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(a) Alphabetical Images (b) Dancing Person

Figure 1: Results obtained by our approach for (a) alphabetical images and (b) dancing person image sequence. The red dot indicates the
viewer location as well as the light location. Our method searches for the embedding of the tubular-knots (shown in green), so that the
projected images resemble the target images. In both the cases, the top row image depicts the shadow cast on a nearby gallery wall by a light
source placed at the red dot and the bottom row depicts the image a viewer will perceive if viewing from the red dot.

Abstract
We introduce the problem of knot-based inverse perceptual art. Given multiple target images and their corresponding viewing
configurations, the objective is to find a 3D knot-based tubular structure whose appearance resembles the target images when
viewed from the specified viewing configurations. To solve this problem, we first design a differentiable rendering algorithm
for rendering tubular knots embedded in 3D for arbitrary perspective camera configurations. Utilizing this differentiable ren-
dering algorithm, we search over the space of knot configurations to find the ideal knot embedding. We represent the knot
embeddings via homeomorphisms of the desired template knot, where the weights of an invertible neural network parametrize
the homeomorphisms. Our approach is fully differentiable, making it possible to find the ideal 3D tubular structure for the
desired perceptual art using gradient-based optimization. We propose several loss functions that impose additional physical
constraints, enforcing that the tube is free of self-intersection, lies within a predefined region in space, satisfies the physical
bending limits of the tube material, and the material cost is within a specified budget. We demonstrate through results that
our knot representation is highly expressive and gives impressive results even for challenging target images in both single-view
and multiple-view constraints. Through extensive ablation study, we show that each proposed loss function effectively ensures
physical realizability. We construct a real-world 3D-printed object to demonstrate the practical utility of our approach.
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1. Introduction

Suppose an artist wishes to create a perceptual artwork in three-
dimensional space by creating a structure that appears meaning-
ful only when seen from specific viewpoints in the scene and ap-
pears arbitrary or meaningless from other viewpoints. With such a
goal set, the artist has in mind the target visual images that should
be perceived from specific viewpoints. Figuring out the 3D struc-
ture that would resemble the target images is an inverse process,
which is very challenging and requires human ingenuity. Consider
another scenario where light sources are placed at specific loca-
tions, such that when the light gets cast onto the 3D structure, a
shadow is formed on a nearby wall. The artist would desire the
shadow formed to match the target image in this scenario. In the
first case, the viewer is at a specific location; in the second, the
light source is at a specific location. Despite the differences, these
scenarios involve the same underlying principle of perspective pro-
jection, where the target 2D image is the known parameter, and the
3D art structure is the unknown parameter. As an example, consider
Fig. 1, where given a specific viewpoint (red dot), the top image
depicts the shadow cast of 3D structures (green tube) on a nearby
wall cast by a light placed at the viewpoint, and the bottom image
depicts the image perceived by a viewer situated at the viewpoint.

Drawing inspiration from the wire-sculpture shadow art of Larry
Kagan [Lar23; Med23], here we consider a specific form of percep-
tual art, where the 3D structure is made of tube-based shapes like
wires, ropes or strings. A tube here refers to the volume sweep of
a sphere along a curve embedded in 3D space. For the curves, we
specifically consider knots or loops, which are closed curves in 3D.
Knots have a rich historical and cultural significance in various tra-
ditions and arts [MK96; Evi24]. They are of deep interest in both
arts and mathematics. They naturally lend themselves to intrigu-
ing shapes, resulting in visually appealing patterns. In this work,
we are interested in exploring the intricate shadow projections that
arise out of knot-based tubes.

Given a desired target silhouette image and the tube thickness,
we search for the embedding or the configuration of the knot in
3D so that the knot-based tube, when viewed from a given cam-
era viewpoint, resembles the target image. Moreover, while creat-
ing such a 3D structure, the artist would also need to ensure that
the structure is physically realizable; i.e.., it should be free of self-
intersections, and given the material that will be used for the tube,
the structure should respect the physical constraints, for instance,
the maximum allowed bending. Since such a structure is to be re-
alised in the real world, the artist might want the tubular structure
to fit inside a predefined region in space in the scene. Also, consid-
ering the material cost, the artist might want to minimize the usage
of the material, which in this case would be directly proportional to
the length of the knot.

We have proposed an end-to-end differentiable optimization
framework to guide an artist in finding a 3D structure correspond-
ing to the desired target image(s). We search for the 3D art struc-
ture by searching for knot embeddings in 3D, where we define the
search space through a parametrized family of homeomorphisms
represented using an Invertible Neural Network (INN). We have
designed a differentiable rendering algorithm that, given a knot em-
bedding, the thickness of the tube, and the information about the

perspective viewing camera placed at a specific viewpoint, gener-
ates a silhouette rendering of the tube that would be perceived from
that specific viewpoint. Our approach has the theoretical guarantee
of the knot embedding being free of self-intersection. We have de-
veloped an appropriate loss function to avoid self-intersections in
the tube. We also penalize high curvature regions, thereby restrict-
ing the tube bending. Material cost constraint is satisfied by adding
a penalty whenever the knot length exceeds the allowed limit. In
contrast, space constraint is satisfied by penalizing segments of the
tube that move outside the predefined region in the scene.

The following are the major contributions of this work:

1. We develop an end-to-end differentiable framework for finding
a 3D art structure based on tubular knots, which is perceived as
the desired target image upon viewing from a particular view-
point. Our approach also works in the multi-view setting, where
we have multiple target images with corresponding viewpoint
configurations.

2. We design an efficient differentiable rendering algorithm that,
given an arbitrary camera configuration, renders the silhouette
image of a tube of desired thickness along a given knot embed-
ding in 3D, as viewed from the camera.

3. We propose a differentiable neural representation of knot em-
beddings through Invertible Neural Networks (INN), facilitating
effective knot search using gradient-based optimization.

4. We propose several loss functions to ensure the 3D art structure
is physically realizable.

To the best of our knowledge, we are the first to formalize the
problem of knot-based inverse perceptual art in the optimization
setting and propose a fully differentiable inverse rendering-based
solution.

2. Related Work

Shadow Art. The inverse process of reconstructing or learning 3D
structures that cast target shadows under specific lighting condi-
tions has been previously explored. [MP09] deform the input target
images to find a consistent shadow hull while minimizing the in-
duced distortions, utilising volumetric representation. [STR22] use
a differentiable rendering optimization framework for finding the
3D structure, using mesh representation. Our work, in contrast, fo-
cuses on knot-based tubular 3D structures and utilizes neural rep-
resentations to represent the knot. One of the drawbacks in the pre-
vious works is that the predicted 3D structure is not guaranteed to
be physically realisable, limiting its practical applicability. In con-
trast, our work emphasises physical realizability, making it relevant
for real-world applications. In previous works on shadow art, the
3D structures are generally complex and visually difficult to grasp.
However, using knot-based tubes ensures that the final shape is in-
tuitive and easier to understand. Our approach introduces a novel
form of shadow art, where both the shadow and the 3D structure are
appealing and intuitive. Using knots thus makes the artwork more
accessible and engaging for viewers, enriching the overall aesthetic
experience.

Inverse Rendering and Differentiable Rendering. Several ex-
isting inverse rendering methods recover the scene parameters
from images using supervised learning [BXS*20], [YKM*20]

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



Aalok Gangopadhyay et al. / Search Me Knot, Render Me Knot 3 of 10

(a) Single Viewer (b) Multiple Viewer

Figure 2: (a) Result on Iron Man Image. The top image shows the
shadow cast on the wall, whereas the bottom image shows the view
from the red dot. (b) Given the orthographic projections of Viviani’s
curve as multiple target images, our method learns a knot embed-
ding whose perspective projections approximate the target images
when viewed from the respective viewing locations.

that require multi-view or single-view images either during train-
ing or inference. Recently, unsupervised and weakly supervised
methods [NMOG20], [HCLZ20], [WMW*21], [WWR22] for in-
verse rendering have been proposed that focus on de-rendering
either general or specific object types. Differentiable Rendering
algorithms depend largely on the underlying 3D data representa-
tion, either explicit ones, such as, voxels [YYY*16], [TEM18],
meshes [LB14], [LLCL19] and point clouds [ID18], [CHLZ21],
[YSW*19], [LKL18], [HCLZ20], [BXS*20] or implicit ones
[LZP*20], [NMOG20], [YKM*20] that utilize generative models
which extract the occupancy probabilities, distances, and trans-
parencies, with respect to the surface. Our work uses unsupervised
learning to focus on the inverse rendering of knot-based 3D tubes
from ground truth silhouette images.

Knot Rendering and Optimization. Intersection algorithms for
ray tracing with curves [Van85], [NO02], [Res17] have been stud-
ied previously with a focus on parametric curves. J.J. Van Wijk
[Van85] formally defined and described the ray tracing intersection
with the resulting shape when a sphere of changing radius is swept
along a 3D trajectory. Rendering algorithms for knots have been
proposed in KnotPlot [Sch98], which is a knot visualization and
manipulation tool. However, these rendering methods are not dif-
ferentiable. We have developed a differentiable knot renderer that
facilitates search in the knot space to optimize an objective defined
over the rendered image. Several existing knot energies in the lit-
erature for knot optimization, such as Möbius Energy [KS98] and
Tangent-Point function [YSC21], [BO95] ensure the validity of the
knot by penalizing self-intersections. Our approach instead has the
guarantee that the represented knot is free of self-intersection, en-
abling optimization without the need for a penalty term.

Template-based Shape Deformation. Graph-based convolu-
tion networks [WZL*18], MLPs [TKG20], [GFK*18], and Neural
ODEs [PKGF21], [Gup20] have been employed before to deform

a simple genus-zero shape like a sphere or an ellipsoid into a shape
of arbitrary complexity. The use of Invertible Neural Networks
(INNs) [DKB14] that utilize diffeomorphic [Gup20] or homeomor-
phic [PKGF21] deformations have shown remarkable results. In
our work, we utilize INNs to represent homeomorphic deforma-
tions of a template knot. Preserving the topology guarantees that
there are no self-intersections in the generated knot, given that the
template is self-intersection-free.

3. Proposed Approach

3.1. Problem Statement

Let C = (t,θ, f ,z−,z+,W,H) represent a pinhole camera model.
Here t = (tx, ty, tz), θ = (θx,θy,θz) and f = ( fx, fy, fz) denote the
camera’s location, orientation, and focal lengths, respectively, with
respect to the world coordinate frame. The distance of the near-
clipping plane and the far-clipping plane from the camera location
is denoted by z− and z+, respectively. W and H denote the width
and height of the image rendered by the camera. From here on,
unless specified otherwise, we assume that all the points are defined
with respect to the camera coordinate frame.

Let D = {(x,y,z) | z = fz, |x| ≤ fx, |y| ≤ fy} denote the image
plane and F = {(x,y,z) | fz

z (x,y,z) ∈ D, z− ≤ z ≤ z+} denote the
viewing frustum . The image pixel grid is denoted by G = ZW ×
ZH , where ZN = {z ∈ Z | 0 ≤ z ≤ N−1}, then Q= {( fx · ( 2i

W−1 −
1), fy · ( 2 j

H−1 − 1)) | (i, j) ∈ G}, represents the coordinates of the
pixels on the image plane.

A knot is defined as a topological embedding of the circle in
R3. Let’s say we choose a template knot having parametric repre-
sentation K : [0,1] → R3, with K(0) = K(1). Let H : R3 → R3

be a homeomorphism. Then K̂ = H◦K describes a smooth de-
formation of the template knot. Let Hφ be a family of homeomor-
phisms, parametrized by φ ∈ Φ. Then, Kφ = Hφ ◦K represents a
family of knots, parametrized by φ ∈ Φ. Given 0 ≤ s1 ≤ s2 ≤ 1,
the arc-length of the knot segment of Kφ between s1 and s2 is
given by ℓKφ

(s1,s2) =
∫ s2

s1
|K′

φ(s)|ds. Let the total length of the
knot be denoted as LKφ

given by LKφ
= ℓKφ

(0,1). Let T (Kφ,r) =⋃
s∈[0,1]Br(Kφ(s)) represent a tube having thickness r, which is ob-

tained by sweeping a ball of radius r along the knot Kφ. Here Br(p)
denotes a ball of radius r centered at point p.

Let R : Φ ×R≥0 × C∗ → I∗ denote the rendering function,
where C∗ denotes the space of all pinhole cameras and I∗ = [0,1]G

denotes the space of all grayscale images defined on grid G. Given
φ∈Φ, r ≥ 0 and a pinhole camera C ∈ C∗, Î =R(φ,r,C) represents
the rendered image of tube T (Kφ,r) as observed by the camera C.
Given a target image I ∈ I∗, the objective is defined as

min
φ∈Φ

||I −R(φ,r,C)||22 s.t.

Λ(T (Kφ,r)) = ∅
BKφ

≤ B0

T (Kφ,r)⊆ Ω0

LKφ
≤ L0

(1)

© 2024 The Authors.
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Figure 3: Illustration showing the pipeline of our proposed framework. We forward pass a template knot through an INN consisting of an
alternating sequence of affine coupling blocks and rigid transformation layers to obtain the knot representation. Given the camera viewpoint,
we propose a differentiable renderer that generates the image of the knot (shown on right). Using gradient-based optimization, we find the
ideal knot whose rendered image is closest to the target image.

Here, Λ(T (Kφ,r)) denotes the self-intersections in the tube,
that is, all points in the tube that arise from multiple parameters,
when the parametric representation of the tube is considered in the
Frenet-Serret frame. BKφ

denotes the bending in the knot which
is represented as the total integral of the curvature along the knot.
LKφ

denotes the total length of the knot. Ω0 represents the con-
straint region in space inside which the tube is supposed to lie, B0
is the maximum allowed bending, and L0 is the maximum allowed
length of the knot. Note that our approach does not solve Eq. 1 as
a constrained optimization problem. Instead, each constraint is in-
corporated as an individual term in the loss function, and thus, the
constraints are not enforced strictly.

3.2. Parametric Family of Knots

H : R3 → R3 is said to be a homeomorphism, if H is bijective and
bicontinuous. We use Invertible Neural Networks (INN) to repre-
sent Hφ , where φ denotes the INN parameters. We design an INN
consisting of an alternating sequence of Affine Coupling Layers
[DSB16] and Rigid transformation layers. The INN is invertible by
design, guaranteeing bijectivity of Hφ and the INN being a compo-
sitional function of continuous layers guarantees the bicontinuity
of Hφ. The INN is explained in detail in Sec. 3.4.

Using an INN-based parametric family of homeomorphisms to
search in the space of knots has several advantages. The INN being
differentiable facilitates efficient gradient-based optimization for
searching the optimal knot. By choosing a template knot K, the use
of homeomorphism guarantees that the search space is constrained
to knots having the same knot type as that of K. Thus the desired
knot type can be fixed by appropriately choosing the template knot.
An embedded knot, by definition, is free of self-intersection. If it
is ensured that the template used is a valid knot, then it is guaran-
teed that Kφ is a valid knot for any choice of φ ∈ Φ. Thus every
Kφ is free of self-intersection since a homeomorphism preserves

the topological properties. Thus, our approach does not require any
additional projection step or the use of loss functions to ensure the
validity of the knots.

Our approach works for any choice of template knot. It is gen-
eral in the sense that if we choose open curves instead of closed
knots, then we can search in the space of open curves and render
open tube structures. However, here we restrict our focus only to
knots, specifically, the trivial knot, whose template is represented
as K : [0,1]→R3, K(s) = (coss,sins,0). We demonstrate that even
a trivial knot is powerful enough to represent complex images. In
Fig. 3, the INN and the affine coupling blocks are illustrated.

3.3. Differentiable Silhouette Rendering of Knots

We propose two algorithms for the rendering function R(φ,r,C),
both of which being differentiable, facilitate the end-to-end opti-
mization of the objective defined in Eq. 1.

Ellipse Renderer (RE ). We first randomly sample N points on the
template unknot K to obtain the set PK. We forward pass the tem-
plate points through the INN Hφ to obtain points on Kφ, denoted
as the set PKφ

=Hφ(PK). The sphere of radius r centred at a point
p = (l,m,n) ∈PKφ

will become an ellipse, Ep, on the image plane.
Let Np be the cone induced by p such that its apex is at the origin,
height is∥p∥2 and radius is r. The projected ellipse Ep is the inter-
section of the cone Np with the image plane. The equation of Ep is
given by Ax2 +Bxy+Cy2 +Dx+Ey+F = 0, where A = l2 − k2,
B = 2lm, C = m2 − k2, D = 2 fzln, E = 2 fzmn, F = f 2

z (n
2 − k2),

and k2 =
(l2+m2+n2)2

l2+m2+n2+r2 . Projecting ellipses about each point in PK
on the image plane gives a good approximation of the T (Kφ,r)
when N is sufficiently large. However, if N is very small or the dis-
tance between consecutive sample points is large, it might result in
an undesirable discontinuity in the rendered image. To avoid this,
we propose another renderer which has an additional computational
cost but is more accurate.

© 2024 The Authors.
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Figure 4: Illustration of the Ellipse Renderer (RE ) and the Capsule Renderer (RC).

Capsule Renderer (RC). We consider a cylindrical capsule be-
tween consecutive points on the knot Kφ, having spherical ends
formed by spheres of radius r centred at those points. Let the cap-
sule have a projection Up on the image plane. Up is the union of
the projections of the two spheres at the ends of the capsule and
the projection of the central cylinder plane joining them. The an-
alytical equations and derivations of the projected ellipse and pro-
jected capsule have been included in the supplementary material.
Let SUp : R2 → R be the signed distance function of the projected
capsule Up. The occupancy function of Up on the image plane can
then be defined as OUp(q) = σ(τ ·SUp(q)), where σ is the sigmoid
function. The parameter τ is the hardness factor, which controls
how rapidly the occupancy function changes near the boundary. Let
us consider a pixel q ∈ Q having grid coordinates (i, j). The pixel
value of q, denoted as Î(i, j) can be computed as the maximum
of the occupancy values across all the projected ellipses, given by,
Î(i, j) = maxp∈PF OUp(q). The differentiable rendering process
is illustrated in Fig. 4.

3.4. Network Architecture

We represent the family of homeomorphisms Hφ using an Invert-
ible Neural Network (INN), where φ denotes the INN parameters.
The network architecture of the INN is illustrated in Fig. 3. The
INN consists of an alternating sequence of Rigid Transformation
layers and Affine Coupling Layers [DSB16].

Rigid Transformation layer. This layer consists of a rotation in R3

along with a translation in R3, which gets updated during each iter-
ation of the optimization process. Both rotation and translation are
invertible transformation. The inverse of a rotation is yet another
rotation, and the inverse of a translation is yet another translation.
This makes the Rigid Transformation layer an invertible layer with
explicitly available inverse.

Affine Coupling layer. Each Affine Coupling layer consists of two
Multi-Layer Perceptrons (MLP) : S for scaling and T for trans-
lation. It also contains a permutation function σ. Both S and T
take two values as input and output a single value, representing
the scaling factor and the translational shift, respectively. During
the forward pass, given an input p = (x,y,z), it is first permuted
by σ to obtain p′ = (u,v,w) = σ(p). Then p′ is modified to get
q′ = (u′,v′,w′), where u′ = u, v′ = v and w′ = w ·S(u,v)+T (u,v).
Only w is modified using an affine transformation whose scal-
ing and translation factor depend on u and v, whereas u and v
are left unmodified. The final output q obtained at the end of the
forward pass is given by q = σ

−1(q′). During the inverse pass,
given an input p = (x,y,z), it is first permuted by σ

−1 to obtain
p′ = (u,v,w) = σ

−1(p). Then p′ is modified to get q′ = (u′,v′,w′),
where u′ = u, v′ = v and w′ = w−T (u,v)

S(u,v) . The final output q obtained

at the end of the inverse pass is given by q = σ(q′). It can be seen
that the inverse pass is indeed the inverse operation of the forward
pass due to the invertibility of the affine function. The permutation
σ for each Affine Coupling layer is randomly chosen during initial-
ization and is fixed after that during the entire optimization process.

The Rigid Transformation layers and Affine Coupling Layers are
both invertible layers. Since the composition of invertible functions
is invertible, our overall network is invertible. Moreover, each com-
ponent in our network is continuous, and the composition of con-
tinuous functions is continuous, making our overall network con-
tinuous. Our network Hφ is thus bijective and bicontinuous and
represents a homeomorphism for each value of φ.

3.5. Embedding Search of Knots

Given the objective defined in Eq.1, the rendering function
and the differentiable representation of knots enable us to use
gradient descent-based methods for optimization. The objective

© 2024 The Authors.
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Figure 5: Rendering of the 3D tube embeddings obtained using our method (bottom row) and the rendering of the sphere mesh deformation
using SoftRas [LLCL19] (middle row) for the corresponding ground truth silhouettes (top row). In (a), the physical realisability constraints
are applied only on our method and not on SoftRas method. In (b), results of both methods are without the constraints.

and the constraints are represented in terms of minimized loss
functions. First, we define some preliminary concepts needed to
describe the loss functions. Let p1 = Kφ(s1) and p2 = Kφ(s2)
denote two points on the knot, where 0 ≤ s1 ≤ s2 ≤ 1. Let
d(p1, p2) =∥p1 − p2∥2 denote the Euclidean distance between the
two points. Let g(p1, p2) = min(ℓKφ

(s1,s2), LKφ
− ℓKφ

(s1,s2))
denote the geodesic distance between the two points. The geodesic
distances in our approach is computed using polyline approxima-
tion. The loss functions are illustrated in Fig. 3.

Image Loss (LI): This loss is used to make the rendered image
Î similar to the target image I and is given by

LI =
∥∥∥I −Î

∥∥∥2

2
(2)

Length Loss (LL): As the radius of the knot is constant through-
out, the material cost of the tube is proportional to the length of the
knot. The material cost budget corresponds to a maximum allowed
length L0. The length loss adds a penalty whenever knot length ex-
ceeds L0, given by

LL = max(LKφ
−L0,0) (3)

The set PK is obtained by sampling a random ring-graph from the
circle, which is then forward passed through the INN Hφ to obtain
PKφ

. The length of edges in the deformed ring is added up to obtain
the knot length LKφ

.

Möbius Loss (LM): Even though the knot Kφ is guaran-
teed to have no self-intersection in our representation, the tube
T (Kφ,r) can have self-intersections. In order to penalize tube
self-intersections, we define a loss based on the Möbius Energy
[KS98]. The Möbius Energy between two knot points is defined as
M(u,v) = 1

d(u,v)2 − 1
g(u,v)2 . We define Möbius loss on a randomly

sampled set BM = {(u,v) | u,v ∈ PKφ
, u ̸= v} as

LM =
1

|BM |

 ∑
(u,v)∈BM

M(u,v) ·max(2r−d(u,v),0)

 (4)

This loss penalizes those pairs of points for which the geodesic

distance is much larger than the Euclidean distance, and the Eu-
clidean distance is less than twice the radius (implying tube self-
intersection).

Occupancy Loss (LR): An artist or an architect, while realizing
such a tube structure might have space constraints, would like the
structure to be bounded within a predefined constraint region Ω0.
Let SΩ0 : R3 → R be the signed distance function of Ω0, which is
positive for the inside points and negative for the outside points.
The occupancy Loss penalizes the tube points that go outside the
constraint region Ω0 and is defined as

LR = ∑
p∈PKφ

max(r−SΩ0(p),0)
(5)

This loss adds a penalty whenever a sphere of radius r about a knot
point does not completely lie within Ω0.

Bending Loss (LR): Based on the material to be used for the
tube, there might be restrictions on the extent to which the tube
can physically bend. Let B0 be the maximum bending that a tube
can physically attain at any point. The bending loss penalizes those
points on the knot whose squared curvature, given by BKφ

(p) ex-
ceeds the maximum allowed bending B0 and is defined as

LB = ∑
p∈PKφ

max(BKφ
(p)−B0,0) (6)

The total loss function is a weighted sum given as L = wimg ·
LI +wlen · LL +wmob · LM +wocc · LR +wbend · LB. The hyperpa-
rameters used in our framework, the computing infrastructure used
to run the experiments and the details of the INN architecture are
included in the supplementary material.

4. Results and Discussion

We create a test bed of target silhouette images and demonstrate in
Sec. 4.1 that our method obtains impressive results. We also con-
duct experiments (Sec. 4.2 and 4.3) which indicate the effective-
ness of the proposed loss functions and the renderer. A real-world
demonstration is shown in Sec. 4.4.

© 2024 The Authors.
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Figure 6: Ablation experiments of proposed loss functions.

4.1. Inverse perceptual art results

The proposed framework was tested on silhouette images having
varying levels of complexity, under different settings.

Single Viewer, Single Knot. In this problem setting, there is a sin-
gle viewer configuration with a single target image. The objective
is to find the embedding of a single knot whose projected image
resembles the target image as illustrated in Fig. 2(a). To the best
of our knowledge, no existing works in the literature address the
problem of knot-based inverse perceptual art (mentioned in Eq. 1).
This prohibits us from performing exhaustive comparative analysis
with other methods.

However, the work of SoftRas [LLCL19], which, instead of tube
embedding, uses sphere mesh deformation, closely resembles our
work, with whom we compare our results, as shown in Fig. 5. In

SoftRas, due to the deformation of a sphere mesh, there is difficulty
in forming image shapes with several holes. In contrast our method
is able to generate complex shapes with complex topologies. When
the physical constraints imposed are too strong, obtaining complex
shadow images could be physically impossible. This is not a limi-
tation of our approach but an inherent physical limitation. To show
that our method is highly expressive, in Fig. 5(b), we remove the
physical constraints and demonstrate that complex shadow shapes
can be generated through complicated embedding of the knot.

Single Viewer, Multiple Knots. In this problem setting, there is a
single viewing location and multiple knots. The objective is to find
the embedding of all the knots so that the projected image resem-
bles the target image. Fig. 1(a) shows the result of a single light
source casting shadows from multiple knots. And when a viewer is
placed at the location, all the knots together form a single image.

© 2024 The Authors.
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Figure 7: Renderings for varying number of N.

Figure 8: Renderings for varying value of τ.

Multiple Viewer, Single Knots. In this case, there are multiple
viewing configurations and a target image corresponding to each
view. The embedding of a single knot needs to be searched, whose
projected image from each view matches the respective target im-
age. As demonstrated in Fig. 2(b) and Fig. 6(d), there are three
target silhouette images representing projections on three perpen-
dicular image planes. These three images are the orthographic pro-
jections of Viviani’s curve. Viviani’s curve has a self-intersection in
the middle and is thus not a knot. Instead, our method learns a knot
embedding that is physically realizable and free of self-intersection,
whose perspective projections on the image plane resemble the or-
thographic projections of Viviani’s curve.

Single Viewer (single target video), Spatio-temporal Knots. In
this scenario, given a temporal sequence of target images, the ob-
jective is to find the temporal sequence of embeddings of a single
knot, so that at a given time instant, the rendering of the knot em-
bedding is similar to the target image at the corresponding time
instant. In this case, additional regularization is added to ensure
smooth spatio-temporal deformation of the knot. In Fig. 1(b), all
the knots are constrained to be smooth temporal deformations of
each other. The animation depicting this temporal deformation of
the knots creates the perception of a person dancing. Thus, in this
case, perceptual art also has a temporal aspect. The animation is
available in the supplementary material.

Our approach learns knot embeddings whose projected images
closely resemble the target silhouette images in all the scenarios,
proving the effectiveness of our approach. The knot-based tube em-
beddings when rendered in 3D, were also found to satisfy the phys-
ical constraints specified. More results and the time evolution of the
3D knot embeddings during the optimization process, are available
in the supplementary material.

4.2. Ablation Study of Loss Functions

We conduct experiments to investigate the importance of each loss
function proposed in our approach. Since image loss is the primary
objective, keeping it weight fixed at wimg = 1, we vary the other
loss function’s hyperparameters and observe the effects.

Length Loss. Fig. 6(a) shows the rendered image and its skele-
ton corresponding to a given ground truth for different considered
values of the maximum allowed length, L0. For smaller values of
L0, the proposed algorithm tries to render an image as close to
the ground truth, while respecting the budget constraint set by L0.
When large values of L0 are considered, 3D knot embedding is
given more freedom to deform in space and successfully generates
the desired image.

Bending Loss. In Fig. 6(b), given the target image of a rectangle,
the maximum allowed bending B0 is varied. For low values of B0,
the bending loss forces the knot to have the least amount of curva-
ture, resulting in the symmetric circular shape. Only when a higher
value of bending is allowed, the knot starts to deform, and even-
tually for a sufficiently large value of B0, deforms to result in an
image that closely resembles a rectangle.

Occupancy Loss. In Fig. 6(c), the target image is a rectangle, and
the pink sub-region within the image indicates the constraint re-
gion. When the occupancy loss weight wocc is higher, the knot is
forced to stay confined with the constrained region. Only when wocc
is made sufficiently small, do the other losses start to dominate and
defy the region constraints. This indicated that the occupancy loss
successfully forces the knot to stay within a user-defined region.

Möbius Loss. The effect of Möbius loss is investigated in Fig.
6(d), in the multi-view, multi-target setting. The target images are
chosen in such a way that the optimal solution necessitates a self-
intersection in the tube. For smaller values of wmob, we see that

© 2024 The Authors.
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Figure 9: Real-world demonstration of our approach.

the Möbius loss is not given significance and the resulting configu-
ration of tube indeed has self-intersections. Only when the weight
wmob is increased sufficiently, does the Möbius loss component be-
come strong enough to avoid self-intersections. This demonstrates
that Möbius loss indeed avoids self-intersection in the tube.

4.3. Differentiable Renderer Experiments

We have proposed two methods for rendering the tube: Ellipse Ren-
derer (RE ) and Capsule Renderer (RC). In this section, we discuss
the scenario of when one would be preferred over the other. In Fig.
7, for a fixed circle in 3D, we vary the number of sample points N
and see its effect on RE and RC . When N is large, both produce
the desired results. However, when N is small, such as N = 64, RE
generates a poor approximation, whereas RC produces a much bet-
ter approximation of the actual image. This demonstrates that RC
is superior than RE , when N is small. Thus RC is particularly ad-
vantageous if the INN Hφ has many layers, in which case querying
points from the knot (forward pass) is computationally expensive.
If the forward pass through INN Hφ is computationally cheap, then
querying points from the knot is inexpensive, making the computa-
tions involved in capsule rendering the main bottleneck. In such a
case, RE would be preferred over RC .

In Fig. 8, for both RE and RC , we vary the hardness factor τ.
Making τ large generates a rendering close to the desired image.
But large τ also results in exploding gradients making the optimiza-
tion process numerically unstable. For τ extremely small, the opti-
mization is stable, but the rendered image is less sharp, producing a
knot configuration whose actual image is different from the desired
target. In our experiments, we use the value of τ = 100 and observe
that it gives good results, while also being numerically stable.

4.4. Real World Demonstration

Given the target image of a smiley (third column in Fig. 5), our
approach generates a tube structure, which we fabricate using a
3D printer, shown in Fig. 9(c). We cast light on this structure (Fig.
9(a)) whose shadow resembles a smiley and when viewed from the
specified location (Fig. 9(b)) it appears like a smiley.

4.5. Limitations

Ideally, for fabrication, we would take a deformable tube with a
fixed radius, and then deform and arrange it in 3D space, and close

both ends. The arrangement in 3D space would be guided by our al-
gorithm. Then, the shadow cast by the 3D structure would resemble
the target image. There could be other similar fabrication methods
to realize the shadow art mentioned in our work. Note that, in Sec.
4.4, we have used 3D printing as the fabrication process, which
is not the ideal choice of fabrication, given our problem statement
and the proposed loss functions. The sole purpose behind using 3D
printing was to demonstrate that the 3D object generated by our ap-
proach indeed casts a shadow that matches the target image while
also satisfying the physical constraints.

5. Conclusion and Future Work

In this work, we have proposed an end-to-end differentiable opti-
mization framework for searching 3D knot-based tube embedding
that, when projected onto the image plane of a user-specified cam-
era, forms a silhouette image similar to the input target image. In
order to represent the knot embeddings, we have used invertible
neural networks (INNs) as a parametrized family of homeomor-
phisms and created a differentiable silhouette renderer that renders
the tube. We also present several loss functions to ensure that the
generated tubular structure is physically realizable. We present the
power of a simple unknot being used as the template knot and how
its deformation through homeomorphism can be derendered even
in the case of complex images. The inverse knot rendering from
single-view and multiple-view sets of silhouette images is repre-
sented for any given camera attribute. Even though we have used
the unknot as the template shape, our approach is general enough
and is compatible with shapes other than an unknot. Exploring
other template shapes, such as different knot types and embedded
tree graphs, would be interesting. In future work, we aim to ex-
periment with other formulations of inverse perceptual art. For in-
stance, the viewer configuration and radius are fixed for the desired
target image in the current setting. A variant in which the viewer
configurations are left unspecified would be an interesting prob-
lem. In such a variant, the proposed approach will also find the
viewer configuration along with the knot embedding and the thick-
ness of the tube. As future work, other types of differentiable sil-
houette rendering techniques could be explored, such as discretiz-
ing the sphere and cylinder into meshes and utilizing a highly effi-
cient differentiable mesh rendering framework. The current differ-
entiable renderer is silhouette-based. We propose to develop realis-
tic shading-based renderers for knots, which can help derender real
images of knots, as a future work.

© 2024 The Authors.
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