertian material, and as the ra-
dius becomes small, the geometry becomes a dilute suspension of
non-intersecting Lambert spheres, which aligns exactly with the
Lambert-sphere BRDF [d’E21]). More importantly, this geometry
can exhibit porous (yet connected) ensembles and provides the first
test bed for verifying that the extension of microfacet theory to in-
clude full-sphere NDFs produces physically meaningful results.

In Figure 5 we compare renders of explicit stochastic geome-
try and our BRDF, with error images in the bottom row. The top
rows show a sequence of stochastic geometries that use succes-
sively smaller spheres, while maintaining a fixed ratio of radius to
density. In the limit of zero radius, the spheres becomes too small
to resolve and the result approaches that of a BRDF applied to a
single sphere shape. Our BRDF is shown next to the finest level
of geometry. For these two roughness levels, where the geometry
shows distinct porosity, yet appears mostly connected, we see a low
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Figure 7: Comparison of original (top) and remapped albedo (bottom) rendered on a sphere in a white IBL. The roughness changes from 0
to 1 counterclockwise. The albedo of each sphere is constant and increases from left to right.

Figure 8: Light spin around an object with a roughness texture with
values ranging from 0 to 1. Different patches flare up at different
times.

error between our BRDF and the ground truth (except for the left
column where the light and camera are aligned perfectly, which
produces the well known hotspot effect that is not accounted for in
microfacet theory).

In Figure 6 we compare two hemispherical slices of our BRDF
under fixed θi illumination to ensemble-averaged reflectance from
thick slabs of random sphere geometry (like that shown in Fig-
ure 2). Additional slices are provided in the supplemental material.
For both our model and a diffuse Beckmann heightfield [HD15], we
manually determined roughnesses that approximately minimized
the observed error for the single-scattering component of the re-
flectance. Note how for the second surface bounce that our BRDF
has lower error than the heightfield model. Considering these re-
sults together with Figure 5, we conclude that using the vMF NDF
in full-sphere microfacet theory is not simply a convenient math-
ematical choice for interpolating between prior models but also a
physically-plausible BRDF for porous diffuse microgeometries.

5. Albedo Correction

One side-effect of considering multiple bounces is that with in-
creasing roughness, materials will become darker and more satu-
rated due to absorption (e.g., see 3rd row of Figure 10). This be-

haviour is physically correct and has been observed for scattering
from rough heightfields [HD15]. This may be a desirable behaviour
when varying the roughness over a surface that has uniform absorp-
tion. However, it can make dialing in a desired color difficult. For
this reason, we provide an optional color re-mapping function that
solves for the unique diffuse albedo c of the microsurface that pro-
duces a diffuse albedo kd (assuming normal incidence),

c =

−1+ kd +
√

1−2kd + k2
d +4s2k2

d

2skd

√
r+(1.0−

√
r)kd

with s = 0.64985+0.631112r+1.38922r2. Figure 7 shows the ef-
fect of our remapping.

6. Results

We implemented our BRDF in Mitsuba 0.6 [Jak10]. A video of
a scene with 1M triangles and a rotating light is provided in the
supplemental material. It shows the behaviour of our model with
porous-yet-connected roughness (r = 0.5). For this scene, we ob-
served no measurable performance difference compared to render-
ing with the full Oren-Nayar BRDF.

Figure 1 shows our BRDF applied to sand rendering under a va-
riety of illumination directions. Note how the brightness changes
under different viewing directions. To demonstrate this further, we
rendered an object with a roughness texture with different lighting
directions. Although we apply our remapping scheme and all tex-
tures have more or less the same albedo, different patches flare up
in different lighting configurations appearing brighter and darker
(Figure 8).

As it can be seen in Figure 10, while Oren-Nayar and our model
are identical at r = 0 and similar at low roughness, they start to
diverge when the roughness is increased. Notably, both the full as
well as the approximative Oren-Nayar model will not conserve en-
ergy and become darker since it only models two bounces. In con-
trast, our model will preserve energy, and exhibit increased dark-
ening and saturation due to absorption during subsequent bounces.
However, the albedo can be remapped so that the color stays ap-
proximately constant. At r = 1, our model closely approximates
the LS BRDF (albeit with less accuracy than the original approxi-
mation [d’E21]).

While our model simulates only purely diffuse materials, it can

© 2024 The Authors.
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Figure 9: When coated with a dielectric specular BSDF, our diffuse BRDF loses its typical bright edges. The appearance difference to the
Lambertian base (r = 0) can be seen in the small FLIP [ANA∗20] image. As it can be seen, the visual difference stays comparatively constant
when coated whereas the grazing angles change significantly in the uncoated case if the roughness is increased.

be combined with specular BSDFs to simulate materials like ceiling
paint or sand. In Figure 9, we coated our vMF diffuse BRDF with a
GGX BSDF with IOR 1.4 using [GHZ18]’s method and increased
the roughness of the base layer from 0.0 to 1.0 with remapping
enabled. While grazing angles vary significantly in the uncoated
case, the effect diminishes when coated since the refracted rays ap-
proach the diffuse base from a narrower range than in the case of
no coating. Note that our remapping only takes into account the
color-change from the roughness. The darkening of the coated ver-
sions is caused by the scattering between top and base layer. For
each image, we include a difference image that compares to the
first (Lambertian base) image to show that the roughness variation
in our model can still be visually significant behind a rough dielec-
tric coating.

7. Conclusions

We have presented a new analytic BRDF that models a wide vari-
ety of diffuse behaviours, including several important prior models
as special cases. It is easy to use and has been compared to ground
truth simulation, showing a close comparison, and an improved ac-
curacy for porous microgeometries when compared to heightfield
BRDFs .

Our BRDF has certain limitations. We do not support anisotropy
or perfect importance sampling. Instead, we currently rely on Lam-
bertian sampling. In practice, the shape of the BRDF is uniform
enough that the additional noise is not prohibitive.

Since our BRDF is not as simple as, for example, Oren-Nayar
or other empirical models and involves many computations, it is
mainly suited for offline rendering. However, due to its closed-form
solution and its small set of parameters, it is likely that our BRDF

could be accurately approximated by a small Multi-Layer Percep-
tron (MLP) for use in real-time rendering [ZRW∗24].
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Appendix A: Additional Approximations

Second-Order Collision

For rays that intersect the surface exactly twice, we observed that
the zeroth-order Fourier component is well approximated by

f (0)2 (ui,uo)≈(
C200 +C201uiuo +C202(ui +uo)+C203u2

i u2
o +C204(u

2
i +u2

o)
)

π(ui +uo)
,

C200 =
0.226r2 +0.00056r

7.07r2 +1
, C201 =

−12.04r3 +4.57r2 −0.268r
36.7r3 +1

,

C202 =
−0.97r3 +2.52r2 +0.418r

10r2 +1
, C203 =

2.65r3 −2.25r2 +0.068r
21.4r3 +1

,

C204 =
0.05r−4.22r3

43.1r3 +17.6r2 +1
.
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Figure 10: Comparison of Oren-Nayar vs. our model. The albedo of all spheres is (0.9,0.4,0.2). With increasing roughness, saturation starts
to increase. We can compensate the darkening and saturation increase with our remapping to allow for easier editing.

For the first-order component, we propose

f (1)2 (ui,uo)≈
1
π

√
1−u2

i

√
1−u2

o

ui +uo
×(

C210 +C211uiuo +C212(ui +uo)
)
,

C210 =
−0.027r3 −0.049r

3.36r2 +1
, C211 =

−8.332r2.5 +6.073r3 +2.77r2

50r4 +1
,

C212 =
−0.295r3 −0.431r2

23.9r3 +1
.

We observed negligible energy in the second- and higher-order
components of the second bounce and assume these are zero in our
approximations ( f (2+)

2 (ui,uo) = 0). Our approximations are com-

pared to MC reference in Figure 11. Because all constants C2i j = 0
when r = 0, no second-order energy arises and the Lambertian
BRDF is recovered exactly.

© 2024 The Authors.
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(a) f (0)2 (ui,uo)uo

(b) f (1)2 (ui,uo)uo

Figure 11: Reference (top) vs approximate (middle) Fourier com-
ponents of f2(ω⃗i, ω⃗o)∗cosθo for double scattering. Error (bottom)
shows a close match over a range of roughness values and pairs of
cosines.

Third-Order Collision

For rays that intersect the surface exactly three times, we observed
that the zeroth-order Fourier component is well approximated by

f (0)3 (ui,uo)≈(
C300 +C301uiuo +C302(ui +uo)+C303u2

i u2
o +C304(u

2
i +u2

o)
)

π(ui +uo)
,

C300 =
0.262r4 −0.083r3

38.6r4 −1.9r2 +1
, C301 =

4.95r2.5 −2.44r3 −0.627r2

31.5r4 +1

C302 =
0.31r2.5 +1.4r3 +0.33r2

20r3 +1
,C303 =

1.77r2.5 −4.06r3 −0.74r2

215r5 +1
,

C304 =− 1.026r3

13.2r3 +5.81r2 +1
.

For the first-order component, we propose

f (1)3 (ui,uo)≈
1
π

√
1−u2

i

√
1−u2

o

ui +uo
×(

C310 +C311uiuo +C312(ui +uo)
)
,

C310 =
0.028r2 −0.0132r3

−3.315r4 +7.46r2 +1
,C311 =

0.162r2.5 +0.302r3 −0.134r2

57.5r4.5 +1
,

C312 =
0.5r2.5 −0.207r3 −0.119r2

18.7r3 +1
.

We observed negligible energy in the second- and higher-order
components of the third bounce and assume these are zero in our
approximations ( f (2+)

3 (ui,uo) = 0). Our approximations are com-
pared to MC reference in Figure 12. Lambertian behaviour follows,
like before, noting C3i j = 0 when r = 0.

Higher-Order Scattering

For rays that scatter four or more times from the microsurface, we
propose an analytic approximation that was found using TuringBot

(a) f (0)3 (ui,uo)uo

(b) f (1)3 (ui,uo)uo

Figure 12: Reference (top) vs approximate (middle) Fourier com-
ponents of f3(ω⃗i, ω⃗o) ∗ cosθo for triple scattering. Error (bottom)
shows a close match over a range of roughness values and pairs of
cosines.

symbolic regression software,

fm(ω⃗i, ω⃗o) =

0.384Ck(Ca −0.342)Ca

(
| tanh(r)−0.09|− 0.0579

uiuo +0.288

)
,

Ck =
−0.453(1− c)−0.544

√
1− c+1

1.429
√

1− c+1
,

Ca = c
(

1.169
√

1− c+1
)− tan−1

(
((r−0.265)r+0.0225)erf(

√
1−c)

)
.

(9)
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