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Abstract
Differentiable rasterization changes the standard formulation of primitive rasterization —by enabling gradient flow from a
pixel to its underlying triangles— using distribution functions in different stages of rendering, creating a “soft” version of
the original rasterizer. However, choosing the optimal softening function that ensures the best performance and convergence
to a desired goal requires trial and error. Previous work has analyzed and compared several combinations of softening. In
this work, we take it a step further and, instead of making a combinatorial choice of softening operations, parameterize the
continuous space of common softening operations. We study meta-learning tunable softness functions over a set of inverse
rendering tasks (2D and 3D shape, pose and occlusion) so it generalizes to new and unseen differentiable rendering tasks with
optimal softness.

CCS Concepts
• Computing methodologies → Rendering; Rasterization; Artificial intelligence;

1. Introduction

While forward rendering generates a 2D image based on 3D scene
parameters, inverse rendering optimizes these parameters to repro-
duce a given 2D reference image. The use of modern gradient-
based optimizers in this context requires the rendering process to be
differentiable, facilitating applications such as model reconstruc-
tion [KUH18], pose estimation [LB14, GMCG20], and the esti-
mation of lighting and materials [CLG∗21, NDDJK21]. However,
differentiation is challenging due to the discontinuities commonly
present in rendering.

The renderer can generally be differentiated in two main ways:
either by approximating the gradients using the exact forward ren-
dering process, which may require manually designed gradients
or by directly approximating the forward rendering process to en-
able Automatic Differentiation (AD). For gradient approximation,
Loper et al. [LB14] leverage the differences between neighboring
pixels, while Kato et al. [KUH18] employ a hand-crafted func-
tion. Li et al. [LADL18] proposed the integration of gradients
using Monte Carlo ray tracing. In contrast, other studies achieve
natural differentiability through probabilistic perturbation, such as
[RRR∗15], which uses Gaussian distributions to blur rasteriza-
tion and approximates the rasterized value as a density parameter
controlling the transparency of blobby objects. Subsequent studies
have explored using functions like the square root of a logistic dis-
tribution [LLCL19] and logistic distribution [PBKD21] in similar
ways. Another approach involves smoothing the cost function via
Monte Carlo convolution across optimization parameters [FR23].
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Figure 1: Among the continuously differentiable rasterization ren-
derers, we identify the one most suited to solving a family of inverse
rendering tasks.

These softer rasterization variants have enabled effective inverse
rendering by overcoming the challenges posed by discontinuities.
However, identifying the appropriate softness function remains a
significant challenge. We argue that no single function is univer-
sally optimal; the choice of softness depends on the specific prob-
lem, and adapting this choice should be automated and systematic.

In this work, we propose a principled approach that addresses
this issue at a higher level of abstraction as it is visualized in Fig-
ure 1. Instead of focusing on individual inverse rendering problems,
we consider the entire spectrum of potential problems. Utilizing a
training set of inverse rendering challenges, we identify the most ef-
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fective modifications to the renderer in terms of convergence speed
and/or quality, making it task-specific and differentiable.

Concretely, we introduce a meta-learning strategy to learn the
optimal edge and occlusion softness for a differentiable rasterizer
in the form of an Multi-layer Perceptron (MLP). We demonstrate
that our method surpasses state-of-the-art techniques that all rely
on manually selected softness scales for given parametric distribu-
tions.

To facilitate further research, we publish the code at
https://github.com/Theo-Wu/MetaRas.

2. Background

Differentiable rendering allows computing gradients of 3D scene
parameters with respect to the image pixels.

2.1. Problem setting

Let Rh be a common hard renderer that takes scene parameters θ

and maps them to an image. Differentiating this function is not pos-
sible due to the discontinuity of the parameters and gradients that
are typically zero. Hence, the subscript h is used to denote “hard”.
Formally, let θ

⋆ be the optimal scene parameters for an image I and
let us assume they are unique. Then, unfortunately,

opt(||Rh(θ)− I||2,θ) ̸= θ
⋆,

where opt() is an optimizer, such as gradient descent that mini-
mizes the first argument (here, the image difference of rendering
and reference image) by changing the second argument (here, the
scene parameters).

A differentiable soft renderer Rs, however, would potentially
converge to the global optimum, as in:

opt(||Rs(θ)− I||2,θ) = θ
⋆ .

AlthoughRs andRh are not identical, the crucial insight is that
as long as the gradient-based optimizer converges to the same min-
imum using its gradients, the specific function used may not sig-
nificantly impact the outcome. This introduces the possibility of
replacingRh with a differentiable function,Rs, that results in sim-
ilar optimal parameters.

In general, Rs and Rh are not identical; thus, we change the
target function we aim to optimize. Nonetheless, the differentiable
(soft) version maintains mostly non-zero gradients, fostering op-
timism that these gradients will converge toward the true, desired
optimum. A fundamental insight of this work is the notion that the
specific form ofRs andRh does not crucially impact the optimiza-
tion outcome, as long as a gradient-based optimizer can effectively
use their gradients to converge to the same minimum.

This leads us to an important question: if we have the flexibility
to modify the renderer, how should we systematically determine the
best settings? Our goal is to substitute the original function with a
differentiable variant that yields similar optimal results when sub-
jected to gradient-based optimization.

The two dominant rendering techniques are path tracing and ras-
terization. Differentiable Monte Carlo path-tracing is adept at man-
aging all types of illumination given sufficient computational re-
sources, as discussed in prior studies [LADL18, ZMY∗20], with-
out needing explicit boundary sampling [BLD20] or sampling sil-
houette edges [LHJ19] by approximating the pre-filtered gradient
[YBAF22] to handle discontinuities. Our focus in this paper, how-
ever, is on differentiable rasterization. This specific renderer type is
restricted to direct illumination but offers the advantage of efficient
computation.

2.2. Differentiable rasterization

In this section, we first discuss rasterization and then explain its
differentiable variant.

Hard rasterization: Rasterization generally refers to the pro-
cess of determining which pixels fall within a geometric primitive
that is projected onto the image plane. This initial step does not
involve assigning attributes to each pixel; such tasks are usually
handled at the fragment level by dedicated hardware or software.
Specifically, rasterization involves processing a set of 2D triangles,
each with defined depth and attributes such as color at its vertices,
to determine the attributes of each pixel in a 2D image. A common
method employs an edge function [Pin88] to test whether a pixel
lies within the boundaries defined by the edges of the triangle. If a
pixel is determined to be within these boundaries, its attributes are
unconditionally assigned based on its position relative to the trian-
gle. This assignment uses a Heaviside step function at the triangle
edges, rendering it non-differentiable; the gradient is zero across
the field except at the boundaries, where it is undefined due to the
abrupt change.

Furthermore, in scenarios where multiple primitives overlap on
the same pixel, the attribute selected for that pixel corresponds to
the one associated with the closest primitive. This selection pro-
cess, known as z-buffering, ensures that only the attribute of the
closest primitive is retained, while the attributes of the other over-
lapping primitives are discarded. However, similar to other aspects
of rasterization, the z-buffering process is also non-differentiable.

This indicates that differentiating rasterization involves address-
ing both occlusion and edge tests. This process essentially reduces
to differentiating a function based on: h(d) ∈ R→ [0,1] where d
represents a distance measurement, which could pertain to either
2D spatial dimensions or depth within the scene.

Soft rasterization: The fundamental concept behind soft ras-
terization, as introduced by Liu et al. [LLCL19], involves trans-
forming the traditional hard step function h into a soft function
s(d) ∈ R→ [0,1] with global support, ensuring non-zero gradients
throughout. The output of this soft function is utilized in alpha-
compositing, also considering depth attributes. Examples of such
functions include Gaussian distributions [RRR∗15], the square-
root of logistic distributions [LLCL19], and exponential functions
[CLG∗19].

Petersen et al. [PBDC19] proposed a method to soften the z-
buffer using a weighted softmax function defined over depth values.
Additionally, dedicated aggregation functions have been proposed

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://github.com/Theo-Wu/MetaRas


C. Wu, H. Mailee, Z. Montazeri & T. Ritschel / Learning to Rasterize Differentiably 3 of 11

for silhouette computation; these functions differentiate scenes
using binary color and are independent of depth. Subsequently,
[PGBD22] further refined these concepts by defining them as T-
conorms and exploring various implementations. Their research
demonstrated that several functions could be effective as long as
they are monotonous, and it analyzed the performance of each.

This line of work serves as another important inspiration for our
approach, in which we transition from fixed function choices to
a task-specific, continuously optimized selection of soft functions.
Our approach does not deeply analyze the mathematical properties
of these functions; rather, it focuses on fitting the data to practi-
cal scenarios, where the primary benefit is reduced computational
cost in optimization processes, even without a comprehensive un-
derstanding of the underlying reasons.

Furthermore, [LLCL19] introduced an aggregation function,
A(d,z), which softens both spatial distance and depth, allowing gra-
dients to influence both visible and occluded primitives and their z
coordinates effectively.

Similarly, Laine et al. [LHK∗20] defined the soft function with
local support on surface coverage instead of distance to the edge.
They approximate the coverage by the position of edges’ crossing
points between adjacent pixel pairs. This can be seen as a variant
of the truncated linear function on a transformed space.

To be systematic, we control variables in our comparison and
only compare with our backbone GenDR, where everything is con-
sistent except for the MLP to eliminate the influence of other im-
plementations. Nevertheless, the idea of meta-learned softness is
independent of differentiable rasterizer implementation. For exam-
ple, meta-learning an MLP to replace the linear blending operation
in Nvdiffrast [LHK∗20] might also improve it.

For a study of differentiable rasterization in general we refer the
readers to the survey by [KBM∗20].

3. Meta-learning a differentiable rasterizer

3.1. Meta problem setting

To make systematic progress we move the problem to another level
of abstraction. We phrase the challenge as finding a renderer Rs,
parameterized in some way by θ

⋆
i , that converges best over a set of

tasks Ii, where i refers to the ith category of task:

argmin
Rs

Ei[||opt(||Rs(θ)− Ii||2,θ)−θ
⋆
i ||] .

where opt refers to an optimizer.

In practice, sometimes the ground truth parameters θ
⋆
i are not

available; instead, we often have only the images Ii. Under these
circumstances, the challenge can be reformulated as follows:

argmin
Rs

Ei[||Rs(opt(||Rs(θ)− Ii||2,θ))− Ii||] .

We do not confine ourselves to a predefined, discrete set of func-
tions for manual selection. Instead, we explore the continuous
space of all possible soft renderers using meta-learning, which is
explained as follows.

3.2. Meta-learning

Meta-learning, often described as "learning to learn", is an algo-
rithmic approach that enhances a model by observing how dif-
ferent models perform across various tasks. The model-agnostic
meta-learning (MAML) algorithm was introduced by Finn et al.
[FAL17], which has shown success in learning new tasks with lim-
ited training samples by utilizing a double-loop training process.

Given the unique aspects of our tasks, we employ a method sim-
ilar to MAML, as outlined in Algo. 1. Our approach operates with
nested loops (L2 and L5): the outer loop adjusts meta-parameters—
the shape of the softening functions—while the inner loop, using
the Adam optimizer (L8), optimizes the scene settings parameters.
Importantly, the inner loop is designed to unfold into a formula
that the outer loop can differentiate automatically. The outer loop’s
gradient update (L11) modifies the parameters governing the inner
optimization, in our case, the differentiable renderer (L12). This
ensures that the optimization converges more closely to its target
with each iteration.

Our implementation diverges from traditional MAML, as shown
in Figure 2, since we do not apply the learned parameters from
our meta-loop to new test instances like classic MAML. Further-
more, rather than accessing ground truth parameters, our approach
focuses solely on minimizing image error—a strategy intended to
reduce parameter error indirectly. This method avoids the need for
ground truth supervision, relying purely on images, which simpli-
fies the learning process. Additionally, we do not meta-train initial-
izations or step sizes, which could potentially offer further advan-
tages depending on the specific inverse problem being addressed.

The meta-optimization over all soft rasterizers, parametrized by
φ, is outlined as follows:

opt(Ei[||Rs(opt(||Rs(θ,φ)− Ii||2,θ),φ)− Ii||2],φ) .

These parametrized rasterizers differ from traditional renderers
primarily in how they handle triangle edge testing and occlusions.
Instead of using hard step functions, they employ a function, sφ(d),
which is dependent on a specific parameter vector, φ. Next, we will
explore various soft edge functions in further detail.

Algorithm 1 Meta-learning for Soft Rasterization
Require: Θ: Set of task images
Ensure: Meta-learned soft renderer parameter φ

1: φ = RANDOM

2: for i ∈ [1,n] do
3: θ = RANDOM

4: Ii← SAMPLEIMAGE(Θ)
5: for j ∈ [1,m] do
6: Lθ← ||Rs(θ,φ)− Ii||2
7: ∇θ = GRADIENT(Lθ,θ)
8: θ = θ−λθ∇θ

9: end for
10: Lφ← ||Rs(θ,φ)− Ii||2
11: ∇φ = GRADIENT(Lφ,φ)
12: φ = φ−λφ∇φ

13: end for
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Figure 2: Meta-learning. Meta-optimization consists of two train-
ing loops to jointly optimize the scene parameters θ for one task
instance (vertical) and the renderer parameters φ across many task
instances (horizontal). All columns represent the same task cate-
gory of changing two triangles’ positions to match the reference
image in the last row. At test time, the optimal renderer is good at
solving unseen tasks, as shown in the rightmost column. This is,
because, towards the end of meta-training, the optimization itself
mimics the reference closely. The top shows the soft functions used
to render one column: a soft depth step makes the triangles trans-
parent, and a soft edge function makes the edges blurry.

3.3. Tunable softness

We explore two types of tunable softness functions: Cumulative
Density Function (CDF) and MLPs. Contrary to the approach taken
by GenDR [PGBD22], we do not strictly enforce the softening
function to be an explicit CDF of another function, as we find this
requirement to be optional and not necessary for the function’s
practical application. Concurrently, with the flexibility of MLP,
more complex edge functions can be utilized that seem like vari-
ations of S-curves, but are actually optimized on the required task
(Figure 3).

CDF: There are many options in this class of functions, such as
a logistic function with a softening parameter φ

sφd = S(d) =
1

1+ exp(−d ·φ) . (1)

This class of functions has been previously utilized, allowing for
parameter optimization through grid-search due to its low dimen-
sionality. We further refine the optimization of φ using meta-

learning, aiming for more precise control. Additionally, we find that
a more general class of functions yields superior results, which we
discuss next.

MLP: For more general softening, we employ an MLP that com-
prises five layers with tanh as internal activations and a residual
layer that skips three middle layers, followed by a final sigmoid:

sφd (d) = S(W5T (T (W1d)+W4T (W3T (W2T (W1d))))) , (2)

where T represents the tanh function. Note the repeated use of W1,
which functions as a residual connection. The network weights, φ=
{W1, . . . ,W5}, have a width of 4 and are randomly initialized from
a uniform distribution. Our investigations show that the inclusion of
biases or affine coordinates, such as W1(d+1), does not contribute
effectively, so we opt to exclude them from this configuration.

3.4. Tunable depth

To take the renderer’s flexibility a step further, we consider the use
of CDFs and MLP in the aggregation function, to evaluate our ap-
proach’s performance in tasks like occlusion. Originally, the sig-
moid function is directly used on inverted normalized depth to cal-
culate the contribution of each primitive’s color in the final pixel.
With the aim of making the depth itself differentiable, we first apply
a soft function to the depth and then use it as the input of the sig-
moid function. We use the CDFs as is, but some modifications are
made to the structure of MLP. Since the sigmoid will be applied in
the aggregation function ( [LLCL19]), the last layer of the MLP can

(a) 3D shape (b) Pose

(c) 2D shape (d) Occlusion

Figure 3: Edge functions for different tasks. We visualize the
meta-learned parameters in two sets of tasks. In 3D shape (a) and
Pose (b), distinct MLPs are trained for each angle, shown in differ-
ent shades of blue. For 2D shape (c) and Occlusion (d), the fixed
viewpoint necessitates a single MLP, which can be compared to
other CDFs with grid-searched softness. The same parameters can
be used for more complex scenes (i.e. Transfer tasks) without re-
meta-training.
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be removed. To ensure non-negative depth throughout differentia-
tion as the camera is set to origin by default, the activation function
is changed from tanh to ReLU . Keeping the same structure as our
softness function, we have:

sφz(z) =W5R(R(W1z)+W4R(W3R(W2R(W1z)))) , (3)

where R represents the ReLU function.

3.5. Combination

Overall, our proposal involves meta-learning the corresponding pa-
rameters φ, namely φd for spatial distance and φz for depth, to en-
able soft blending in distance d and depth z. We blend the colors of
all primitives for a pixel with weights, that are made to sum to 1 by
a normalization. To this end, we define the final value at pixel i as
follows:

Ci =

(
∑

j
sφd (d

i
j) · sφz(z

i
j)

)−1

·∑
j

sφd (d
i
j) · sφz(z

i
j) ·Ci

j (4)

where Ci
j is the color of pixel i at the j-th primitive.

4. Evaluation

We compare different methods (Sec. 4.1) according to different
metrics (Sec. 4.2) on different tasks (Sec. 4.3) leading to the re-
sults presented in Sec. 4.5. To keep consistency with our backbone,
GenDR, we also use our MLP on the famous single-view 3D recon-
struction experiment trained on the ShapeNet dataset (Sec. 4.6).

4.1. Methods

We evaluate five different methods, as summarized in Tab. 1. One
method utilizes our meta-learned MLP, while the others employ
simpler edge functions with low-dimensional parameters suitable
for grid-search optimization. For these existing edge functions, we
use parameters that have been previously established in the liter-
ature through grid searches. Except for the variations in soft edge
handling, all methods employ identical rendering setups, including
perspective projection and Phong materials, and operate at the same
resolution without super-sampling. We use GenDR as the founda-
tional backbone, into which we integrate various edge functions for
comparison.

4.2. Metrics

While image distance serves as our primary loss, we analyze results
using two distinct types of metrics as shown in the Metric of Tab. 2.
The first is image distance: for the 2D SHAPE and OCCLUSION

tasks, this is measured using Mean Squared Error (MSE), while
for 3D SHAPE and POSE, we use Intersection over Union (IoU)
[EVGW∗10].

The second type of metric is parameter distance, which provides
insights into the accuracy with which the models can determine
underlying geometric or positional parameters. Specifically, for the
3D SHAPE task, we use Chamfer distance; for POSE, we measure
angle differences; and for OCCLUSION, we assess depth order. It’s

Table 1: Methods in our comparison experiments.

Methods Backbone Function Params Tuning

MLP GenDR MLP(d;φ) 56 Meta-learned
Gauss GenDR N (d ·φ) 1 Grid-searched
Log GenDR 1/(1+ exp(−d ·φ)) 1 Grid-searched
Exp GenDR exp(d;φ) 2 Grid-searched
Gamma GenDR G(d;φ; p = 0.5) 3 Grid-searched

important to note that for 2D SHAPE, identifying ground truth pa-
rameters for triangle vertices is challenging. Since our optimization
efforts aim to uncover these parameters, this additional metric of-
fers valuable insight into each method’s performance.

Furthermore, it’s worth noting that we did not utilize these pa-
rameters during the learning phase, and they’re only used for com-
parison in evaluation. Our focus does not extend to optimizing light
or materials, as they are out of the scope of rasterizers. When pre-
senting results, whether through charts or mean value, we ensure
reliability by averaging data across 30 to 300 runs of the inner op-
timizer, depending on the task, in line with practices from GenDR.

4.3. Tasks

We explore four inverse rendering tasks for optimizing 2D and 3D
shapes, camera pose, and occlusion as illustrated in Fig. 3. For each
task, we study two variants: the original version and the transfer
one. In the original setting, the rasterizer is meta-learned on the task
with a designated input, say we find the best edge softness to make
one particular logo. In the transfer instance, the trained rasterizer
is used on the same task but with different input and initial param-
eters, e. g., a new logo with 4000 initial triangles instead of 800.
The initial parameters are pointed out in Tab. 2, under the “Orig-
inal” and “Trans.” columns. For some problems, we dynamically
vary the size of spatial and depth distances. For other problems, we
use preset values, following GenDR’s decay protocol where appli-
cable (column “Dec.” in Tab. 2). The “Occ.” column shows the use
of soft functions for color aggregation and depth tuning, which is
only utilized for OCCLUSION task.

2D Shape: In this task, we determine the positions of hundreds
of 2D triangle vertices to recreate a specific target image. The ini-
tial positions of these triangles are randomized. For the original
variant, an EGSR logo serves as the target image during both the
meta-learning and optimization phases. The challenge is to accu-
rately reconstruct this logo. In the transfer variant, we apply both

Table 2: Properties of all tasks we study.

Dim. Task DOF Dec. Occ. Metric

Original Trans. Im. Para.

2D 2D SHAPE 800 4,000 ✕ ✕ MSE —
3D 3D SHAPE 3,840 3,840 ✕ ✕ IoU Chamf.
3D POSE 4 4 ✓ ✕ IoU Angle
1D OCCLUSION 3 8 ✕ ✓ MSE Depth
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meta-learned and grid-searched softness to a different EGSR logo,
requiring optimization of additional initial triangles to reshape the
target.

3D Shape: We begin by optimizing a mesh sphere to match
the silhouette of an airplane within 100 steps. To evaluate
this, we render the airplane from five different elevation angles
(([−60◦,−30◦,0◦,30◦,60◦])) and sample 24 azimuthal views at
each elevation, averaging the loss. We compare the performance
of our MLP with meta-learned parameters against CDFs with grid-
searched softness. While the original variant uses an airplane, the
transfer variant tests the method on a chair.

Pose: In this scenario, the geometry remains fixed while we op-
timize the camera’s pose; the up and look-at directions are set con-
stants. The camera position is represented in spherical coordinates.
We randomly initialize the viewing angle between [10◦,30◦] and
distance from [2,8]. Azimuth and elevation are normally random-
ized from [15◦,75◦] and segmented into three parts for evaluation.
For each segment, we calculate the average loss across 200 pairs of
reference and initial images. An Adam optimizer (β1 = 0.9,β2 =
0.99,ϵ = 10−8) with different learning rates (0.03 and 0.3) is em-
ployed for optimizing both the meta parameters and the camera
pose. The original variant involves a cow [CPS13], and the trans-
fer variant focuses on a dragon.

Occlusion: Initially, we set three overlapping quadrilaterals with
distinct colors and textures, and optimize their depths to achieve the
correct occlusion order. Depths are uniformly randomized within
z ∈ [0.5,1.5]. In the transfer version, we move the focus of our task
from ordering the quadrilaterals to correctly determining the clos-
est face to the scene. The challenge in this version would be having
more initial quadrilaterals with complex textures (eight overlapping
ones with depths ranging from z ∈ [−1.5,2]), and finding the cor-
rect top face in fewer iterations. The MLP outperforms all the dis-
tributions by modifying the order correctly in just 10 iterations.

This setup tests each method’s ability to accurately process the
anteroposterior relationship, especially when quadrilaterals fully
overlap, challenging the capabilities of hard z-buffering and silhou-
ette aggregation. Note that in our optimization process, only the z
coordinate of each primitive is adjusted, while the x and y coordi-
nates are held fixed.

4.4. Implementation

We implement the meta-learned soft rasterization with PyTorch,
leveraging CUDA extensions to compute gradients precisely for
high efficiency. All the experiments run on a NVIDIA V100 SXM2
16GB GPU and we use a meta-learning technique that is similar to
traditional MAML to learn our meta parameters, which represent
the softness of different distributions both in 2D and depth space.
The full algorithm is outlined in Algo. 1.

Note that the optimization is not supervised by the ground truth
parameters at any point.

In the SHAPE and POSE tasks, we apply a hard z-buffer. In the
OCCLUSION task, we use the same edge function for all variants
of depth, to solely focus on their performance as soft depth func-
tions. In all tasks, we use probabilistic sum as silhouette aggrega-
tion [LLCL19] for all methods.

4.5. Results

We report first quantitative and later qualitative results of our ap-
proach.

Quantitative: Quantitative results are seen in Fig. 4 and Tab. 3,
where we analyze all tasks according to all metrics using all
methods. In Fig. 4, a successful method will —according to both
metrics— have a graph that quickly and reliably goes to a low error
value; and also stays down. In Tab. 3, lower is better.

We see that across the tasks, and consistent between metrics, our
MLP performs best (blue). This is true both for the endpoint (right
in each plot and values in Tab. 3), as for most (interruptible) in-
between iterations as well. For some iterations (horizontal axis in
each plot), all methods perform similarly in most tasks and for both
metrics, but eventually, meta-learned methods take the lead while
others plateau. In some examples, existing methods could not solve
the task with the published default values at all, while ours can
adapt to any task on any scale. We also see, that while our work
optimizes the image error, the unseen parameter also converges to
its lowest, which is the ultimate objective in reverse rendering tasks.

For OCCLUSION, MLP performs consistently better compared
to other distributions. While a convergence seems possible in the
original version based on the image, the parameter error shows oth-
erwise, meaning that the image error is not enough for these distri-
butions to learn depth.

In all experiments, the transfer from learning on one task and
testing on another can succeed, as deduced from comparing the
first and the second pair of rows, in which the first task class is
seen in meta-training, while the second one of the pair is not. This
shows the potential to save computational resources on optimizing
complex tasks by training on related simpler ones.

Qualitative: Similarly, the qualitative results of the same tasks
are illustrated in Fig. 5, and Fig. 6, comparing the renderings of the
final iteration from Fig. 4. As shown in the Error results, MLP per-
forms best. For SHAPE and POSE tasks, our results match the ref-
erence better than the previous methods starting from the same ini-
tialization. Additionally, the successful transfer of meta-parameters
from one task to another is evident in each pair of columns. De-
spite the substantial differences in 3D shapes and discrepancies in
DOF, the meta-learned softness effectively facilitates a transfer and
achieves the lowest error.

Note that for POSE task, GenDR gives unsatisfactory results,
which are faithfully obtained by directly running the code released
by them. The reason why their optimization ended up so bad is
that they manually set the range of dynamic softness from 10−1

to 10−7. As shown in the supplementary materials, their method
achieves optima when the softness decays to about 10−5, but it
finally gets worse as the softness keeps decaying and becomes im-
proper.

This is one of the drawbacks of manually designed softness, even
if GenDR sets higher softness at the early stage and decreases it as
the solution converges, it’s still unknown when and where the soft-
ness reaches the optima. However, our meta-learned softness does
not have such problems and limitations but also shows a coarse-to-
fine transition in practice (if set to higher initially).

© 2024 Eurographics - The European Association
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Table 3: Image and parameter error for different tasks (columns) and different methods (rows). The best method is shown in bold font.

2D SHAPE 3D SHAPE POSE OCCLUSION

Original Transfer Original Transfer Original Transfer Original Transfer

Im. Para. Im. Para. Im. Para. Im. Para. Im. Para. Im. Para. Im. Para. Im. Para.

MLP 0.0038 — 0.0038 — 19.4 3.2 69.0 4.72 1.1 0.01 2.17 0.14 0.041 0.244 0.040 1.63
Gauss 0.0046 — 0.0187 — 31.2 11.9 79.0 4.49 15.3 0.19 15.98 0.14 0.049 0.962 0.058 7.63
Log 0.0056 — 0.0179 — 29.8 10.1 97.0 4.54 16.2 0.22 16.63 0.12 0.048 0.916 0.055 7.51
Exp 0.0054 — 0.0148 — 32.0 11.3 87.0 4.35 15.9 0.18 14.98 0.15 0.049 0.627 0.046 1.40
Gamma 0.0056 — 0.0204 — 28.7 10.0 86.0 4.58 14.5 0.24 15.14 0.24 0.049 0.627 0.046 1.40
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Figure 4: Every subplot shows the convergence of one inverse rendering task according to one metric where different colors represent
different methods. Within each subplot the vertical axis is loss, so less is better (log scale). The horizontal axis is optimization iterations.
The first two columns show a training variant, the last two columns show a transfer condition. In each horizontal pair, the first plot is the
image-based metric, the second one is the parameter error.

4.6. Single-View 3D Mesh Reconstruction

For this final experiment, we follow the same auto-encoder struc-
ture, as proposed in all preceding studies ( [KUH18, LLCL19,
CLG∗19,PBKD21,PGBD22]), and constrict the number of render-
ers to one with the distribution function using MLP and probabilis-
tic T-conorm. Since the implementation of nested loops is not time-
efficient due to the task’s complexity, we optimize the parameters

of our MLP with the same Adam optimizer used for the model’s
parameters. While we have the disadvantage of not reaching con-
vergence for our MLP, in Tab. 4, we show that our results are com-
parable with the best results reported in GenDR, which is searched
over a large set of distribution functions and T-Conorms.
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Table 4: Comparison of 3D IoU for SINGLE-VIEW 3D MESH RECONSTRUCTION in GenDR and our method. The results from GenDR
are the best results reported in their paper, comparing a total of 30 renderers, while ours represent a single instance of renderer with MLP
as the distribution function.

Method Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean
GenDR [PGBD22] (best results) 0.6473 0.5026 0.7175 0.7696 0.5297 0.6147 0.4665 0.6673 0.6773 0.6879 0.4961 0.8189 0.6006 0.6232
MLP + Probabilistic 0.6385 0.4755 0.7216 0.6849 0.5086 0.6033 0.4594 0.6671 0.6613 0.6449 0.4617 0.7890 0.5829 0.6076
Difference 0.0088 0.0271 -0.0041 0.0847 0.0211 0.0114 0.0071 0.0002 0.0160 0.0430 0.0344 0.0299 0.0177 0.0156

4.7. Time Performance

For the time performance of training, taking the 3D SHAPE task
as an example, GenDR employs coarse-to-fine grid-searching in
28 iterations. Our method meta-learns an MLP in 50 iterations but
achieves better softness and results without manual range or fine-
ness presumptions.

For the time performance of evaluation, our method only re-
places a CDF with a small MLP with 56 parameters, which only
contributes to less than 1% of the whole computational graph.

These claims can be further proved by comparing the computa-
tional costs of training, evaluating, and rendering. The time costs
(seconds) corresponding to Tab. 3 are shown in Tab. 5.

From Tab. 5 we can see that the MLP’s extra time cost is negligi-
ble compared to the whole Evaluate Time, which includes forward
rendering, backward pass, loss calculation, etc. As analyzed above,
the time cost of MLP compared to GenDR for other tasks is simi-
lar. For Sec. 4.6, the extra cost introduced by MLP is less and our
method will be faster than grid-searching across 30 different ren-
derers - while being slightly slower than every single renderer.

Table 5: The time(s) cost of each method in 3D SHAPE.

Distribution Train Evaluate Render Image Loss

MLP 229.2 4.36 0.088 69.0
Gauss 74.95 3.24 0.053 79.0
Log 83.9 3.34 0.059 97.0
Exp 87.7 3.51 0.057 87.0
Gamma 94.5 3.63 0.056 86.0

4.8. Cross Evaluation

Tab. 6 shows what happens when a softness meta-trained from one
task is used for another task. The rows stand for the tasks on which
MLPs are trained, the columns refer to the evaluated tasks.

Table 6: The loss of using softness meta-trained from each task for
other tasks.

Train

Evaluate 2D SHAPE 3D SHAPE OCCLUSION POSE

2D SHAPE 1 × 14.7 1.3 × 19.4 9.9 × 0.042 1.8 × 2.4
3D SHAPE 1.2 × 14.7 1 × 19.4 9.9 × 0.042 1.4 × 2.4

OCCLUSION 53.7 × 14.7 2.1 × 19.4 1 × 0.042 1.7 × 2.4
POSE 1.1 × 14.7 1.1 × 19.4 9.9 × 0.042 1 × 2.4

The lowest image loss for each task is on the diagonal, which
means a softness learned on one task works better on this task than
any other task, and this is true for all tasks, respectively, showing
that meta-learning is effective. Note that here we use static softness
for POSE task.

5. Conclusion and discussion

We introduced the application of meta-learning to acquire knowl-
edge from a continuous space of softening operations. This ap-
proach is used to soften edges and occlusion functions, which in
turn improves differentiable rendering. Our approach utilizes a tun-
able MLP for space and depth edge functions, allowing for joint
optimization of their parameters alongside scene parameters. This
addresses issues related to discontinuities, enables the optimization
of shape and pose, and resolves occlusions in depth.

Additionally, we have investigated the generalization capabilities
of meta-learned softening operations, demonstrating the potential
of our method to tackle complex rendering problems. The results
underscore the transformative impact of our approach on complex
differentiable rendering techniques.

Furthermore, we have explored adapting softening functions dy-
namically based on the task, moving away from a one-size-fits-
all approach to one that adjusts softness based on specific scene
requirements. Compared to manually designing the range and de-
creasing step size, our method shows more robustness and adapt-
ability. Both static and dynamic strategies of softness can work, but
it’s a trade-off. Dynamic softness could be more precise but also
needs more computations.

In future work, we plan to extend this technique to broader ap-
plications where discontinuities in integrands hinder differentiation
and optimization, such as in physical differential equations and dy-
namic optimization. We envision meta-learning different softness
for different optimization stages (from earlier to later) to capture
different frequency detail levels. This strategy suggests that soften-
ing could evolve into a more high-dimensional and complex pro-
cess as the dynamic transition has not yet been proven to be neces-
sarily monotonic, potentially making it better suited for implemen-
tation with an MLP. Similarly, the combination strategy of multiple
softness in multi-task optimization is also a good direction to ex-
plore.

Moreover, this technique can be further improved by using the
neural representation or neural proxy methods to provide heuristic
gradients for the rasterization instead of analytical approaches as
explored in this work.
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Figure 5: Results of different methods for the 2D SHAPE and 3D SHAPE task. Every pair of rows is one task. The first two pairs are 2D
tasks, the second two pairs are 3D tasks. Every even rows show a rendering of the result upon convergence, except for the first column, where
we show the initialization (random tris in 2D tasks and a sphere in 3D tasks). Every odd row, shows the error image of that, except for the
first column, which shows the reference, the target. A successful optimization would have a black error image and a result that looks similar
to the reference. Please refer to the supplementary materials for more analysis.
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Figure 6: Results of different method for the POSE and OCCLUSION task. Every pair of rows is one task. The first two pairs are POSE

tasks, the second two pairs are occlusion tasks. Every even rows show a rendering of the result upon convergence, except for the first column,
where we show the initialization (random poses in the POSE task and random quads in the OCCLUSION task). Every odd row, shows the
error image of that, except for the first column, which shows the reference, the target. A successful optimization would have a black error
image and a result that looks similar to the reference. Please refer to the supplementary materials for more analysis.
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