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Figure 1: (a) Our method starts with an arbitrary initial surface mesh. (b) We intersect the object with a regular grid partitioning it into

interior cubic cells and boundary cut cells (c) We perform optimization for a particular deformation behavior (wings going up by a prescribed

distance with pressure on the top) and obtain a material distribution (Young’s modulus is shown in color) for all cells (d) Each boundary cut

cell is replaced by a cell microstructure from our novel family to match Young’s modulus computed by the optimization in (c), and then a

second optimization is performed on interior cells to compensate for the difference between the effective and optimized Young modulus (e)

Finally, the interior cells are replaced with cubic-cell microstructures with effective material properties equivalent to these computed by the

second optimization (f) The deformation result on the final model closely matches the prescribed target deformation.

Abstract

Two-scale topology optimization, combined with the design of microstructure families with a broad range of effective material

parameters, is widely used in many fabrication applications to achieve a target deformation behavior for a variety of objects. The

main idea of this approach is to optimize the distribution of material properties in the object partitioned into relatively coarse

cells, and then replace each cell with microstructure geometry that mimics these material properties. In this paper, we focus on

adapting this approach to complex shapes in situations when preserving the shape’s surface is essential.

Our approach extends any regular (i.e. defined on a regular lattice grid) microstructure family to complex shapes, by enriching it

with tiles adapted to the geometry of the cut-cell. We propose a fully automated and robust pipeline based on this approach, and

we show that the performance of the regular microstructure family is only minimally affected by our extension while allowing its

use on 2D and 3D shapes of high complexity.

CCS Concepts

• Computing methodologies → Shape modeling;

1. Introduction

Additive manufacturing enables easy fabrication of complex geomet-
ric structures designed with specific effective material properties in
mind, with a broad range of applications from lightweight but strong
structures in aerospace to shoe soles, prosthetic devices, and flexible
robot parts [nTo23; Car23]. While the more complex geometry can
be easily handled by modern 3D printing software and hardware,
optimized design of such objects is a fast-growing research area.
Most traditional engineering analysis and optimization software is
not suitable for this task, due to limitations on the complexity and
scale of geometry that can be handled.

A popular approach is to directly optimize the shape of the entire
structure by using topology optimization and/or shape optimization.
However, the computation cost of these direct methods is high, es-
pecially for large objects, often requiring HPC clusters [AALS17].
An alternative is to use a two-scale approach: (1) a material op-
timization is performed on a voxelized grid to compute material
properties varying between voxels and resulting in desired target
deformation behavior, and (2) each voxel is replaced by a geometri-
cal structure (microstructure tile) with effective properties matching
the computed solid material properties in the voxel. The advantage
of this strategy, compared to whole object high-resolution topology
optimization, is that step (1) can be very efficient and step (2) can be
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Figure 2: Two examples comparing simpler baselines, trimming

(left) and solid cells (middle), with our approach (right). The scissor

is optimized to close when the handles are pulled apart (top row) or

pulled together (bottom row). Our approach succeeds in both cases,

while trimming performs very poorly, and solid cells are somewhere

in between. Numerically, when comparing actual displacements

against target displacements, there is a clear advantage for our

method. For the example in the top row, the error is 0.0929 / 0.0612

/ 0.0495 for trimming / solid cells / our method. For the example in

the bottom row, the error is 0.0634 / 0.0293 / 0.0140 for trimming /

solid cells / our method. The error is computed using the 1st term

of Equation 4 normalized by target boundary length. We provide a

detailed comparison against the solid cells baseline in Section 4.

reduced to a lookup table: a family of microstructure tiles, mapping
material properties to geometry, which can be precomputed using a
cluster, and then used for multiple designs.

Unavoidably, the voxelization of a shape leads to artifacts in the
boundary, becoming problematic in applications where the shape’s
boundary matters, which is common in many settings, from mov-
ing engine parts to prosthetic devices. Trivial approaches, such as
trimming the microstructure to follow the boundary or filling the
voxels on the shape’s boundary, lead to a major change in effective
microstructure properties in these cells and significant deviations
from the intended behavior under loads (see Figure 2 and 3 for a
comparison and Section 4 for a detailed analysis). To address this
problem, these approaches have been extended, in 2D only, from
regular grids to boundary-aligned structured meshes [TDJ*20]. Still,
the strong requirement for mesh uniformity and quality makes them
less robust than the grid-aligned methods, which are still the standard
de facto in industry [nTo23]. In 3D, such an extension is much more
difficult: while planar quad mesh generation is possible (although
quads may be far from parallelograms required by [TDJ*20]), gen-
erating boundary-aligned hex meshes is still an open problem, with
a recent state-of-the-art method yielding a 50% success rate on a
recent benchmark [LB23].

We propose a novel family of cut-cell microstructures to extend
existing 2D or 3D regular tiling microstructure families to shapes
with a complex boundary. Our construction ensures that the shape
boundary exactly matches the input (with the exception of tunnels
needed to remove the internal material after printing, Figure 12),

Solid Cells Ours

Figure 3: Comparison between the solid baseline (left) and our

method (right) in 3D. The top row shows both versions seen from

the outside (as someone using the gripper would see it), while the

bottom row shows section cuts of both shapes. The structure is

optimized so that its jaws close together under a compression force

on the handle (gripper’s right side). The baseline example fails to

reach the prescribed deformation.

and, in combination with an interior structure, leads to accurate
matching of the prescribed deformation behavior. Our algorithm
is the first method enabling two-scale shape optimization on very
complex shapes in 3D, in a fully automated and robust way, with the
resulting complex geometric structures including the input boundary
precisely.

We demonstrate its effectiveness by combining our cut-cell family
with a variant of the microstructure family proposed in [TDJ*20]
to realize complex 3D shapes with controllable material properties,
and evaluate their properties by fabricating them using 3D printing
and testing them in a set of controlled load experiments.

To summarize, the contributions of this paper are:

• An extended microstructure construction that includes a structure
for boundary cells which ensures their connection to the interior
cells and supports arbitrary surface geometry.

• A novel two-stage algorithm of two-scale structural optimization,
optimizing the material properties for both interior and boundary
cells.

• A mapping from material to shape parameters of the boundary
microstructure, in two and three dimensions.

• A robust geometric pipeline for constructing microstructure in-fill
for arbitrary input shapes with surface preservation, not consid-
ered in previous work.

• Quantitative and qualitative physical evaluation of the optimized
structures.

2. Related Work

Microstructure design and optimization. There is extensive liter-
ature on the design of elastic and other types of metamaterials/mi-
crostructures. We refer to the books, e.g., [CD99; Mil02; Tor02]
for the foundational work and the recent survey [KMvHW19] for
more up-to-date references. The approaches to the design of peri-
odic microstructures with prescribed homogenized properties rely
on topology optimization, going back to [Ben89; BS03], and shape
optimization, as well as combinations of the two. Examples in com-
puter graphics literature include [SBR*15] (topology optimization)
and [PZM*15] for shape optimization, with many more in studies
in material science and engineering. These works, as well as, e.g.,
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[ZSCM17], consider constructing families spanning a broad range
of elastic properties, with the potential maximally achievable ranges
characterized in [MBH17].

Global topology optimization. In [WDW16; AALS17; LHZ*18],
topology optimization was scaled up to high-resolution uniform
and adaptive 3D grids. [WAWS18] performs high-resolution topol-
ogy optimization with additional constraints to create an evenly
distributed porous small-scale structure minimizing compliance for
specific loading scenarios. Even with these improvements, direct
topology optimization at the microstructure level remains computa-
tionally expensive: e.g., a modest cell resolution of 323 combined
with an equally modest 323 resolution at the coarse level requires
over 1 billion cells to work with. To avoid these high computational
costs, we favor a two-scale optimization approach.

Two-scale optimization using microstructures. Two-scale opti-
mization uses microstructures to optimize the deformation behavior
of objects efficiently by separating the problem into two scales
through the partitioning of an object into cells. Fine-scale structures
for individual cells are often precomputed to yield a particular range
of effective material properties within the limit of infinitely fine
cells. The coarse-scale optimization is performed by treating the
whole cells as made of homogeneous material. Some works, e.g.,
[LLWW18], do not precompute microstructures and optimize at
both macro- and microscale simultaneously. This approach, while
most flexible, is computationally very expensive and does not sup-
port well typical workflows. Recent surveys [WSG21] and [PP19]
provide an overview of the approaches and recent work in this
domain.

All two-scale optimization approaches rely on tiling the input
shapes with microstructures. The most common approach, and the
current standard de facto in industry, is voxelization. Papers using
voxelization focus on rectangular structures, as examples [PZM*15;
ZSCM17]. Other works [RWH22; XB15; DBHG21] approximate
arbitrary shapes with collections of cubes. This approach is unsuit-
able for applications that require preserving the shape of the surface
(e.g., a wheel would not roll) or its appearance. This problem is
exacerbated for relatively coarse grids of cells, which are often
unavoidable due to limitations in the minimal beam thickness in
many 3D printing technologies: an exception is [SPP21], where an
expensive and slow printing process is used to reduce the size of
voxels. Yet, despite the high resolution, the resulting surfaces are
still not smooth.

The conforming tiling construction is introduced in [TDJ*20]
for 2D and [WCOR21] for 3D, where a voxelization is replaced by
a boundary adapted, isotropic, low distortion quad or hexahedral
tiling, and the domain of the microstructure families is extended
accordingly. In addition to the increased complexity in the family de-
sign, the main drawback of these methods is that structured meshes
with these properties are challenging to generate for arbitrary ge-
ometries. While some solutions exist for 2D [TDJ*20], the solution
to conforming hexahedral mesh generation in 3D is a challenging
open problem [BRK*22], where the failure rate of state-of-the-art
methods is shown to be around 50%. Finally, the approach [GWS19;
GS17; GPZ19] for 2D and surface structures can be viewed as a
partial conforming tiling construction: it uses a simple rectangular

microstructure with two parameters, and a frame field to define the
directions and scale for cells from a simple family. The frame field
orientations and other fields are chosen by optimization. Similarly
to the previous category, this approach is also difficult to generalize
reliably to 3D volumes due to a more complex structure of 3D fields
[PCS*22].

Our approach shares the benefits of conforming tiling construc-
tions, as it allows the reproduction of boundaries for complex ge-
ometries, but is doing so by extending the voxelization methods
using a cut-cell approach. Our algorithm combines the robustness
and simplicity of the voxelization methods with the advantages of
conforming tiling constructions without requiring a difficult-to-build
quad or hexahedral mesh.

Special Shape-Adapted Microstructures. [KPCP18] uses a spe-
cial type of 2D triangular auxetic structure to effect conformal
surface deformations. This method requires domain meshing with
triangles close to regular. Similarly, a recent paper [MPI*18] uses 2D
spiral microstructures. As an alternative to periodic microstructures,
[MDL16; MSDL17] construct randomized printable structures with
control over Young’s moduli both for isotropic and anisotropic target
properties. However, it cannot independently control the Poisson’s
ratio, and the behavior of randomized structures is less controllable
overall.

Variable Base Material. Our focus is fabrication methods support-
ing single base material due to their wide availability, lower cost,
and support for stiff materials (metal). Having access to controllable
base material further widens the range covered by microstructures:
[BBO*10] designs and fabricates objects satisfying an input de-
formation using actual material properties variation, with fabrica-
tion done using a multi-material printer. [STC*13] applies discrete
material optimization to achieve desired deformations of complex
characters, also using multi-material printing for fabrication.

3. Method

3.1. Material Optimization Primer

We provide a short introduction to material optimization and two-
scale optimization using microstructures to keep the paper self-
contained. We refer to [PZM*15; SBR*15] for more details.

Let Ω be the domain of a solid. Loads (Neumann boundary con-
ditions) and/or Dirichlet boundary conditions are applied on some
parts of Ω, typically on the boundary. The deformed state is obtained
by solving the linearized elasticity equation for the displacement u,

−∇· [C : ε(u)] = 0 in Ω, (1)

where Ci jkl represents the 4th order elasticity tensor and ε(u) :=
1
2 (∇u+(∇u)T ) is the linearized Cauchy strain tensor of the av-
eraged deformation. The notation A : B is used to denote the
contraction ∑k,l Ai jklBkl . The boundary conditions have the form
u|∂ΩD

= u0, where u0 are prescribed boundary displacements on
the part of the boundary ∂ΩD and C : ε(u)|∂ΩN

= f0, where f0 are
external forces applied to the part of the surface ΩN .

Our goal is to minimize a function E of the displacement u. For
example, to obtain a desired deformation of a part of the object’s
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Figure 4: Two-scale optimization pipeline. (left) we run material

optimization on a bar with square cells; (middle) a map P is used

to map material properties to geometry; and (right) we obtain the

final shape, which deforms as expected.

boundary under a certain load condition (Figure 1), E is the L2
norm of the difference between u and the target deformation. We do
this by changing the spatially varying material properties (Young’s
modulus and Poisson ratio) encoded in the spatially varying tensor
C. The problem is constrained by the linearized elasticity PDE:

min
C

E(u,C), subject to (1). (2)

This problem is closely related to widely used topology optimiza-
tion formulations [BS03]. Additional constraints are usually added
to this problem to force, in every point in space, either homogeneous
material properties or zero density, thus obtaining an object with ho-
mogeneous material properties and possibly holes. These constraints
make this large optimization problem even harder to solve.

The two-scale approach. A two-scale optimization approach
[PZM*15; TDJ*20] uses a microstructure family P to make solving
this problem orders of magnitude cheaper. P is a map from an elas-
ticity tensor C (or equivalently material properties such as Young’s
modulus and Poisson’s ratio) to a periodic geometric pattern with
the same homogenized stiffness tensor (see Figure 4). The periodic
patterns are typically characterized by a set of shape parameters.
Equipped with P , the two-scale optimization solves the problem
in two steps. First, a material optimization problem, in which the
per-voxel value of the stiffness tensor is optimized, is solved on a
voxel grid at a coarse scale:

min
C∈D

E(u,C), subject to (1), (3)

where D is the domain of the map P , which is a subset of all stiffness
tensors that can be realized by using a family of cell microstructures.
After solving this small problem (e.g., this problem has around 500
degrees of freedom for the 2D examples in Figure 16 and can be
solved within seconds), the map P is used to replace the cell with
the corresponding microstructure geometry; the resulting object
with complex geometric structure can be fabricated using a single
material.

The two-scale approach described above has two important chal-
lenges: (1) designing the microstructure family P and (2) reducing
the error introduced in the object’s shape due to a coarse voxel grid,
as fabrication constraints typically do not allow one to make the vox-
els too small. Our focus in this paper is on the latter problem, which
has received little attention in the literature. For (1), we borrow and
slightly modify the family proposed in [TDJ*20], as detailed in
Section 3.5.

3.2. Overview

We describe our approach to computing an infill structure producing
desired deformation behavior for an object for 3D, but the same con-
struction works for 2D: we highlight the required modifications in
Section 3.8. In Section 4, we demonstrate how these steps contribute
to the quality of the results. The approach is composed of five steps:

1. Cell Partition. We produce a cell partition of the domain Ω by
intersecting it with a regular grid; the partition consists of cubic
(square, in 2D) cells in the interior and cut cells, obtained by
intersecting a cubic cell with the interior of the object. Each cell
is partitioned into tetrahedra, with the same material property
variable Ci assigned to all tetrahedra corresponding to a cell.

2. Initial Material Optimization. We solve the problem defined in
Equation 2, with constant properties per cell, computing material
parameters Ci by minimizing the objective E (see Equation 4),
with material parameter bounds for the interior cells determined
by the domain of P , and for boundary cells inferred from cell ge-
ometry. For interior cells, (E,ν) are used as material parameters.
For boundary cells, E is the only optimized material parameter
and we keep ν fixed at the base material value.

3. Generation of Cut-Cell Geometry. For the boundary cells, we
use a one-parametric family of microstructures, with a single
parameter for each cell, the interior void size. We determine this
parameter for each boundary cell so that the effective material
properties approximately match the target material and compute
the cell geometry for this void size (Section 3.5).

4. Interior Material Refinement. We build a hybrid geometry
using solid interior cells with variable material Ci assigned to
each interior cell but the actual microstructure geometry from
Step 2 for the boundary cells. For this new volumetric mesh,
with the complex structure on the boundary only, we repeat
the material optimization for interior cells, but, this time, with
material properties fixed to the base material for already inserted
boundary cell geometry and variable material properties for the
internal cells (Section 3.6).

5. Surface Extraction. The geometry of the boundary cells is
merged with the microstructure geometry produced from op-
timized material properties from the previous step via the map
P . Optionally, we add tunnels to the exterior to allow fabrication
using 3D printing methods requiring residual material removal
(Section 3.7).

We summarize the main steps of our algorithm in Figure 5.

3.3. Step 1. Cell Partition

The input for this step is a surface mesh and a background regular
grid, with each grid cell corresponding to a microstructure tile in
the final structure. The output is a tetrahedral mesh of the interior
of the surface mesh, with the regular grid cells split into tetrahedra.
This mesh is used for the first material optimization.

This problem could be solved by computing a 3D arrangement
[HK22] or by cut-cell meshing tools [TBFL19; ABM98], followed
by postprocessing to tesselate the interior of each cell with tetrahedra
while ensuring a conforming mesh at the cell boundaries.

As shown in Figure 6, we opted for a more direct and robust
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Figure 5: Summary of our method, showing the main steps of our algorithm. Quantitative results of each step are shown in Table 1. Dark red

represents our base material. Different tones of red represent variable material on the boundary, while tones of blue are used for material

properties of interior cells. "Reduced" refers to the mesh used in the optimization (either solid interior cells or solid boundary cells), and

"Full" refers to the final mesh with microstructure geometry that can be used for fabrication.

(a) (c)(b)

Figure 6: Illustration of cell partition. (a) Initial surface mesh with

a background regular grid. (b) Triangular/Tetrahedral mesh of the

bounding box. (c) Final mesh after removing triangles/tetrahedra

outside of the surface mesh.

solution, creating a tetrahedral mesh with fTetWild [HSW*20],
while providing both the surface mesh and grid faces as input. The
fTetWild tool outputs a tetrahedral mesh of the bounding box of the
input mesh. We then filter the tetrahedra outside the object surface
using the winding number [JKS13], and assign the resulting tetra-
hedra to the cell of the grid containing its barycenter. Eventually,
we obtain a tetrahedral mesh of the surface, while each tetrahedron
is inside a grid cell. We use a geometrical tolerance of 10−3 for
fTetWild. This approach is insensitive to surface mesh imperfec-
tions and simultaneously allows us to maintain the high mesh quality
needed for simulation. fTetwild guarantees that the tetrahedra are of
good quality as long as the mesh optimization converges. We do not
observe failure in the meshing process of our examples.

To satisfy the minimum thickness requirement in 3D printing, the
maximum size of the internal voids of boundary cells is restricted.
However, some boundary cells might be too thin even without in-
ternal voids. If a thin boundary cell is adjacent to an interior cell,
after the interior cell is replaced by the microstructure, this boundary
cell may violate the minimum thickness. To avoid this, we change
the type of some interior cells into boundary cells, although they
are not cut by the boundary surface. Specifically, we compute the
distance between the surface cutting a boundary cell and its internal
boundary faces, edges, and vertices, shared with other internal cells;
if the distance is too small, we transform all internal cells sharing
this element into a boundary cell. See Figure 7 for an example.

3.4. Step 2. Initial Material Optimization

We solve problem (3) with the following functional:

...

...

min. thickness

Figure 7: Interior Cells that are too close to the boundary may

cause thin features in the shape. To avoid issues during printing

and non-smoothness in displacement behavior, we consider those

as boundary cells. The drawing shows boundary cells (in black)

touching the (red) boundary and two quad cells (in dark gray)

that are too close to the boundary, according to a min. thickness

parameter.

E(u,C) =
∫

∂Ωt
(u(C)−u

t)2
dA+w

∫
Ω
∥∇C∥2

dA, (4)

where ∂Ωt is typically a part of the boundary of our domain for
which we prescribe target displacements ut , w is a weight to adjust
the smoothness of the material distribution. The constraints on the
problem consist of a set of linear bounds for the domain of material
properties. For interior cells, we constraint the material properties
(E,ν), i.e. Young’s modulus and Poisson’s ratio, to be inside the
domain of P , shown in Figure 8. For boundary cells, we add con-
straints on Young’s modulus, preventing the creation of features
smaller than a predefined thickness.

As seen in Equation 4, our objective has two terms. The first
corresponds to the deformation error, which measures the difference
between the simulated displacement u(C) and the target ut . The
second term is a regularization term, aiming to achieve a smoother
spatial material variation, which helps to reduce large differences in
microstructure geometry when transitioning between neighboring
cells, which may lead to local deformation artifacts.

The problem is discretized using the finite element
method [SDG*19], and the adjoint method is used to com-
pute the gradient of the target functional with respect to elasticity
parameters [HTG*22]. The optimization itself is performed using
L-BFGS with box constraints.

© 2024 The Authors.
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(a) 2D (b) 3D

Figure 8: Coverage of material parameter properties in the families

we use. Our coverage regions are approximated to triangles, so they

can be easily added as constraints in our optimization.

(a) (b)

P

P(d)

Figure 9: Illustration of creating a cavity to reach a certain volume

ratio based on the surface offset. (a) The surface P is offset by d to

get P(d). (b) Volume inside P(d) is dropped to match target volume

ratio r.

3.5. Step 3. Generation of Cut-Cell Microstructure

While we can use P to find microgeometry for the internal cells,
the construction of the map from material properties to geometry is
based on periodic-material homogenization and requires cells to be
cubes: in this step, we provide a construction of a microstructure
family for boundary cut cells with arbitrary geometry.

Our approach is to create a 1D bijective smooth map Pb be-
tween volume fraction r of the filled part of a cell and Young’s
modulus E, using the fact that there is usually a strong connection
between stiffness and solid material volume fraction (see paragraph
below detailing our mapping) in simple cell geometries with a single
void, while the shape of the void has less impact. We can obtain
such single-void one-parametric families for arbitrary cell shapes
by defining our microstructure geometry to be solid between the
polygonal boundary P of the cell and an offset P(d) of P (Figure 9),
where d ⩾ dmin is a parameter interpolating between the minimal
wall thickness (dmin) and a fully filled cell. We construct P(d) for
an arbitrary cell shape using a signed distance function (SDF). The
cell boundary mesh P is converted to an SDF (we use OpenVDB
[Mus13]), and then we call the offset function in OpenVDB, and
finally convert the offset SDF back to a mesh. Figure 10 shows three
examples of boundary cell geometry in real models. Notice that,
in 3D, we may need to add additional openings to avoid enclosed
voids, as discussed in Section 3.7.

Next, we determine the correspondence between volume fraction
r and the offset d for a specific cut cell geometry. Denote the volume
enclosed by surface P as V , and the volume enclosed by surface
P(d) as V (d). Given a fixed r, our goal is to find the offset value d

so that

V (d) = (1− r)V.

(a) Boundary cell with di�erent volume ratio

(b) Examples of boundary cells

Figure 10: Boundary cell geometry in 3D. (a) The cross-section of

a cut-cell enclosed by the grid partition is in yellow. (b) The bottom

row shows the cross-section of the top row.

This is a 1D root-finding problem for a monotonically increasing
function, so we use a binary search to find the root d with a relative
tolerance of 0.01.

From Material Properties to Volume Fraction. The relationship
between the effective Young’s modulus and volume ratio, in general,
depends on the shape of the cell and, in the case of non-tileable
cells, may even be difficult to define precisely, as it is unclear how
to perform correct homogenization in this case (homogenization
requires periodic tiling). However, a rough approximation of this
dependence can be obtained from a one-parametric family of com-
plete cubic cells, which can be tiled periodically. In this case, we
can compute the effective Young’s modulus by averaging Young’s
modulus on orthogonal directions (x, y, z) (obtained from the ho-
mogenized elasticity tensor), for a variety of interior void shapes,
to verify that the dependence on the shape of the void is not strong
(Figure 11). As a result, we have a function E(r) which we invert
to map the optimized Young modulus values Ci (obtained at Step 2
for boundary cells) to the volume ratios r. For a specific choice of
cell boundary, we determine the offset d from r as described above,
building a complete map from Ci to a boundary cell microstructure.
While considering only full cells (for which homogenized parame-
ters can be obtained) provides a limited validation of the approach,
this heuristics is further validated by the observed improvement in
the optimized result behavior demonstrated in Section 4.

The need for precise knowledge of the effective material prop-
erties of a cell is made less critical for this stage by the next step,
which compensates for the errors introduced in the boundary cells.

3.6. Step 4. Interior Material Refinement

Given a target volume ratio for each boundary cell determined by
their target Young modulus computed in Step 1, we determine the
offset for the cell microstructure in Step 3. We perform the offsets
for all boundary cells in parallel, append the offset surface mesh to

© 2024 The Authors.
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(a) 2D (b) 3D

Figure 11: Volume ratio to average Young’s modulus map. The left

figure represents the map for 2D microstructures, where each color

represents a different shape of the opening, while the figure on the

right represents the map in 3D.

the original mesh, and then create a new volumetric mesh with the
approach used in Step 2.

Replacing the boundary cells with their new offset geometry
introduces a small, but measurable, increase in the objective function:
To further increase the accuracy of the solution and compensate for
this increase, we run a second round of material optimization fixing
the geometry and material properties of the boundary cells, and
optimizing only the regular, interior cells.

On the new mesh, which has explicitly meshed cut-cell mi-
crostructures on the boundary and regular grid cells in the interior,
we solve a material optimization problem with fixed base material
in boundary cells (as their microstructure is already integrated into
mesh geometry). While the overall complexity of the optimization
increases, as the simulation needs to be done on a finer mesh in
boundary cells, it is still much lower than the complexity of direct
microstructure shape or topology optimization, as the number of
optimization variables is lower. While this optimization always re-
duces the objective value, its effect varies depending on the example
(Table 1). In principle, the process can be iterated, by switching
boundary and interior cell optimization, but using explicit geometry
for interior cells is expensive, and little additional benefit can be
expected.

3.7. Step 5. Surface Extraction

To extract the surface from the implicit volumetric functions (see
Section 3.9) of the internal and boundary cells, we first compute the
union of all interior cell SDFs and intersect it with the SDF obtained
in Step 5 which included boundary cell geometry only. The surface
mesh is extracted from the resulting SDF using the marching cubes
method. We use a resolution of 50× 50× 50 per cell for the SDF
(note that this effective resolution is used in a sparse volumetric
representation in OpenVDB).

By construction, our boundary cells have a solid layer covering
the model surface, which will prevent uncured resin or unmelted
powder from being removed after fabricating the model. To make the
model fabricable, we add tunnels to each boundary cell (Figure 12).
The tunnels defined below will be a boolean union of spheres and
cylinders with a uniform radius r. We first go over boundary cells
with internal voids and consider the parts BE of their surfaces that
belong to the outer surface. We denote the barycenter of the internal
void in each cell as PE . Although the internal void is not necessarily

BE

r

(a) 2D view of tunnels

(b) 3D boundary cell with tunnels

Figure 12: Tunnels connecting boundary cells. (a) The gray lines

represent the grid partition, BE for one boundary cell is shown in

green, the tunnels are cylinders with radius r, and solid parts are

shown in yellow. The red circle is too large to fit into the boundary

cell, so we fill the cell completely. (b) A boundary cell with internal

void and tunnels (left) and its cross-section (right).

connected when the boundary cell is not convex, it did not happen
in our examples. In the case where there are multiple internal voids
in one boundary cell, one can pick PE to be the barycenter of one
of the internal voids. If the sphere centered at PE with a radius
r intersects BE , constructing a tunnel to the exterior may break
the cell and its surface into pieces, in this case we completely fill
this cell. Otherwise, if the sphere centered at PE with a radius r is
completely inside the boundary cell, we include the sphere as part
of the tunnels. After the spheres are created, we connect the PE of
every two adjacent spheres (we call two spheres are adjacent if the
corresponding boundary cells share at least one face) by a cylinder
with radius r, and these segments form a graph consisting of disjoint
connected components. For each such connected component, we
create a cylindrical tunnel from one void center to the object’s
surface. To remove the materials inside interior cells, at least two
tunnels are created from internal cells to adjacent boundary cells
with voids. To avoid the decrease in volume caused by creating
tunnels, we pick the smallest possible radius as long as the 3D
printing materials can be removed.

3.8. 2D Algorithm

Our 2D pipeline closely follows the 3D pipeline, using the Triangle
library [She96] instead of fTetWild, and using our own implementa-
tion of marching squares as OpenVDB does not support 2D domains.
An advantage of the Triangle is that it allows us to represent the
boundaries exactly, without introducing a geometric approximation
error. Tunnels are not added to the 2D boundary cells as they are not
necessary for fabrication.

3.9. Construction of P

We use the method introduced in [TDJ*20; PZM*15] for creating
microstructure families for the interior cells both in 2D and 3D.
However, we do not use their rhombic shape parameter, as in our
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Figure 13: Cell parameters for 2D and 3D, interior cells.

case we will use only square/cubic cells. We briefly review this
construction here.

First, a homogenization map H(p) is obtained for a low-
parametric family of microstructures, with parameters pi shown
in Figure 13, consisting of graph vertex positions and radii at these
vertices determining how thick the microstructure is at this location.
The method of [PRZ17] is used to construct the implicit curve/-
surface bounding the microstructure geometry from the graph and
radii.

The 3D microstructure has cubic symmetry [PZM*15] by con-
struction, which means Young’s modulus and Poisson’s ratios are
the same in every axis-aligned direction, and there are only 3 in-
dependent parameters in the tensor, Young’s modulus E, Poisson’s
ratio ν and the shear modulus G. We run a sweep of the parameter
values in a given range [pmin

i , pmax
i ] for each parameter pi. Consider

Bp the n-dimensional box of admissible parameter values. Each
combination of values is used to generate a microstructure cell ge-
ometry using the implicit surface definition of [PRZ17]. The value
of H(p) is obtained as the effective value of the elasticity tensor
parameters, so the function H(p) maps p into R

3.

The map H(p) is not bijective as it typically maps a higher-
dimensional space into a lower-dimensional space. In [TDJ*20], a
sequence of dimension reductions is used to identify a subspace D in
the space of shape parameters equal to the dimension of the elasticity
material parameter space (3 in our case). The map H(p) restricted
to this subspace may still be not bijective, but its image H(Bp) can
be partitioned into parts on which it is invertible; specifically, we
construct simplices in the subspace of shape parameters and split
Bp ∩D into connected subdomains D j by simplex orientation. On
each of D j, we can invert H(p). We further restrict it to the two-
dimensional space of isotropic material parameters parameterized by
(E,ν) to obtain the material-to-geometry map Pi(E,ν) : H(Di)→
Bp. Figure 8 presents the coverage regions for our 2D and 3D
families. Notice that for 3D we have two different material coverage
sheets, with the blue one covering most of the space and being
chosen as our main material range.

Following [PZM*15], our microstructures are constrained to have
cube symmetries, which are guaranteed to have the same Young’s
moduli and Poisson’s ratios in every axis-aligned direction. To eval-
uate the approximation error and anisotropy of our interior mi-
crostructure family P , we uniformly sample on the triangle domain
in Figure 8(b), compute the absolute error between the target and
real homogenized material properties, and the isotropy measure
of the microstructures. We adopt the same isotropy measure from
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Figure 14: Approximation error and anisotropy distribution of our

3D microstructure family.
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Figure 15: Examples of shape parameter dependence on materials

in our 3D family. These maps correspond to our main coverage

sheet.

[PZM*15]:

A = 2(1+ν)G/E.

Besides, we also measure the approximation error

e = |E −Etrg|+ |ν−νtrg|,

where Etrg, νtrg are the target elastic parameters. As shown in Fig-
ure 14, the approximation error is below 1% and the anisotropy is
within 4%.

Figure 15 shows examples on the final map from material proper-
ties (ν and E) to geometric parameters pi.

4. Evaluation

Our algorithm is implemented in C++ and uses Eigen [GJ*10] for the
linear algebra routines, PolyFEM [SDG*19] for finite element simu-
lation in 3D and MeshFEM [PZM*15] in 2D, fTetwild [HSW*20]
and triangle [She05] for meshing, and Pardiso [ABB*20; BSJ*20;
BESS19] for solving linear systems. We run our experiments on a
cluster node with an Intel Cascade Lake Platinum 8268 processor
limited to 32 threads.

We demonstrate on a range of 2D (Section 4.1) and 3D (Section
4.2) examples that our method is the first that can reliably and au-
tomatically create both 2D and 3D objects closely matching the
prescribed deformations while preserving the object boundary. We
also compare our results with alternative methods (Section 4.3), in-
cluding baselines with trimmed and solid cells, where our approach
consistently outperforms the baselines, and a more technically in-
volved method applicable only to 2D, where our results are of
comparable quality.

4.1. 2D examples

We experimented with six 2D models shown in Figure 16. Visu-
ally, our results closely match the specified target, both in direct
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E ν pattern simulated fabricated (photograph)

Figure 16: A gallery of 2D examples. From left to right: optimized material distribution (Young’s modulus and Poisson’s ratio), final geometry

at rest, deformed geometry (simulated), and photographs of deformed pattern (fabricated). In the simulation column, surfaces with Dirichlet

and Neumann boundary conditions are marked in orange and green respectively, with the displacement and force directions in black arrows.

simulation (done on a dense mesh of the final geometry) and in
our physical validations. For physical validation, we fabricated the
models using FDM printing with a TPU 95A filament on a Prusa
i3 MK3S and an Ultimaker 3 (see Figures 17 and 18 ). Numerical
results, breaking down the effect of the different optimization stages,
are available in Table 1 and discussed in more detail in Section 4.3.

In Figure 16, the examples from top to bottom are: Disk. The
objective is to obtain a shear-like deformation, bulging on the top
left and bottom right, whenever the disk is compressed in the vertical
direction. Sine bar. The bar is optimized to match a sine wave shape
under compression in the horizontal direction. Happy Ghost. The
Pacman ghost shape is optimized to smile when compressed on the
sides. We add target displacements such that the middle region (of
both the top and bottom) of the mouth displace down. Pliers. The
plier is optimized to close when the handles are pulled together.
Bird. The shape is optimized to flap its wings whenever its head is
pushed down. In this case, we add a Dirichlet boundary condition
on the bird’s feet to keep it in place. Sword Gripper. The gripper
has a rounded hole in the middle that is used to hold the shape in

Figure 17: Fabricated pliers (black TPU). Rest shape on the left;

moving the handles apart in the middle; compressing the handles to

hold the object on the right.

place and should not deform during the operation. The mechanism
closes whenever the handle moves up.

Additionally, we show two deformation sequences for the plier
(Figure 17) and sword gripper (Figure 18).

© 2024 The Authors.
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Figure 18: Fabricated sword gripper (black TPU). Rest shape on

the left; moving handles back in the middle; moving handles to the

front, holding the object, on the right.

4.2. 3D Examples

Our algorithm reliably handles complex geometrical models. We
show a gallery of our models and some fabricated results below.
Numerical results for these models are shown in Figure 19, which
show a similar trend to the 2D results discussed above. For physical
validation, we fabricated the gripper and bar example with TPU
88A, using the 3D printing service Xometry. As far as the authors
know, no existing method can automatically and robustly produce
3D results with comparable quality: we demonstrate in Section 4.3
that simpler alternatives using solid boundary cells lead to high
errors.

Sine Bar. The first two rows in Figure 19 show an example of a
bar optimized to match a sine function when compressed. In the
first row, the tiling orientation is aligned with the bar, while in
the second row, we rotate the tiling to obtain similar deformation.
This example shows that our method is not very sensitive to the
orientation. Figure 21 shows the fabricated result of the first row,
which matches closely with our simulated result.

Gripper. The third row in Figure 19 shows an example of a gripper,
with four hands on the left and a handle on the right. We assign very
stiff material to the handle (to avoid any deformation) and apply
a compression force to it. The structure is optimized so that the
gripper closes when the force is applied to the handle. We show a
fabricated gripper in Figure 21, with force applied.

Shoe sole. The fourth row in Figure 19 shows an example of a
box with a curved top surface. Its structure is optimized so that the
deformed top surface is as flat as possible for a uniform force.

Bird. The last row in Figure 19 shows a bird model whose structure
is optimized so that its wings go upwards as its head is pushed down.

Batch Examples. To further illustrate the robustness and generality
of our algorithm, we show an additional gallery of 10 examples in
Figure 20, computed in batch mode using a fixed objective and fixed
boundary conditions. The model surface in the top 5% of the bound-
ing box is fixed, and the surface in the bottom 5% is compressed by
10% using Dirichlet boundary conditions. The optimization max-
imizes the horizontal displacement under deformation integrated
over the middle 10% surface. We observe that the algorithm gener-
ates intricate geometries (for reference, the size of the tetrahedral
meshes used for the final simulation varies between 0.5 and 15 mil-
lion tetrahedra), adapting to the complex boundaries while filling
the interior with the microstructure geometry.

4.3. Alternative methods

We compare our method against two simple baseline approaches to
handle boundary cells and the method of [TDJ*20] (applicable only
to 2D). In addition, we perform an ablation study to evaluate the
effect of the second optimization (Step 4).

Trimmed Boundary Microstructures. A simple approach to ex-
tend two-scale microstructures to shapes with a complex boundary
is trimming the parts outside the boundary shape [SBR*15]. The
downsides are obvious: arbitrarily cutting a microstructure may re-
sult in dramatic uncontrollable changes in the effective material
properties, as well as entirely disconnected structures, in addition
to not having a surface layer, one of the major goals of our method.
We show a comparison between this method and ours in Figure 2,
where it is possible to see that the method does not generally behave
well – the results strongly depend on how the grid lines intersect the
object. We do not use trimmed cells as a numerical baseline, as the
resulting behavior depends strongly on the cell grid position with
respect to the object (for our method, the dependence is not strong),
so there is no single reliable number corresponding to the accuracy
of this method.

Solid Boundary Cells. An alternative, which produces a surface
layer, is filling all boundary cells with the base material, i.e. forcing
the volume fraction in boundary cells to be 100% throughout the
optimization. However, this adds uncontrollable stiffness to the
object, especially in thinner parts, making it more restrictive than
our method. On the other hand, little efficiency improvement can be
gained over our method, since the number of boundary cells is much
lower than interior cells. The numerical evaluation in Table 1 shows
that our approach consistently outperforms this method in both
reduced (i.e., using solid cells with variable material properties, as in
the output of Step 2 in Section 3.4) and full (using full microstructure
geometry) simulations. Additional comparisons can also be seen in
Figures 2 and 3.

Rhombic Microstructures, 2D only. [TDJ*20] describes a
method for partitioning a mesh to cells close to the rhombic and
conforming to the boundary, and constructs a suitable microstructure
family. This eliminates the need for a separate cut-cell microstruc-
ture family but is hard to generalize to 3D as it requires high-quality
conforming quad meshing. We compare four 2D optimization prob-
lems (disk, bar, ghost, and pliers, Figure 16) with this approach,
making the best effort to replicate the problem setups, which is
not entirely possible due to differences in formulation. Specifically,
our objective computes an integral of the target error over the ob-
ject’s boundary, which is the original surface for our case, while for
[TDJ*20] it corresponds to the microstructures’ interface areas for
every quad in the boundary since there is no solid boundary. We
observe in Figures 22 and 23 that the results are similar between
the two methods. We note that [TDJ*20] only applies to 2D, and
its extension to 3D is highly non-trivial due to the requirement of a
high-quality, isotropic, hexahedral mesher (see discussion in Section
2). In contrast, our method generalizes well to 3D.

Numerical Results and an Ablation Study for the Second Opti-

mization. Numerical comparisons for the examples in the paper
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Model Young’s Modulus Pa�ern SimulatedPoisson’s Ratio

Figure 19: A gallery of 3D examples. From left to right: original model, optimized material distribution (Young’s modulus and Poisson’s

ratio), final geometry at rest, and deformed geometry (simulated). In the first and last columns, surfaces with Dirichlet and Neumann boundary

conditions are marked in orange and green respectively, with the displacement and force directions in black arrows. The desired deformation

is marked in grey arrows.

Figure 20: 3D examples computed in batch mode. Top: rest shape. Middle: optimized pattern. Bottom: deformed shape. The Dirichlet boundary

conditions are shown in orange, the surface on which the objective is integrated is in light blue.
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Figure 21: Left image: Fabricated gripper. Rest shape on the left;

force applied to the handle on the right. Right image: Fabricated bar.

Rest shape on the left; compressed bar deforms in a controllable

way, on the right.

2D Examples Disk Bar Ghost Pliers Bird Sword
Solid Baseline (Full) 0.01213 0.01270 0.00792 0.00189 0.01207 0.02132
1st Opt. (Reduced) 0.00710 0.00214 0.00469 0.00009 0.00847 0.01202
2nd Opt. (Initial) 0.00834 0.00597 0.00432 0.00008 0.00718 0.01255
2nd Opt. (Reduced) 0.00826 0.00398 0.00337 0.00007 0.00670 0.01240
Our Result (Full) 0.01060 0.01057 0.00574 0.00095 0.01032 0.01841
Cells 128 356 186 287 168 209
Runtime 461 516 867 152 364 305

3D Examples Bird Gripper Sine bar
Sine bar
rotated

Sole

Solid Baseline (Full) 2.058 0.799 1.211 1.327 1.331
1st Opt. (Reduced) 1.540 0.232 0.550 0.452 0.010
2nd Opt. (Initial) 1.409 0.252 0.641 0.500 0.071
2nd Opt. (Reduced) 1.080 0.224 0.635 0.499 0.030
Our Result (Full) 1.620 0.030 0.586 0.437 0.259
Cells 4442 400 936 1060 1475
Runtime 20033 1738 2461 3062 3249

Table 1: Numerical comparisons of our approach vs. a baseline

using solid boundary cells filled with base material in 2D and 3D.

We report the displacement objective term in Equation 4, which

represents the average point-wise error from the prescribed target

for different stages of the pipeline, see Figure 5 for illustrations. The

last two rows show the number of cells and runtime (sec).

Figure 22: Bar example. Dirichlet conditions on both sides com-

press the object while targeting a sin wave shape at the top and

bottom. On the left, the result obtained with our cut-cell method; on

the right, the original result obtained by [TDJ*20].

are shown in Table 1. The first optimization stage is very effective
for all models (1st Opt. (Reduced) row): note however that after
inserting the geometry for the boundary cells the objective might in-
crease (2nd Opt. (Initial) row) due to the approximation of boundary
cells with the reduced model. The second optimization stage (2nd

Opt, (Reduced) row) significantly reduces this effect in complex
cases (e.g., 2D Bar, 3D Bird, Gripper), but has a negligible effect
in others (e.g. 2D Disk and Ghost). Replacing the reduced result
of the second optimization with the explicit cell geometry slightly
increases the objective functional again (Our Result (Full) row in
the table), since the mapping P in Section 3.9 assumes that both the

Figure 23: Pliers example (black TPU). We use Dirichlet conditions

on the right to compress the handles with the target of closing the

jaws. On the left, is the result obtained with our cutcell method; on

the right, is the result of [TDJ*20].

cell size and the deformation are infinitely small, which is not the
case in practice.

Our results are consistently superior to the baseline computed
with solid cells on the boundary (Solid Baseline (Full) row in the
table).

5. Conclusions

We have presented a fully automated pipeline starting from an arbi-
trary 2D or 3D shape and prescribed boundary conditions, and target
deformation, to a complete manufacturable geometric shape with
microstructure infill, retaining the input surface, and approximating
the target behavior.

Limitations and Future Work. Our approach has several limi-
tations. First, for thin objects and/or relatively coarse cells, most
cells would be cut cells, and the quality of the results may be lower.
Some of our examples suffer from buckling of the surface layer, as
no terms penalizing buckling are included in our optimization. Sec-
ond, we use the linear elasticity model in our examples. Extending
our work to nonlinear elasticity, including contact, would reduce
the simulation-to-reality gap and could extend the applicability of
our method to more complicated scenarios. However, this would
require a more complex mapping between material properties and
microstructure geometry. Third, replacing the optimized materials
(Step 4 in Section 3.6) with geometry from the material family un-
avoidably introduces an error in the objective. We report statistics on
this effect, shared by all two-scale optimization methods, in Table 1.
We note that in simple examples where our second optimization has
a minor effect on the functional, we observe that sometimes the re-
sult obtained by skipping the second optimization leads to a slightly
lower functional when evaluated on the full mesh (Table 2). While
unsatisfying from a theoretical point of view, these differences are
negligible in practice and hard to avoid, as we cannot bound the error
in the objective introduced by the use of our two-scale optimization
algorithm, which is an important venue for future work.

In addition, in this work, we explored one family of structures
for boundary cells. There are many possible ways to develop it
further; for example, rather than keeping it entirely fixed during the
second optimization stage, one can combine material optimization
for interior cells with low parametric shape optimization for the
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2D Examples Disk Bar Ghost Pliers Bird Sword
1st Opt. Full 0.01055 0.01498 0.00579 0.00094 0.01030 0.01852
2nd Opt. Full 0.01060 0.01057 0.00574 0.00095 0.01032 0.01841

3D Examples Bird Gripper Sine bar
Sine bar
rotated

Sole

1st Opt. Full 1.729 0.085 0.550 0.432 0.289
2nd Opt. Full 1.620 0.030 0.586 0.437 0.259

Table 2: Evaluation of the objective (Equation 4) on the full model

with the microstructure geometry explicitly meshed after the 1st and

2nd material optimization.

boundary cells. The results can also be improved by using a broader
spectrum of microstructure topologies.
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