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Figure 1: Coverage Axis++ enables highly efficient skeletonization of the given shapes represented by water-tight meshes, triangle soups or
point clouds. Compared with the SOTA method [DLX*22; LWS*15; PWG*19; LLL*21; CD23], Coverage Axis++ allows for fast computa-
tion of compact medial axis approximation with low reconstruction error, i.e., Coverage Axis++: 5.362% reconstruction error in 2.9s v.s.
Coverage Axis: 6.574% reconstruction error in 236.1s on average; See Tab. 1.

Abstract
We introduce Coverage Axis++, a novel and efficient approach to 3D shape skeletonization. The current state-of-the-art ap-
proaches for this task often rely on the watertightness of the input [LWS*15; PWG*19; PWG*19] or suffer from substan-
tial computational costs [DLX*22; CD23], thereby limiting their practicality. To address this challenge, Coverage Axis++
proposes a heuristic algorithm to select skeletal points, offering a high-accuracy approximation of the Medial Axis Trans-
form (MAT) while significantly mitigating computational intensity for various shape representations. We introduce a sim-
ple yet effective strategy that considers shape coverage, uniformity, and centrality to derive skeletal points. The selection
procedure enforces consistency with the shape structure while favoring the dominant medial balls, which thus introduces
a compact underlying shape representation in terms of MAT. As a result, Coverage Axis++ allows for skeletonization for
various shape representations (e.g., water-tight meshes, triangle soups, point clouds), specification of the number of skeletal
points, few hyperparameters, and highly efficient computation with improved reconstruction accuracy. Extensive experiments
across a wide range of 3D shapes validate the efficiency and effectiveness of Coverage Axis++. Our codes are available at
https://github.com/Frank-ZY-Dou/Coverage_Axis.

CCS Concepts
• Computing methodologies → Shape analysis;

1. Introduction

Skeletal representations have become a popular tool in vari-
ous applications of shape analysis and geometric processing, as
they efficiently capture the underlying structures of 3D shapes.
They have been widely adopted for various tasks including

3D reconstruction [WHG*15; THP*19; ACK01], volume ap-
proximation [SKS11; SCYW13], shape segmentation [LLL*20],
shape abstraction [DXX*20], pose estimation [SFC*11; YRL*21;
DWL*23; LXC*21], and animation [BP07; YYG18], among
others. With the development of deep learning, skeletal repre-
sentations also facilitate learning-based approaches in various
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tasks [HWQ*19; RLS*21; THT*21; HCY*22; PGT*24; WYT23;
XZX*24; WTJL24; GWHM24].

Previous efforts have been made for the computation of curve
skeleton [ATC*08; MWO03; TAOZ12; XZKS19], which consists
of only 1D curves. Dey and Sun [DS06] provide a mathemati-
cal formulation based on the Medial Geodesic Function, yet curve
skeletons are predominantly comprehended empirically.

Medial Axis Transform (MAT) [Blu*67], as a complete shape
descriptor, is another popular skeletal representation. The MAT is
defined by a union of maximally inscribed balls within the shape,
accompanied by their respective radius functions. A formal defini-
tion of MAT can be found in Sec. 3.1. In contrast to curve skeletons,
the MAT encompasses both curve-like and surface-like structures,
offering a consistent definition for arbitrary shapes and superior
representational capability.

The MAT computation poses challenges due to sensitivity
to boundary noise [LWS*15] and strict input geometry re-
quirements, e.g., watertightness and manifoldness of the sur-
face [LWS*15; PWG*19; WWWG22]. To tackle the problem,
Coverage Axis [DLX*22] is introduced to model skeletal point se-
lection as a Set Cover Problem (SCP), which does not rely on sur-
face connectivity and is able to handle both mesh or point cloud
inputs. It aims to identify the smallest sub-collection covering the
entire shape. This method minimizes dilated inner balls to approxi-
mate the shape, leading to a compact representation of the original
shape. However, solving the SCP problem, which is known to be
an NP-hard problem, can be time-consuming in some cases. For
instance, the average running time of the Coverage Axis can be
236.1s with the standard deviation being 408.4s; See Tab. 1. Mean-
while, the recent work Neural Skeleton [CD23] proposes to first
learn a Signed Distance Field from the given shape and then use
the Coverage Axis to get the final compact skeleton of the given
mesh or point cloud. However, it still suffers from low runtime per-
formance (59.27s compared to our 1.63s) and relatively low recon-
struction accuracy as shown in Tab. 3.

In this paper, we develop a simple yet more efficient skeletoniza-
tion method for shapes represented as meshes or point clouds. We
take shape representation capability, centrality, and uniformity into
consideration and develop a heuristic algorithm to achieve repre-
sentative skeletal point selection with high efficiency. Specifically,
we present a scoring scheme that assigns a score to each inner point
as a quantification of its skeletal representation ability. The scor-
ing consists of the coverage, uniformity and centrality scores. The
coverage score is determined by evaluating the number of surface
samples that can be covered within the dilated ball associated with
the candidate to ensure coverage inspired by [DLX*22]. The cov-
erage score ensures consistency with the shape structure by favor-
ing interior points that dominate a larger area, aligning with the
definition of the Medial Axis Transform (MAT) as the set of cen-
ters of maximally inscribed spheres. On the other hand, uniformity
is one of the key desired features of compact skeletonization to
suppress redundant structures, for which we introduce the unifor-
mity score. The score is calculated by measuring the distance be-
tween the candidate and the nearest point in the set of selected inner
points. This achieves a uniformly distributed skeletonization result
by preventing the selected points from clustering together. More-

over, the centrality score is employed to encourage those central
points to receive higher scores to promote centrality further. The
skeletal points are derived by running a priority queue defined by
an integration of these scores. We show that this simple yet effective
point selection manner produces a better abstraction of the overall
shape as well as a shape-aware point distribution without the need
to solve an optimization problem with high computation complex-
ity. Notably, although the priority queue works in a greedy manner,
Coverage Axis++ achieves global consistency between the skeleton
and the original shape and allows for specifying different numbers
of target skeletal points; See Sec. 6.1.

Compared with the existing methods [ACK01; LWS*15;
GMPW09; FLM03; DZ02; SFM07; MGP10; DLX*22], Coverage
Axis++ surpasses all existing methods in terms of both MAT ap-
proximation accuracy and computation efficiency while being able
to handle various inputs, including mesh, point cloud or polygon
soup. To summarize, our method allows for 1) skeletonization for
various shape representations including water-tight meshes, trian-
gle soups and point clouds; 2) specifying the number of skeletal
points, which is a desirable feature for learning-based methods as a
fixed number of points are typically required [HWQ*19; THT*21;
HCY*22; PGT*24]; 3) highly efficient computation while achiev-
ing better or more competitive reconstruction accuracy; 4) few hy-
perparameters, i.e., only dilation factor is required; 5) randomly
generated candidates inside the volume as Coverage Axis++ selects
the most expressive ones from overfilled inner point candidates.

We conduct extensive experiments to demonstrate the effective-
ness and robustness of our method on a variety of 3D shapes. The
comprehensive evaluation reveals that our method effectively cap-
tures the underlying MATs with lower shape approximation errors
while achieving much higher computation efficiency.

2. Related Work

Efficient shape representation is essential for various appli-
cations of geometric modeling, shape analysis and shape
generation [MSLJ23; LGC*23; SKSJ20; XWD*22; XDW*23;
DXX*20; FXX*22; WYT23; LLL*20; LYZ*23; YLL*23;
ZLY*23; YPN*23; YDL*23; Ale21; PGT*24]. Skeletonization, as
a popular choice in this regard, has been extensively studied in re-
cent decades. We refer readers to [TDS*16] for a detailed survey
covering various forms of skeletons. In the following, we mainly
review the related works in Medial Axis Transform (MAT) compu-
tation for mesh and point cloud inputs.

Medial Axis Transform
Mesh Inputs. Efforts in MAT computation given the water-
tight mesh inputs have been extensive [ACK01; GWM23;
FLM03; DZ02; SFM07; HWY*23; GYY*23; HCY*22; DLX*22;
RLS*21; WWWG22; LLL*24; LFWN20]. Specifically, λ-medial
axis [CL05] define weak feature size as a pruning criterion but
struggle with feature preservation at different scales [ABE09].
Scale Axis Transform [MGP10] excels in spike pruning but is
limited by high computational cost and topology disruption. Pro-
gressive medial axis [FTB13] proposes to perform topology-
preserved edge collapse based on sphere absorption. Many stud-
ies have been conducted for MAT simplification using different
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metrics [MLM16; SBH*11; YSC*16; YLJ18; SCYW13; LWS*15;
PWG*19]. Li et al. [LWS*15] propose Q-MAT for highly accu-
rate shape approximation, utilizing a quadratic error metric [GH97]
during simplification. Despite relatively high approximation ac-
curacy, Q-MAT relies on watertight surfaces. It is sensitive to
the quality of MAT initialization, as revealed by [DLX*22].
Later, Q-MAT+ [PWG*19], as a variant of Q-MAT, further in-
troduces more mesh information like shape diameter function to
improve the approximation accuracy and robustness of the origi-
nal Q-MAT method, especially for those sharp features. Recently,
MATFP [WWWG22] is developed to compute MAT with well-
preserved geometric features via the Restricted Power Diagram for
CAD mesh models. Wang et al. [WHS*24] have also explored ad-
dressing the topology preservation issue by employing Restricted
Power Diagrams.
Point Cloud Inputs. Point cloud skeletonization is still a fascinat-
ing yet challenging problem [And09; CTO*10; LGS12; LZG*23;
HWC*13; RAV*19; WHG*15; YYW*20; DLX*22] due to the ab-
sence of manifold information regarding the underlying surface of
the shape. Specifically, L1-medial skeleton [HWC*13] employs
Locally Optimal Projection [LCLT07] to contract point clouds to
form the skeleton. LSMAT[RAV*19] approximates the MAT based
on the Signed Distance Function (SDF) from a densely sampled
oriented point set. Wu et al.[WHG*15] considers linking surface
points to the skeletal points on the meso-skeleton[TAOZ12]. Yet,
this representation only yields unstructured point sets, which lacks
topological constraints describing the skeleton connectivity and
leads to low approximation accuracy. Coverage Axis [DLX*22]
models skeletal point selection as a Set Cover Problem (SCP),
which does not rely on surface connectivity, thus allowing for point
cloud inputs. However, it suffers from high computational costs as
SCP is NP-hard, especially when facing shapes with planar struc-
tures (See detailed analysis in Appendix D).

With the advent of deep learning, learning-based approaches
have been explored for point clouds skeletonization [YYW*20;
LLL*21; GYY*23]. For example, Point2Skeleton [LLL*21] learns
to predict a set of skeletal points by learning a geometric transfor-
mation and then analyzes the connectivity of the skeletal points
to form mesh structures from point clouds. However, it suffers
from limited generalization due to dependency on training data
and lacks accuracy for geometric features. Recently, Neural Skele-
ton [CD23] leverages Implicit Neural Representations (INR), i.e.,
SDF, together with coverage axis [DLX*22] for skeleton computa-
tion, yet it still faces challenges with long running time and depen-
dence on consistently oriented normals for input shapes.

3. Preliminaries

3.1. Medial Axis Transform

For a closed, oriented, and bounded
two-manifold surface S in R3, the me-
dial axis is defined as the locus of the
centers of maximally inscribed spheres
(medial balls) that are tangent to S at
two or more points. Denoted by a pair(
M,R

)
, whereM is the medial axis of S andR is its radius func-

tion, the combination forms the Medial Axis Transform (MAT).

3.2. Voronoi Diagram & Power Diagram

Voronoi Diagram (VD) is a partition of the domain Ω ⊂ Rd into
regions, close to a set of points called generators {xi ∈Ω}n

i=1. Each
region, also called cell, is defined as

Ω
vor
i : {x ∈Ω

∣∣ ∥x−xi∥ ≤ ∥x−x j∥, j ̸= i}.

A well-known MAT initialization technique is to use the VD in-
side a shape generated by surface samples [ACK01; LWS*15;
DLX*22].

In Power Diagram (PD) [Aur87], each generator xi is equipped
with a weight wi to control its influence. By defining the power
distance dpow(x,xi) between x and the weighted generator xi to be
∥x−xi∥2−wi, the cell associated with xi is defined by

Ω
pow
i : {x ∈Ω

∣∣ dpow(x,xi)≤ dpow(x,x j), j ̸= i}.

Therefore, a generator with a larger weight is more dominant.

4. Method

Our goal is to select skeletal points from a set of candidate points
denoted as P = {pi}, by utilizing a group of sampled points repre-
sented as S = {s j} on the surface, where each point is defined by
its 3D Cartesian coordinates in R3. We present an effective and ef-
ficient algorithm for skeletal point selection. We denote by P+ the
set of selected skeletal points and P− the set of unselected ones,
such that P = P+ ∪P− always holds. We gradually select a point
from P− and add it to P+ until the selected points reach the number
specified by the user. In this paper, all inner point candidates are
randomly generated inside the volume; See an example in Fig. 2
(b). The algorithm for shape skeletonization is outlined through the
following steps: scoring each candidate point for point selection
and establishing connectivity among skeletal points.

4.1. Coverage Score

To achieve compact skeletonization, we aim to select representa-
tive points that capture the key features of the given 3D object by
measuring its shape coverage [DLX*22] capability.

We first compute the medial radii R = {ri} for the candidate
points, where ri is defined as the closest distance of pi to the sam-
pled surface set S, i.e.,

ri := dist(pi,S) = min
s j∈S
∥pi− s j∥. (1)

The set R together with the center points P define the candidate
balls. We slightly dilate all the balls by a small factor to their radii
by offset, namely,

r′i = ri +δr, (2)

leading to a set of dilated balls B = {Bi}, where Bi is the ball cen-
tered at pi with radius r′i . A matrix D ∈ {0,1}m×n is introduced
by [DLX*22], where m and n are total numbers of sampled sur-
face points and candidate skeletal points, respectively. Each entry
d ji ∈ {0,1} of D indicates if the surface point s j is covered by the
dilated ball (pi,r′i ):

d ji =

{
1, if

∥∥pi− s j
∥∥

2 ≤ r′i , j = 1, ...,m, i = 1, ...,n

0, if
∥∥pi− s j

∥∥
2 > r′i , j = 1, ...,m, i = 1, ...,n.

(3)

© 2024 The Authors.
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(a) (b) (c) (d) (e) (f)

Figure 2: The pipeline of Coverage Axis++. (a) Input point cloud. (b) Inner point candidates. (c) Candidate inner balls with original radius.
(d) Selected inner balls with original radius. (e) Selected inner points. (f) Skeletonization result.

According to Eq. 3, we have the coverage matrix D = (d ji) ∈
Rm×n, where d ji ∈ {0,1} takes the value 1 if the surface point s j is
covered by the dilated ball Bi and 0 otherwise.

In this paper, we define S′ as the uncovered surface points, i.e.,

S′ : {s j ∈ S
∣∣ s j /∈ Bi, ∀pi ∈ P+}. (4)

Then we present the coverage score to each pi ∈ P−, which is de-
termined by the number of samples in uncovered surface points S′

that Bi covers

Covi := ∑
j:s j∈S′

d ji. (5)

If the dilated ball Bi of a candidate point pi can cover lots of sur-
face samples from the surface point set S′, pi should be regarded
as a representative candidate, which indicates that it has high (lo-
cal) shape approximation capability. The coverage score favors the
medial balls that dominate a larger local volume of the given shape
during the selection and thus promotes a high coverage rate (See
Appendix. C) of the overall shape to effectively enforce consistency
with the input shape.

4.2. Uniformity Score

In addition to the coverage score that intrinsically relates the skele-
tal points with the model surface, one needs to guarantee unifor-
mity among the selected skeletal points. In other words, the se-
lected points themselves should be relatively uniformly distributed
in the space instead of clustering together to avoid redundancy. For
this purpose, we introduce the uniformity score, which aims at pun-
ishing those candidate points close to the set of currently selected
points P+. Specifically, for each pi ∈ P−, its uniformity score is
defined as

Uni fi := dist(pi,P
+) = min

pi′∈P+
∥pi− pi′∥. (6)

To illustrate the mechanics of the uniformity
score defined above, consider skeletal point
selection for a simple planar shape, where
the p1, p2, p3, p4 are selected points within
a rectangular shape. If not considering the
effect of the coverage score, then according
to Eq. 6, the next skeletal point p (highlighted in red) should be
the intersection point of the line segments connecting p1 and p3,
as well as p2 and p4, ensuring that mini∈{1,2,3,4} ∥p− pi∥ is the

largest within the rectangle, leading to the highest possible unifor-
mity score for the selected point. Following this pattern, the subse-
quent four selected points (highlighted in blue) should be placed at
the centroids of their respective triangles, resulting in a relatively
uniform distribution of the selected skeletal points.

4.3. Centrality Score

We further encourage the centrality of the selected points by in-
troducing a centrality score for each candidate skeletal point. The
more central a point is in terms of medial ball positioning, the
higher its score. It excludes points too close to the surface to avoid
their susceptibility to surface irregularities and noise. Specifically,
for each pi ∈ P−, we define its centrality score based on its medial
radius by

Centri :=− 1
ri
, (7)

where ri is the radius of pi defined in Eq. 1.

4.4. Final Score

We assign a final score to each candidate pi ∈ P− by combining
its coverage score, uniformity score, and centrality score. We de-
note the three score vectors as Cov = (Covi), Unif = (Uni fi), and
Centr = (Centri), respectively. Since these scores have different
scales, we apply standardization before integrating them. Specifi-
cally, for each pi ∈ P−, we perform the following transformation
to Covi, Uni fi and Centri

Covi←
Covi−mean(Cov)

std(Cov)
,

Uni fi←
Uni fi−mean(Unif)

std(Unif)
,

Centri←
Centri−mean(Centr)

std(Centr)
,

(8)

where mean(·) and std(·) represent the sample mean and sample
standard deviation respectively. Then we integrate the three scores
by summing them up, i.e.,

Scorei :=Covi +Uni fi +Centri. (9)

After computing Scorei for all pi ∈ P−, we select the candidate
that achieves the highest score. An overview of the heuristic algo-
rithm is summarized in Algorithm 1. An ablation study on different
scoring schemes is given in Sec. 6.3.

© 2024 The Authors.
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Algorithm 1: Coverage Axis++ for inner point selection
Input: sampled surface points S, candidate skeletal points

P, dilation factor δr, target number of selected points
|V |.

Result: the set of selected skeletal points P+

Compute matrix D based on Eq. 3, Initialize S′ = S,
P+ = ∅, P− = P and k = 1;

while S′ ̸= ∅ and k ≤ |V | do
for pi ∈ P− do

Compute Covi according to Eq. 5;
Compute Uni fi according to Eq. 6;
Compute Centri according to Eq. 7;

end
Compute the mean and standard deviation for the two

vectors Cov = (Covi) and Unif = (Uni fi);
for pi ∈ P− do

Standardize Covi, Uni fi and Centri according to
Eq. 8;

Compute Scorei according to Eq. 9;
end
Select pik ← argmaxpi∈P−{Scorei};
Update P+← P+∪{pik}, P−← P− \{pik};
Update S′ according to Eq. 4;
Set k← k+1;

end

4.5. Candidate and Surface Point Generation

In this paper, for mesh or point cloud inputs, we always randomly
generate the set of candidate points P (|P| = 10000) inside the vol-
ume using volumetric sampling†. The number of surface samples S
is 1500 in all the comparisons (except for Appendix. A). For mesh
input, we employ Poisson-disk sampling [CCS12] to get the sur-
face sample. For point cloud input, surface samples are obtained by
white noise sampling [Jac*21], and fast winding number [BDS*18]
is used for inside-outside determination.

4.6. Connectivity of Skeletal Points

4.6.1. Mesh Input

For a mesh input, we aim to build up a connection while pre-
serving the topology of the skeleton, for which we employ the
edge collapse strategy of Q-MAT [LWS*15] which is based on a
Voronoi diagram. Following [ACK01; WWX*22; DLX*22], we
initialize the initial Voronoi diagram VD using the surface points.
We then embed the selected points in the Voronoi diagram using
the nearest projection, following [DLX*22]. We simplify VD us-
ing the edge collapse strategy [LWS*15]. Specifically, during this
process, each edge is checked and collapsed using the edge col-
lapse strategy [LWS*15] based on the Spherical Quadric Error
Metric [LWS*15; TGB13]. We use additional conditions during
edge collapse: If both endpoints of an edge to be collapsed are not

† https://www.meshlab.net

(a) (b) (c)
Figure 3: An illustration of the edge collapse process. The surface
is in black, with selected skeletal points highlighted in red. The col-
lapsed edges are shown with dashed lines.

selected points, we directly apply the edge collapse strategy fol-
lowing [LWS*15]. If one endpoint of an edge is a selected point
and the other is not, during edge collapse, the selected point is pre-
served. If both endpoints of an edge are selected points, the edge
is preserved and skipped. This process continues until all edges
have endpoints that belong to the selected points; See Fig. 3. We
adopt topology preservation [DEGN99] and mesh inversion avoid-
ance strategy [GH97] during the collapse. The simplification result
VD′ serves as the final MAT of the given mesh input.

Remark. Notably, not all Voronoi vertices inside the given shape
can be used to approximate the medial surface. One has to use Poles
(a subset of inside Voronoi vertices) for medial surface approxi-
mation according to [ACK01]. However, in practice, we find the
collapse over the original Voronoi diagram VD yields relatively sta-
ble outcomes for a compact medial surface approximation. Further-
more, the connectivity of skeletal points (edges and facets in MAT)
is crucial information in the output MAT results. This connectiv-
ity is significantly important for downstream applications such as
shape analysis and reconstruction, which we discuss in detail in
Appendix E.

4.6.2. Point Cloud Input

Topology preservation during
connection establishment for
point clouds is challenging. The
aforementioned edge collapse tech-
niques [LWS*15; PWG*19] are not
applicable as they require a water-
tight surface. Thus, we approximate the MAT connection using
the Power Diagram following [ACK01]. We compute the Power
diagram PD on the set of {B′(pi,r′i ), pi ∈ P+}∪{B(s j,δr),s j ∈ S}
where P+, S and r′i = ri + δr (Eq. 2) are sets of selected points,
surface points and dilated radius, respectively. Then, the connec-
tivity among skeletal points is obtained by extracting edges among
the selected inner points on the dual of PD, regular triangulation
RT (in other words, weighted alpha complexes). In the inset
figure, the P+ points are depicted in red, while the surface samples
are shown in black. The medial balls with original radius r and
dilated radius r′ are illustrated in red and yellow, respectively.
Connectivity is established by the connections among selected
points of the regular triangulation RT, which are also colored as
black solid lines. Additionally, the power plane between the two
sites is visualized in blue. This approach can also be applied to
mesh inputs, as the computation of the Power Diagram does not
depend on the underlying surface being watertight. An overview
of our pipeline is shown in Fig. 2.

© 2024 The Authors.
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4.7. Discussion

4.7.1. Complexity

Our method (Algorithm 1) has a polynomial complexity. Specif-
ically, computing Covi and Centri costs O(|S|) operations, while
Uni fi requires O(|V |) operations. Hence summing up for all pi ∈
P− gives complexity O(|P| · |S|), considering that |V | is usually
very small compared to |S| and |P|. Standardizing Cov, Unif and
Centr, as well as sorting, each take O(|P|) operations. Taking
into account that the procedure repeats for a maximum of |V |
times, the overall complexity of Algorithm 1 can be expressed as
O(|S| · |P| · |V |). Fig. 12 validates this complexity empirically by il-
lustrating the impact of different set sizes |P|, |S| and |V | on the run-
ning time of Coverage Axis++. In contrast, Coverage Axis requires
an exponential cost in the worst case. Although modern solvers ac-
celerate the solving process, long computation time is incurred in
the worst case; See Tab. 1.

4.7.2. More Features

Coverage Axis++ offers control over the number of selected in-
ner points compared to Coverage Axis. In Sec. 6.1, we explore
its robustness to various target numbers of selected skeletal points.
This ability to specify a specific number of skeletal points is crucial
for learning-based methods, ensuring compatibility with algorithms
that assume a fixed number of input points [HWQ*19; THT*21;
HCY*22; PGT*24]. Unlike Coverage Axis [DLX*22] or Neural
Skeleton [CD23], which enforces a hard constraint requiring all
surface samples to be covered, our method relaxes this constraint,
enhancing robustness to coverage conditions. This relaxation is par-
ticularly advantageous when dealing with a large number of surface
samples. Coverage Axis++ maintains a high coverage rate of the
original shape, as demonstrated in Appendix. C.

Coverage Axis++ does not impose strict requirements on the wa-
tertightness or manifoldness of the input compared with methods
like Q-MAT [LWS*15; PWG*19], making it versatile for handling
meshes and point clouds.

Additionally, our method only requires two hyperparameters:
target skeletal number |V |, and dilation factor δr.

5. Experimental Results

We conduct extensive qualitative and quantitative evaluations of the
proposed method to demonstrate its effectiveness comprehensively.
All experiments are conducted on a computer with a 4.00 GHz In-
tel(R) Core(TM) i7-6700K CPU and 32 GB memory. The sizes of
all the models are normalized to the [0,1] range.

Given the target skeletal point number, Coverage Axis++ only
includes one hyperparameter: δr (Eq. 2). All the experimental re-
sults are generated using a consistent parameter setting, i.e., for all
kinds of input, we always set δr = 0.02. In experiments where we
compare our method with Coverage Axis, we set the number of se-
lected points |V | for Coverage Axis++ to be equal to the number
obtained from the SCP solution for the Coverage Axis. We provide
additional analyses on parameters δr and |V | in Sec. 6.

As suggested by [DLX*22], we employ the two-sided Hausdorff

distance (HD) to assess the consistency between the original and re-
constructed surfaces. We use −→ϵ for surface-to-reconstruction HD,
←−ϵ for reconstruction-to-surface HD, and ←→ϵ for two-sided HD.
The reconstructed surfaces are obtained by interpolating medial
balls based on skeleton connectivity, akin to [LWS*15; DLX*22;
WWX*22]. Errors are normalized by the diagonal length of the in-
put model bounding box. In quantitative results, the best results for
runtime and accuracy are indicated with blue and orange highlight-
ing, respectively. A gallery of skeletonization results of mesh and
point cloud inputs are shown in Fig. 1 and Fig. 5, respectively.

5.1. Mesh Inputs

5.1.1. Comparison with Coverage Axis

As Coverage Axis [DLX*22] can handle both mesh and point
cloud inputs, we compared the proposed method with it on both
two inputs. The quantitative results are summarized in Tab. 1. As
can be observed, for both mesh and point cloud inputs, Coverage
Axis++ requires less runtime while maintaining competitive accu-
racy on most shapes. We observed that in specific cases, such as
the Vase model, the Coverage Axis shows a speed advantage over
our approach. This advantage is primarily attributed to the effi-
ciency of its heuristic algorithm‡ for solving the Set Cover Problem
(SCP). However, such instances are infrequent due to the theoreti-
cal computational complexity associated with SCP. When evaluat-
ing the overall performance, our method significantly outperforms
the Coverage Axis in terms of running time, where ours achieves
5.362% reconstruction error in 2.9s on average, whereas the Cover-
age Axis achieves 6.574% reconstruction error in more than 236.1s.
The same advantage is also reflected in point cloud inputs. Actu-
ally, the runtime for Coverage Axis tends to be longer for shapes
containing planar structures due to the complexity of the algorithm;
See discussion in Appendix D. The running times of the Coverage
Axis are even longer when using more surface samples; See Ap-
pendix. A. A qualitative comparison is provided in Fig. 6.

5.1.2. Comparison with MATFP

We further compare our method with the recent work
MATFP [WWWG22]. MATFP aims to compute MAT with
feature preservation, and it only takes watertight mesh input.
Besides, similar to the Coverage Axis, the user cannot explicitly
specify the final number of skeletal points. As shown in Fig. 4,
we find MATFP typically yields results with redundant points.
In comparison, Coverage Axis++ produces more compact results
while using less computation time (13.11s v.s. ours 2.61s). Since
MATFP is a multi-stage approach, we detail the running time of
each stage in Appendix B.

5.1.3. Comparison with Q-MAT and Q-MAT+

We compare our method with two representative methods for MAT
computation given the mesh inputs: Q-MAT [LWS*15] and its vari-
ant Q-MAT+ [PWG*19]. Both two methods take watertight meshes
as inputs and cannot handle point clouds or polygon soups. Tab. 2

‡ Mixed-integer linear programming in SciPy or MATLAB typically em-
ploys heuristics to search for integer-feasible solutions.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



Z. Wang*, Z. Dou* et al. / Coverage Axis++: Efficient Inner Point Selection for 3D Shape Skeletonization 7 of 16

Table 1: Quantitative comparison on run time and shape approximation error between Coverage Axis and Coverage Axis++. The inputs are
meshes and point clouds. Time: Runtime measured in seconds. |V |: The number of skeletal points. We set the number of selected skeletal
points of our method the same as the Coverage Axis [DLX*22] for a fair comparison.

Model |V |
Mesh Point Cloud

Coverage Axis Coverage Axis++ Coverage Axis Coverage Axis++
Time −→ϵ ←−ϵ ←→ϵ Time −→ϵ ←−ϵ ←→ϵ Time −→ϵ ←−ϵ ←→ϵ Time −→ϵ ←−ϵ ←→ϵ

Bear-1 68 12.6 3.964% 4.107% 4.107% 1.7 3.846% 4.047% 4.047% 14.1 4.707% 6.031% 6.031% 3.3 5.092% 6.016% 6.016%
Bear-2 49 2.3 4.345% 5.016% 5.016% 1.0 4.313% 4.572% 4.572% 3.6 8.220% 8.103% 8.220% 2.3 3.739% 4.531% 4.531%
Bird 83 >1000 2.879% 2.861% 2.879% 2.3 2.306% 2.560% 2.560% >1000 3.166% 6.810% 6.810% 3.9 2.590% 2.561% 2.590%
Bug 137 14.4 4.632% 4.586% 4.632% 5.4 3.114% 4.511% 4.511% 16.2 9.208% 8.366% 9.208% 7.5 8.262% 4.398% 8.262%
Bunny 73 2.1 7.625% 7.634% 7.634% 1.5 4.860% 5.771% 5.771% 3.4 6.391% 11.398% 11.398% 3.0 4.324% 6.091% 6.091%
Camel 93 38.5 3.487% 6.420% 6.420% 2.5 2.175% 5.556% 5.556% 40.0 8.340% 7.552% 8.340% 4.1 3.706% 5.108% 5.108%
Chair 115 >1000 2.113% 2.119% 1.903% 4.5 2.035% 2.947% 2.947% >1000 3.210% 4.199% 4.199% 6.2 3.160% 2.890% 3.160%
Crab-1 93 17 2.546% 2.592% 2.592% 2.9 2.744% 2.608% 2.744% 18.5 3.476% 3.232% 3.476% 4.5 2.862% 3.207% 3.207%
Crab-2 107 16.4 2.901% 2.593% 2.901% 4.0 2.825% 2.767% 2.825% 17.9 3.221% 3.878% 3.878% 5.7 2.764% 2.778% 2.778%
Cup 243 >1000 9.840% 6.031% 9.840% 13.8 9.247% 6.251% 9.247% >1000 6.658% 7.214% 7.214% 16.4 6.701% 3.809% 6.701%
Dinosaur 66 2.4 2.903% 2.896% 2.903% 1.4 2.308% 2.672% 2.672% 3.8 1.978% 2.175% 2.175% 2.8 2.920% 3.287% 3.287%
Dolphin 30 14.1 16.926% 42.999% 42.999% 0.7 4.916% 15.323% 15.323% 15.3 16.840% 42.768% 42.768% 2.1 6.652% 21.393% 21.393%
Elephant 94 2.9 3.216% 3.525% 3.525% 2.4 3.373% 3.874% 3.874% 4.4 3.519% 3.732% 3.732% 4.0 3.395% 6.155% 6.155%
Fandisk 127 401.8 5.012% 4.597% 5.012% 4.6 3.849% 4.067% 4.067% 403.3 11.310% 9.870% 11.310% 6.3 3.503% 4.298% 4.298%
Femur 26 2.0 2.288% 2.272% 2.288% 0.4 2.314% 3.095% 3.095% 3.4 4.703% 4.953% 4.953% 2.0 2.231% 3.010% 3.010%
Fish 43 41.4 3.686% 9.077% 9.077% 1.1 3.421% 4.809% 4.809% 42.7 7.824% 12.980% 12.980% 2.5 3.627% 4.155% 4.155%
Giraffe 71 2.8 1.914% 2.396% 2.396% 1.7 1.831% 4.208% 4.208% 4.3 4.389% 3.260% 4.389% 3.2 2.727% 3.975% 3.975%
Guitar 71 >1000 2.255% 2.182% 2.255% 1.7 2.136% 2.497% 2.497% >1000 2.072% 2.276% 2.276% 3.3 4.054% 2.426% 4.054%
Hand 47 11.2 2.104% 2.074% 2.104% 1.1 1.974% 1.975% 1.975% 12.4 8.900% 8.428% 8.900% 5.9 2.237% 2.328% 2.328%
Human 46 2.2 1.827% 1.906% 1.906% 0.9 2.062% 2.105% 2.105% 3.4 2.425% 3.247% 3.247% 2.3 1.959% 6.961% 6.961%
Kitten 148 5.0 5.804% 6.679% 6.679% 5.0 5.839% 7.798% 7.798% 6.6 7.415% 7.941% 7.941% 6.8 7.415% 7.941% 7.941%
Lifebuoy 33 1.5 2.856% 2.251% 2.856% 0.5 3.324% 3.217% 3.324% 2.8 5.252% 4.645% 5.252% 1.9 3.700% 3.669% 3.700%
Neptune 53 3.0 5.947% 11.030% 11.030% 1.2 3.227% 9.989% 9.989% 4.5 4.768% 14.161% 14.161% 2.8 5.435% 5.485% 5.485%
Octopus 74 0.4 2.556% 3.339% 3.339% 1.8 2.696% 3.005% 3.005% 1.7 2.488% 3.231% 3.231% 3.5 2.618% 3.214% 3.214%
Plane 44 64.4 4.660% 10.032% 10.032% 1.0 2.534% 4.306% 4.306% 65.9 4.594% 17.325% 17.325% 2.4 3.704% 4.500% 4.500%
Pot 90 79.8 4.376% 3.562% 4.376% 2.3 3.979% 5.278% 5.278% 81.2 3.631% 5.043% 5.043% 3.6 3.548% 3.726% 3.726%
Rapter 44 10.6 7.073% 14.310% 14.310% 1.0 4.089% 10.727% 10.727% 12.0 5.062% 18.442% 18.442% 2.4 7.425% 9.307% 9.307%
Rocker 112 >1000 3.660% 2.721% 3.660% 3.5 3.652% 3.274% 3.652% >1000 5.099% 5.736% 5.736% 5.1 3.570% 2.989% 3.570%
Seahorse 60 37.6 2.236% 3.164% 3.164% 1.4 2.296% 5.168% 5.168% 39.0 3.197% 5.592% 5.592% 2.9 2.256% 5.878% 5.878%
Spectacles 97 >1000 2.238% 2.319% 2.319% 2.8 2.323% 3.080% 3.080% >1000 1.984% 2.395% 2.395% 4.3 2.329% 2.921% 2.921%
Spider 54 3.8 4.629% 5.295% 5.295% 1.1 2.731% 4.493% 4.493% 5.3 5.144% 25.817% 25.817% 2.8 4.532% 5.555% 5.555%
Vase 118 1.1 3.779% 5.971% 5.971% 3.3 3.575% 3.875% 3.875% 2.9 4.199% 6.034% 6.034% 5.2 4.069% 5.006% 5.006%
Wine glass 278 >1000 21.310% 11.724% 21.310% 16.7 22.851% 8.828% 22.851% >1000 13.673% 8.254% 13.673% 19.2 13.868% 5.952% 13.868%
Average - 236.1 4.775% 6.069% 6.574% 2.9 3.902% 4.826% 5.362% 237.7 5.669% 8.639% 8.974% 4.6 4.272% 5.016% 5.537%

Table 2: Comparison of runtime and shape approximation error among Q-MAT, Q-MAT+, and Coverage Axis++ using mesh inputs.

Model |V | Q-MAT Q-MAT+ Coverage Axis++
Time (s) −→ϵ ←−ϵ ←→ϵ Time (s) −→ϵ ←−ϵ ←→ϵ Time (s) −→ϵ ←−ϵ ←→ϵ

Armadillo 82 9.8 2.736% 5.678% 5.678% 13.2 3.513% 5.321% 5.321% 1.8 3.615% 5.106% 5.106%
Bear 49 1.6 3.133% 3.089% 3.133% 2.2 3.480% 3.550% 3.550% 1.0 4.313% 4.572% 4.572%
Bird 83 2.3 2.361% 3.936% 3.936% 3.1 2.519% 4.034% 4.034% 2.3 2.306% 2.560% 2.560%
Bunny 73 16.6 3.474% 4.686% 4.686% 19.7 3.501% 3.762% 3.762% 1.5 4.860% 5.771% 5.771%
Camel 93 2.8 2.204% 2.468% 2.468% 4.1 2.047% 2.110% 2.110% 2.5 2.175% 5.556% 5.556%
Dinosaur 66 8.1 1.930% 2.444% 2.444% 9.9 1.942% 3.408% 3.408% 1.4 2.308% 2.672% 2.672%
Dog 69 1.3 2.299% 3.781% 3.781% 1.7 2.173% 2.725% 2.725% 1.5 3.353% 3.799% 3.799%
Fandisk 127 2.9 4.888% 5.840% 5.840% 3.8 4.911% 5.920% 5.920% 4.6 3.849% 4.067% 4.067%
Hand 47 21.9 1.441% 1.087% 1.441% 25.5 2.173% 2.208% 2.208% 1.1 1.974% 1.975% 1.975%
Horse 81 22.9 1.973% 3.683% 3.683% 24.4 2.362% 3.853% 3.853% 1.9 2.382% 2.658% 2.658%
Human 46 1.6 2.006% 2.155% 2.155% 2.1 1.545% 2.217% 2.217% 0.9 2.062% 2.105% 2.105%
Neptune 53 5.0 2.379% 11.372% 11.372% 7.2 4.229% 7.146% 7.146% 1.2 3.227% 9.989% 9.989%
Seahorse 60 7.6 1.908% 4.731% 4.731% 8.9 1.806% 4.557% 4.557% 1.4 2.296% 5.168% 5.168%
Vase 118 6.2 2.826% 4.839% 4.839% 8.0 3.038% 3.893% 3.893% 3.3 3.575% 3.875% 3.875%
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4: Qualitative comparisons. (a-c) SAT. (d) MATFP. (e) QMAT. (f) QMAT+. (g) Coverage Axis. (h) Coverage Axis++.

Figure 5: A gallery of skeletonization results of point clouds using Coverage Axis++.
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Figure 6: Comparison with existing shape skeletonization methods for point clouds.

shows that Coverage Axis++ performs comparably or superior to
Q-MAT and Q-MAT+ in terms of reconstruction accuracy and run-
ning time. Note that both Q-MAT and Q-MAT+ require a water-
tight mesh for Voronoi initialization, while our method supports
randomly generated candidate points inside the volume.

5.1.4. Comparison with SAT

SAT [MGP10] encounters a major drawback as it tends to favor a
dense representation with numerous vertices, hindering the gener-
ation of a simple and compact skeleton of the given shape. Note
SAT only excels specifically with watertight surface meshes. We
test with different scaling factors, α = 1.1, 1.5, and 2.0, revealing
that with a smaller α, SAT achieves high accuracy but results in
a representation with a large number of vertices (Fig.4(a-c)). Us-

ing a larger α for higher abstraction compromises shape structure
and introduces significant approximation errors. As a comparison,
Coverage Axis++ achieves a balance between fidelity, efficiency,
and compression abilities.

5.2. Point Cloud Inputs

5.2.1. Comparison with Neural Skeleton

We compare Coverage Axis++ with Neural Skeleton [CD23] given
the point cloud inputs. Neural Skeleton first trains a SDF w.r.t.
the input point cloud, then samples uniform surface points and
skeletal points from the implicit field. Finally, the skeleton mesh
is recovered using a cover-set formulation [DLX*22] solved as a
Mixed-Integer Linear Program. The implicit field improves the ro-
bustness of the Neural Skeleton in handling challenging inputs. As

© 2024 The Authors.
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Table 3: Comparison on shape approximation errors among
Point2Skeleton (P2S), Deep Point Consolidation (DPC), Neural
Skeleton, Coverage Axis and Coverage Axis++.

Model
P2S DPC Neural Skeleton Coverage Axis Coverage Axis++

|V | ←→ϵ |V | ←→ϵ |V | ←→ϵ |V | ←→ϵ |V | ←→ϵ
Ant-2 100 16.412% 1194 8.863% 54 3.993% 58 2.350% 58 2.113%
Bottle 100 2.955% 1194 2.752% 13 2.390% 14 2.956% 14 2.599%
Chair-2 100 6.552% 1194 4.807% 134 3.651% 89 2.890% 89 3.012%
Dog 100 6.047% 1194 5.237% 42 3.074% 49 2.174% 49 2.306%
Dolphin 100 5.925% 1194 7.916% 36 3.269% 49 1.971% 49 1.876%
Fertility 100 8.162% 1194 4.226% 76 5.909% 79 3.428% 79 3.102%
Guitar 100 2.052% 1194 3.231% 65 2.872% 60 2.032% 60 2.344%
Hand 100 9.672% 1194 4.110% 39 4.819% 44 3.441% 44 2.328%
Kitten 100 8.724% 1194 5.332% 41 3.883% 50 3.450% 50 2.962%
Snake 100 15.021% 1194 1.736% 36 1.419% 40 1.309% 40 1.402%
Average - 8.003% - 4.815% - 3.528% - 2.515% - 2.404%

shown in Tab. 3, our method produces results with higher accu-
racy. Moreover, the average running time of Coverage Axis++ and
NeuralSkeleton is 1.63s v.s. 59.27s. The detailed runtime statistics
of Neural Skeleton are given in Appendix B. Note that the Neural
Skeleton does not support specifications for the number of skeletal
points.

5.2.2. Comparison with Point2Skeleton

Compared with Point2Skeleton [LLL*21], a learning-based skele-
tonization method for point clouds, our approach exhibits bet-
ter performance. As shown in Fig. 6 and Tab. 3, Point2Skeleton,
trained on a large dataset ShapeNet [CFG*15], falls short on shapes
unseen during training and struggles with higher topology com-
plexity. However, our method demonstrates robustness, generating
high-quality skeletal representations with accurate geometries and
faithful structures across diverse shapes.

5.2.3. Comparison with Deep Point Consolidation

As shown in Fig. 6 and Tab. 3, Deep Point Consolidation
(DPC) [WHG*15] can only produce unstructured inner points
without connections and the reconstruction results exhibit large er-
rors. Even worse, the reconstructed topologies by DPC are usu-
ally inconsistent with the original input. In contrast, our reconstruc-
tion results reach better approximation accuracy with respect to the
original geometry using fewer skeletal points.

6. More Discussions

6.1. Skeletal Point Number

In Sec. 4.7.2, we highlight Coverage Axis++’s practical benefit of
flexible specification for the target number of skeletal points. Fig. 7
presents our experiments with different target skeletal numbers us-
ing three models and three choices of |V |. Larger values of |V | re-
sult in more accurate skeletal representations, as observed in the
experiments where reconstruction error consistently decreases with
increasing |V |. However, choosing excessively large |V | contradicts
our objective of generating a simple and compact skeleton for shape
abstraction. Our results show that specifying a smaller number of
skeletal points (e.g., 30 or 50) achieves simpler shape abstraction
with only a slight increase in reconstruction error. The flexibility al-
lows users to tailor the method for either a simple or more accurate
model, depending on the requirement for shape abstraction.

|V |= 30 |V |= 50 |V |= 70

Figure 7: Influence of target numbers |V |. We test our model with
the target numbers being 30, 50 and 70.

|V |= 30 |V |= 30 |V |= 14 |V |= 7
δr = 0.01 δr = 0.02 δr = 0.05 δr = 0.1
ϵ= 3.211% ϵ= 2.101% ϵ= 3.236% ϵ= 5.304%

Figure 8: Skeletonization results using different dilation offsets.

6.2. Dilation Factor

Next, we perform an ablation study on the dilation factor δr using
the Femur model as an example. As shown in Fig. 8, increasing δr
allows balls to cover more surface samples, simplifying the skeletal
representation. We always set |V | = 30 in Algorithm 1, but when
δr is 0.05 or larger, the algorithm terminates with fewer than 30
selected points as dilated balls already cover all surface samples.
A larger δr simplifies the representation but sacrifices geometric
details, compromising shape structure preservation. Conversely, an
excessively small δr contradicts simplicity and compactness. We
maintain consistency by setting δr to 0.02 in all experiments, bal-
ancing geometric details and skeletal compactness.

6.3. Ablation on Scoring Terms

We evaluate our method with different scoring terms defined as
different combination schemes of the coverage (Eq. 5), uniformity
(Eq. 6)and centrality (Eq. 7) scores on the Crab and Human models,
where we set |V | = 60 for both models. From Fig. 10, we observe
that the inclusion of the uniformity score results in skeletonizations
with fewer sharp triangles, indicating a more uniform distribution
of selected points. Furthermore, incorporating the centrality score
enables the selected skeletal points to capture more accurate MAT
information, leading to a more compact and regular skeletoniza-
tion. Consequently, incorporating all three scores, as shown in Eq. 9

© 2024 The Authors.
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Figure 9: We conducted ablation experiments on different weights. We test our method using different weights corresponding to the centrality
score, uniformity score, and coverage score, e.g., (1.0,1.0,0.2) refers to Scorei = 1.0 ·Covi + 1.0 ·Uni fi + 0.2 ·Centri. We visualize the
skeletal results and evaluate the reconstruction error. We test with Human and Crab models.
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(a) (b) (c)

Figure 10: Performance of different combinations of the three
scores. (a) coverage score. (b) coverage + uniformity score. (c) cov-
erage + uniformity + centrality score (Eq. 9).

yields improved skeletonization outcomes, i.e., compact and high-
accuracy shape approximation.

Although using equal weights for the terms in Eq.9 effectively
achieves compact skeletonization and high reconstruction accuracy
in our main experiments without requiring special weight adjust-
ments, we investigate the impact of different weighting schemes
for each term. Concretely, we scale the weight of each term down
and up by a factor of 5, while keeping the weights of the other terms
unchanged, to investigate the influence of different terms. We test
our algorithm using two models: Crab and Human. As shown in
Fig. 9, we observe that applying a moderate uniformity weight sig-
nificantly enhances the spatial distribution uniformity of the model
vertices. However, using excessively large centrality score weights
may deteriorate the regular structure of skeletal points, resulting in
increased reconstruction error.

6.4. Shape Skeletonization for Triangle Soups

We evaluate our method for shape skeletonization using triangle
soup inputs. For the experiment, we apply a 0.25% perturbation
relative to the bounding box to each vertex of the triangles. The
skeletonization process is identical to that used for handling point
cloud inputs. In this experiment, we sample 1500 surface points
from the soup and use 10000 randomly generated candidate points
inside the volume, as we described in Sec. 4.5. As shown in Fig. 11,
our method yields high-quality skeletonization and shape approxi-
mation results with the triangle soup inputs.

6.5. Running Time Analysis

The overall complexity of Algorithm 1 is O(|S| · |P| · |V |). Next, we
validate the practical running time complexity of our method using
different set sizes |P|, |S|, and |V |. As shown in Fig. 12, Cover-
age Axis++ has polynomial complexity relationships among vari-
ous variables, maintaining overall low computational costs.

6.6. Limitations and Future Works

Coverage Axis++ approximates the whole shape by an ab-
straction of local geometry with the union of the local ge-
ometries forming the entire shape. One limitation of Cover-
age Axis++ is that its whole process is conducted without a

(a) (b) (c)

Figure 11: Shape skeletonization results for triangle soup. (a) In-
put triangle soup. (b) Skeletonization result. (c) Shape reconstruc-
tion.

hard constraint forcing the consistency between the selected me-
dial balls and the shape surface (See coverage rate statistics
in Appendix. C), like that in Coverage Axis [DLX*22]. Al-
though local approximation for shape skeletonization has been ev-
idenced by some previous works [LLL*21; GYY*23; ACK01],
we acknowledge that the inclusion of a global constraint im-
poses a much stricter guarantee for the shape correspondence.
Since the goal of this paper is to com-
pute an overall compact skeletonization
result, our method may encounter chal-
lenges when handling shapes like CAD
models that have extremely thin struc-
tures or sharp on-surface features (see
the inset figure). In the future, introducing additional terms to pre-
serve sharp features during shape skeletonization would be promis-
ing. For example, an algorithm can be developed to build up the
connection of sharp features and the medial axis, ensuring the
skeletonization result retains the sharp features on the surface. Our
method can generate a compact representation in terms of shape
coverage using medial balls as primitives. We admit that while min-
imizing the redundancy of skeletal points is highly desirable, there
is still potential to further reduce the number of skeletal points. For
example, planar components such as the body of a guitar, the seat
of a chair, and the base of a fertility statue are currently oversam-
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(a) Running time w.r.t. target skeletal point numbers |V | with |S| =
2000, |P| = 10000.

(b) Running time w.r.t. surface sample numbers |S| with |V | =
100, |P| = 10000.

(c) Running time w.r.t. candidate skeletal point numbers |P| with
|V | = 100, |S| = 2000.

Figure 12: Runtime performance w.r.t. different parameter settings.

pled because the coverage capability is limited by the medial balls
that are isotropic, as shown in Fig. 1. Future work could explore the
use of different types of bounding volume primitives, such as slab
meshes [LWS*15], ellipsoids [LCWK07], or medial skeletal dia-
grams [GWM23] instead of medial balls, to achieve a more com-
pact representation with fewer skeletal points, while maintaining
the coverage optimization goal.

Next, we discuss more potential applications and future works.
In this paper, we present an effective and efficient method for skele-
tal point selection and MAT computation. The crucial geometrical
and structural information encoded in the MAT could be helpful in
various downstream applications. For instance, in the task of shape
segmentation [LLL*20], the MAT can be leveraged for identifying
various types of junctions between different parts of a 3D shape
using information like manifold branch and dimensional change of
the MAT without relying on 3D ground truth supervision for seg-
mentation. In the future, we believe that a part-level shape prior de-
rived from the MAT through self-supervised learning could benefit
part-aware shape generation and reconstruction [LLL*24]. Mean-
while, the discriminative feature represented by the MAT could also
facilitate the 3D shape recognition as shown by [HWQ*19]. MAT
has demonstrated its effectiveness in deep, topology-aware genera-
tion for 3D shapes [PGT*24] with the neural skeleton-based repre-
sentation encoding information on both shape topology and geom-
etry. It has also been evidenced that the topological and geometrical
information of the medial mesh can be useful in remeshing and vol-

umetric subdivision, e.g., achieving all-hexahedral mesh generation
of the given shape, making the method more general than previous
methods based on curve-skeleton [ZXW*24].

Even the point selection part of our method could serve as an ef-
fective point sampling strategy for compact shape encoding in wide
applications. For example, the point selection method [DLX*22]
has been shown to be effective in enhancing computational and
memory efficiency for 3D shape representation, e.g., TetSphere
Splatting [GWHM24]. More potential applications of our point
selection method can be those point-based methods. Specifically,
one may achieve compact 2D/3D Gaussian Splatting [HYC*24;
KKLD23], also known as Gaussian pruning, given a properly de-
fined coverage score during the training. Actually, our point selec-
tion algorithm can serve as a general sampling approach applicable
to various tasks. As long as an original input representation can be
expressed as candidate points and an associated covering matrix
are properly defined, thanks to the SCP, our method could yield a
more compact representation for the given redundant input.

7. Conclusion

In this paper, we present Coverage Axis++, an efficient shape skele-
tonization method. Unlike existing methods that depend on input
watertightness or suffer from high computational costs, Coverage
Axis++ addresses these challenges by employing a heuristic algo-
rithm considering shape coverage, uniformity, and centrality for se-
lecting skeletal points, which ensures an efficient approximation of
the MAT while significantly saving the computational cost. Com-
pared with existing methods, our simple yet effective approach pro-
duces a compact representation of MAT, offers versatility in skele-
tonizing various shape representations, allows customizable spec-
ification of skeletal points, and achieves highly efficient computa-
tion with improved reconstruction accuracy. Extensive experiments
across diverse 3D shapes demonstrate the efficiency and effective-
ness of Coverage Axis++.
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