
Eurographics Symposium on Geometry Processing 2024
R. Hu and S. Lefebvre
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 5

KerGen: A Kernel Computation Algorithm for 3D Polygon Meshes

M. Asiler and Y. Sahillioğlu

Dept. of Computer Engineering, Middle East Technical University, Turkey
asiler@ceng.metu.edu.tr, ys@ceng.metu.edu.tr

Acorn

Button

PlusCross

D�amond Muff�n

Part

Skull

Cross�ng Cubes

Super Ell�pse

Rock

Cube on Cyl�nder

Star

Ball

Flex

L�verRt-4 Arm

Bot Eye

Wr�nger

Cyl�nder Tr�o

Figure 1: A gallery of 3D kernel extraction results (blue) by our algorithm KerGen for a variety of input polygon meshes.

Abstract
We compute the kernel of a shape embedded in 3D as a polygon mesh, which is defined as the set of all points that have a clear
line of sight to every point of the mesh. The KerGen algorithm, short for Kernel Generation, employs efficient plane-plane and
line-plane intersections, alongside point classifications based on their positions relative to planes. This approach allows for the
incremental addition of kernel vertices and edges to the resulting set in a simple and systematic way. The output is a polygon
mesh that represents the surface of the kernel. Extensive comparisons with the existing methods, CGAL and Polyhedron Kernel,
demonstrate the remarkable timing performance of our novel additive kernel computation method. Yet another advantage of
our additive process is the availability of the partial kernel at any stage, making it useful for specific geometry processing
applications such as star decomposition and castable shape reconstruction.

CCS Concepts
• Computing methodologies → Mesh geometry models;

1. Introduction

The geometric kernel consists of points within or on the shape
boundary that satisfy a crucial property: any line segment drawn
from any point of the shape to any point within its kernel remains

entirely inside the shape. In other words, all points of the shape
are visible from any point within the kernel. If the kernel is non-
empty, it includes the interior and/or the boundary points of the
shape, which classifies the geometry as star-shaped. Convex ob-

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

DOI: 10.1111/cgf.15137

CGF 43-5 | e15137

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-1050-4814
https://orcid.org/0000-0002-7997-4232
https://doi.org/10.1111/cgf.15137

2 of 13 M. Asiler & Y. Sahillioğlu / KerGen: A Kernel Computation Algorithm for 3D Polygon Meshes

jects are inherently star-shaped, and the kernel of a convex shape
corresponds to the shape itself. In Figure 1, kernels computed fully-
automatically by our KerGen algorithm are demonstrated for vari-
ous polygon meshes. Red lines are the wireframe overlaying over
the gray shape boundaries, whereas blue regions are the kernels.

For 3D kernels, there are three use cases requiring (1) a kernel
emptiness decision, (2) a single kernel point, and (3) an explicit
kernel representation. Determining if a shape has a non-empty ker-
nel is useful in applications such as star decomposition [YL11]
and self-intersection detection [SPO10]. While these applications
may involve a simple emptiness check, the first use case can extend
to shape guarding [YLL13], and the second can be employed in
collision-free deformations [SR95; WLH*13] by searching for an
arbitrary kernel point. An injective planar mapping [Liv24] can also
be performed over a single kernel point. Although spherical param-
eterization [KCP92] requires a single kernel point, the process can
be repeated with different kernel points to minimize angle distor-
tion. Similarly, polar refinement in remeshing [SDG*19] may ben-
efit from various kernel point initializations. Moreover, explicit ker-
nel representation is useful in mesh quality assessment [SBMS22],
with applications in finite element [PCS*22] and virtual element
[BBC*13] methods, mesh generation and refinement [SBMS23],
and mesh quality assessment [SVB*23] algorithms. Additionally,
in a robot target tracking system [MB23], navigation computations
can be performed using the explicit kernel of the area of motion.

In this paper, we propose KerGen, abbreviation for Kernel Gen-
eration, as a novel and efficient algorithm to compute the explicit
kernel representation of a 3D shape. The idea behind our algorithm
centers on recovering the kernel boundary by identifying the clos-
est plane intersections from a reference kernel point, thereby mini-
mizing unnecessary plane intersections outside the kernel. Briefly,
we determine an initial 3D kernel point automatically, then we it-
eratively find the locations of the edges and vertices of the output
mesh corresponding to the kernel’s boundary surface. Essentially,
we generate the kernel boundary by identifying the adjacencies of
the current kernel edges and vertices at each iteration. Geometric
predicates [She97] are employed for classifying point positions.

Our algorithm has several appealing aspects compared to recent
works such as the CGAL (Computational Geometry Algorithms
Library) algorithm [FP09] and the Polyhedron Kernel algorithm
[SBS22a], the only two methods for computing the 3D kernel. First,
it relies on efficient plane intersections with other planes and lines,
as well as the analysis of point positions relative to planes, leading
to significantly faster execution times compared to existing meth-
ods. Second, it allows kernel generation from any point within the
kernel. From a reverse perspective, it provides flexibility in speci-
fying any desired point as a kernel point and computing the kernel
which corresponds to the desired visibility coverage. Assuming the
total shape body is covered by the set of such kernels, this feature
could offer novel solutions to computing robot motion coverage
and navigation based on the specific guards as well as designing
kernel-aware shapes. Third, unlike existing subtractive methods,
KerGen adopts an additive approach. This ensures that the partially
generated shape at each iteration always remains within the ker-
nel and allows for exploring the details of the kernel’s geometry
structure during generation. Consequently, users can obtain par-

tial kernels or make compatible modifications to the kernel and in-
put mesh geometry at any stage. This adaptability renders KerGen
well-suited for future tasks such as star decomposition of shapes or
castable shape reconstruction from rigid molds.

We demonstrate the efficiency of our method on various groups
of meshes: (i) the ones having a non-empty kernel, i.e., star-shapes
and (ii) remeshed versions of some meshes in (i). Additionally, we
provide an experimental study for (iii) meshes with an empty ker-
nel, i.e., non-star shapes. Comprehensive experiments in Section
5 reveal our state-of-the-art performance in comparison with the
other existing methods.

2. Related Work

Kernel Computation. Kernel computation is one of the less-
explored topics in digital geometry processing. First study by
Shamos and Hoey assert that the kernel of a polygon can be found
in O(Ne logNe) time where Ne is the number of edges [SH76].
Later, Preparata and Muller prove the previous claim in 3D by
suggesting an algebraic solution in O(N f logN f) time where N f
is the number of faces [PM79]. Their method has been integrated
into various well-known libraries, including CGAL [FP09] and Li-
bigl [JP17]. Recently, Sorgente et al. address the problem from
a geometric perspective [SBS22a] with a faster computation time
than the algebraic one. Their algorithm takes O(N f Nv) time where
Nv is the number of vertices in the input mesh. Unlike existing
parameter-free approaches, including ours, which produce the ker-
nel itself, Asiler and Sahillioğlu [AS24] approximate the 3D kernel
of a given polyhedron by fine-tuning two parameters: ray count and
recursion depth. Their method operates in expected timeO(N f Nr),
where Nr is the number of rays. There also exist some 2D stud-
ies that can compute the kernel in O(Ne) time. In [LP79], Lee
and Preparata deduce the shape of the kernel by computing the re-
flex and convex angles between consecutive edges. Moreover, in
[Sac19], a similar discussion is made over line positions in 2D
to obtain the extreme kernel point in a given direction. Mainly,
they use the randomized algorithm presented by Seidel [Sei91] to
solve the linear programming constrained by line equations. For
the same purpose, Berg et al. solve a linear equation system in 2D
[DVOS97], yet they generalize their idea to all dimensions.

Kernel Analysis. Given the kernel of a shape, finding out prop-
erties of the kernel is another topic of interest. In their study, Gard-
ner and Kallay reveal the face properties of the kernel boundary
by mathematical proofs [GK92]. In [FKR05], Floater et al. define
mean-value coordinates of the star polyhedra over the equations
constructed on the properties satisfied by kernel. Additionally, there
exist studies proposing new finite element methods which are based
on the kernel of a polyhedron [OSN*20]. Other than that, given a
point set, the description of being a kernel point is used in order to
generate the polygon that accepts the largest kernel [Sub19; GS20].

Star-Shape Decomposition. Another kernel-related problem is
star shape decomposition, which deals with partitioning the ob-
ject into pieces with non-empty kernels. In addition to the studies
that perform star decomposition on a given single polygon [AT81;
FM84; CHJ08], there is also a method that handles the problem in
a more complex setting where compatible decomposition between

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

M. Asiler & Y. Sahillioğlu / KerGen: A Kernel Computation Algorithm for 3D Polygon Meshes 3 of 13

Figure 2: An illustration of kernel extraction from the bounding planes of the Star model. Kernel is shown at the rightmost column.

two polygons are sought [ER97]. Keil et al., on the other hand, aim
to obtain such a decomposition with minimum number of pieces
[Kei85]. An associative problem to this one is familiarly known as
the Art Gallery Problem which is NP-Hard [LL86]. Yu et al. per-
form star decomposition in 3D with the purpose of shape guarding
on meshes [YL11; YLL13].

Usage of Kernel. Geometric kernels find extensive application
across various domains. The determination of kernel emptiness
is crucial for detecting self-intersections within shapes [SPO10].
Similarly, to ensure collision-free deformation, input shapes are
interpolated using a function that maps mesh vertices to unique
angle-distance tuples computed from a single kernel point [SR95;
WLH*13]. This approach can also be extended to transform star-
shapes into spherical [KCP92] and planar [Liv24] parameteriza-
tions. Moreover, in spherical parameterization, different kernel
points may be utilized to minimize angle distortion, while polar
refinement in remeshing [SDG*19] could benefit from various ker-
nel point initializations. Furthermore, explicit representation of the
kernel allows for assessing shape quality, particularly concerning
the object’s kernel size in finite element [PCS*22] and virtual el-
ement [BBC*13] methods. Sorgente et al. propose a metric quan-
tifying the ratio of kernel area/volume to total shape area/volume
[SBMS22], which is evaluated for mesh generation and refinement
processes [SBMS23]. Their recent work [SVB*23] introduces a
novel agglomeration algorithm that optimizes an energy function
utilizing the aforementioned kernel-based metric. Also, robot tar-
get tracking systems rely on the explicit kernel for the navigation
computation [MB23]. Lastly, explicit kernel computation may find
application in determining the castability of a shape, as both prob-
lems share a common algebraic framework [DVOS97]. Stein et al.
illustrate this with a castable shape design algorithm in [SJG19].

3. Preliminaries

3.1. Kernel Basics

Definition 3.1 Formally, kernel K of a shape S is defined as follows:

K = {p ∈ S | (1− t)p+ tq ∈ S, ∀q ∈ S, ∀t ∈ [0,1]}.

Corollary 3.1 If K is a non-empty set, then K has a convex shape.

Definition 3.2 S is called star-shape, if its K is a non-empty set.

Corollary 3.2 All convex shapes are star-shapes.

Corollary 3.3 All star-shapes are connected.

Corollary 3.4 For a star-shape S, its K is connected.

Theorem 3.1 For a polyhedral shape S with the boundary ∂S, let
HF be the half-space whose boundary is the plane carrying the face
F of ∂S. Let also HF depict the inner side of ∂S. Then kernel of
S can be found by taking the intersections of all HF ∀F . That is,
K =

⋂N
F=1 HF , where N is the number of faces.

Proof See [PM79].

In the rest of the paper, we call those half-spaces as the bound-
ing half-spaces and its boundaries as the bounding planes. Figure
2 illustrates how kernel of the given 3D shape is found by intersect-
ing the bounding planes.

Obviously, in 3D space, when we take the intersection of three
non-parallel planes, we get a single point provided that the planes
are not coinciding along a line. Then, by Theorem 3.1, intersection
of some of the bounding planes gives vertices of the kernel. How-
ever, it is not trivial to decide which planes should be intersected to
obtain the kernel vertices and also there are in total

(N f
3

)
possible

plane combinations to check for intersection where N f is the num-
ber of faces of the input mesh. Hence, it takes O(N f

3) time which
is highly demanding. Our output-sensitive algorithm, on the other
hand, requires onlyO(N f Ke) time where Ke is the number of edges
in the output kernel mesh.

Lemma 3.1 Since each half-space is represented by an inequality,
the set of all bounding half-spaces of a mesh constructs an inequal-
ity system. As a result, Theorem 3.1 yields to the fact that all points
of the kernel must satisfy this inequality system.

3.2. Point Classification

In our algorithm, we classify points obtained through intersection
operations based on their positions relative to boundary planes.
These planes are defined by using vertices of the polygons on the
input mesh. A point is labeled as BELOW or ABOVE the plane P de-
pending on whether it lies on the side where the normal of P points
or on the opposite side, respectively. If a point lies on the plane P,
it is labeled as INTER.

To perform the labeling, we utilize Shewchuk’s geometric pred-
icates [She97] . The labels BELOW, ABOVE, and INTER are deter-
mined based on the output of Shewchuk’s predicate function ori-
ent3d() provided by CinoLib [Liv19]. It is worth noting that in
their Polyhedron Kernel algorithm [SBS22a], Sorgente et al. also
employ the same labeling system for the points computed by the
similar intersection operations.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

4 of 13 M. Asiler & Y. Sahillioğlu / KerGen: A Kernel Computation Algorithm for 3D Polygon Meshes

F0

(a) (b) (c)

s0

s4

s3

s2

s1

F1

p0 p

The reg�on wh�ch �s guaranteed to be �n the kernel

F0

F4

p1

F3

F1

s4
s3

s2

s1
p0

p1

F2

F2
F3

F4
F5

p2

l0,1

F3

F2 F1

F4

F0

Figure 3: The process of determining the initial faces whose intersection yields a kernel vertex: Firstly, we identify the closest plane to p,
which becomes our initial plane, denoted as F0. We then project p onto the selected plane, resulting in point p0 (a). We proceed by intersecting
F0 with each of the other planes one-by-one. From the resulting lines, we choose the one closest to p0, which becomes F1. Similarly, we project
p0 onto the intersection line l0,1 of F0 and F1, obtaining point p1 (b). Lastly, we find the closest plane to p1 on l0,1, which is F2, and the
intersection point of F2 and l0,1, denoted as p2 (c). Note that the final point p2 is also a vertex on the kernel surface.

4. Method

4.1. Theoretical Background

KerGen is designed to identify the closest boundary elements of the
kernel by iteratively selecting them from various reference kernel
points. Assuming that p is a point located inside the kernel, it is
possible to find an initial face belonging to the kernel in 3D using
the following approach.

Since the kernel is defined as the intersection of bounding half-
spaces (as stated in Theorem 3.1), the faces of the kernel surface
must lie on the planes that act as boundaries to these half-spaces.
Therefore, we can select the initial face F0 as the plane closest to p
by calculating the perpendicular distance from p to each bounding
plane. It is important to note that the plane itself is not considered
a face, but it is tangent to the kernel. For simplicity, we refer to this
plane as a face.

Lemma 4.1 The point obtained by projecting p to F0 is guaranteed
to be on the kernel boundary.

Proof For a point to be inside the kernel, we require it to satisfy
the inequality system of the bounding half-spaces. Let the perpen-
dicular distance from p to F0 be s0. We already know that s0 is the
shortest distance among the distances to other faces. That means,
whichever direction we go from p in a distance smaller than s0, we
cannot reach any bounding planes since the shortest distances to
them are certainly higher than s0. That means, when we go for a
distance of s0 and in the direction of the normal of F0 (which gives
the perpendicular direction), we still remain inside the kernel, i.e.,
satisfy the inequality system.

According to Lemma 4.1, we can deduce that the projection of p
onto F0, denoted as p0, is also a point within the kernel. Utilizing

this insight, we can apply a similar technique to identify a second
face that is tangent to the kernel. By projecting all elements onto F0
and reducing the problem to a 2D space, we can proceed as follows:

After computing the perpendicular distance from p0 to the inter-
section line of each bounding plane with F0, we find that the projec-
tion of p0 onto the line with the minimum distance lies within the
kernel. Let this projected point be denoted as p1, the corresponding
plane as F1, and the line resulting from the intersection of F0 and
F1 as l0,1. At this point, we can apply the 1D case of Lemma 4.1 to
l0,1 and p1.

Since the next point we seek is the intersection of three planes,
namely F0, F1, and F2, which represents the closest plane to p1
along l0,1, we are able to determine an initial vertex on the surface
of the kernel. By applying the 1D version of Lemma 4.1 to the
previously identified kernel elements, we can easily determine the
remaining kernel vertices, edges, and faces. Figure 3 provides a
visual representation of the process for finding F0, F1, and F2.

4.2. Algorithm Description

In the beginning of the process, we derive the equations of the
bounding planes (and consequently bounding half-spaces) by uti-
lizing the polygons comprising the surface of the input mesh.
These equations are essential for conducting computations involv-
ing plane-plane and line-plane intersections. Additionally, we re-
tain the vertices of each polygon associated with the planes to fa-
cilitate predicate checks, enabling us to determine the positions of
points relative to these planes accurately.

Our algorithm requires an initial kernel point regardless of its
location, which is then snapped to the closest kernel vertex on the
kernel surface. We can reach such a kernel vertex from the initial

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

M. Asiler & Y. Sahillioğlu / KerGen: A Kernel Computation Algorithm for 3D Polygon Meshes 5 of 13

kernel point by applying all versions of Lemma 4.1 successively
from 3D to 1D. This approach is particularly useful in scenarios
where the kernel of the shape, or a segment of it, is desired to be
formed around a specific point of the shape. In our implementa-
tion, we begin by determining an initial kernel vertex using Berg
et al.’s incremental linear programming solution [DVOS97], which
finds the extreme kernel point in a given direction. Although mul-
tiple extreme points may exist in the specified direction, the point
identified is guaranteed to be a kernel vertex, as the algorithm se-
lects the first one based on lexicographical order in all coordinates.
Our empirical observations indicate no significant variation in com-
putation time based on the direction of the vector used to find the
extreme point. Therefore, we consistently employ the same direc-
tion vector, (0,0,1), for all tests. Once the desired kernel vertex
is identified, its generator planes are easily detected based on the
INTER label returned by Shewchuk’s predicate function (refer to
Section 3.2).

FBASE

FSIDE

nclosest nBACK

vclosest v

the l�ne to be traced

nBASE

nclosest nBACK

nSIDE

nBASE

FBACKFclosest

Figure 4: Illustration of labeling the generator planes of a vertex v
before tracing the line started from it. The correct tracing direction
is indicated by green, which points to the ABOVE side of FBACK . We
identify the closest plane to v along the line, whose intersection is
either ABOVE or INTER all other planes intersecting the line.

Next, we proceed to find the other vertices on the kernel surface
by tracing along the lines that represent the kernel edges. Given a
kernel vertex v and its associated generator planes, our objective is
to identify the additional vertices of the kernel that lie on the inter-
section lines of these generators. Initially, we assume that a vertex
is associated with only three generator planes, while addressing the
exceptional cases of having more than three generators at a later
stage. It is important to note that each distinct pair of generators
intersect at a line. Based on the choice of which line to track, we
typically designate its generators as FBASE and FSIDE , while the
remaining generator of v is referred to as FBACK . The setup is illus-
trated in Figure 4.

During the process of tracing along a line, we make use of 1D
version of Lemma 4.1. Specifically, we search for the plane whose
intersection point with the line is closest to the vertex v and lies
on the ABOVE side of FBACK . The determination of the intersection

point’s position with respect to FBACK is achieved through the uti-
lization of Shewchuk predicates. Furthermore, to find the closest
intersection point, we rely on the predicates rather than comparing
distances: At each step of the iterative process, where the inter-
section of the line with a new plane is considered, we perform a
check to determine if the previously computed intersection point is
ABOVE or INTER the current plane. If it is, we can skip the com-
putation of the intersection point between the current plane and the
line, as it would have a larger distance from v. Conversely, in the
case where the previously computed point is BELOW the current
plane, we update the previous point with the new intersection point
obtained by intersecting the current plane with the line. This pro-
cess allows us to come up with the other kernel vertex on the line.

Algorithm 1: LINETRACKING

Input: An initial kernel vertex: v,
The set of generator planes of v: {Fv}
The set of bounding planes: {F}.

Output: The tuple of < EK ,VK > where EK is the set of
kernel edges and VK is the set of kernel vertices.

1 begin
// identify adjacent lines to v

2 Q := IDENTIFYLINES(v,{Fv},EK)
3 while Q ̸= ∅ do
4 Line l←− Pop Q
5 FBASE ,FSIDE ,FBACK ←− l.planes
6 v←− l.vertex
7 {Fv}←− v.generators
8 vclosest := null , {Fclosest} := ∅
9 foreach Fi ∈ {F}/{Fv} do

// define initial closest vertex
10 vi := Fi ∩ l
11 if vi ̸= null and vi is ABOVE FBACK then
12 vclosest ←− vi
13 end

// update closest elements
14 if vclosest ̸= null then
15 if vclosest is INTER Fi then
16 {Fclosest} ∪= {Fi}
17 end
18 if vclosest is BELOW Fi then
19 vclosest := Fi ∩ l
20 {Fclosest}←− {Fi}
21 end
22 end
23 end

// update the sets, find new lines
24 if vclosest ̸∈ VK then
25 Add vclosest into VK
26 Q ∪= IDENTIFYLINES(vclosest ,{Fclosest},EK)
27 end
28 Edge e :=< v,vclosest >, e.line←− l,
29 Add e into EK

30 end
31 return < EK ,VK >

32 end

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

6 of 13 M. Asiler & Y. Sahillioğlu / KerGen: A Kernel Computation Algorithm for 3D Polygon Meshes

Upon the discovery of a new vertex, additional lines are intro-
duced, which guide the subsequent exploration. To facilitate this
process, we employ a queue data structure to store the newly dis-
covered lines. Each line is associated with the new vertex, as well
as the corresponding planes: FBASE , FSIDE , and FBACK . For each
line popped from the queue we repeat the above process until the
queue becomes empty. Note that each line should be added into the
queue only once, otherwise the same lines are met over and over
again and the queue never becomes empty. To determine whether
the two lines are the same, we check if their generator planes, FBASE
and FSIDE , are identical instead of checking their equations or end-
points to prevent false detections due to numerical inaccuracies.
Given that multiple instances of a plane can exist in the bounding
plane set, we use predicate checks involving the defining vertices
to verify the sameness of the planes. Algorithm 1 gives the pseudo
code of the line tracking procedure.

An important consideration is how to determine which lines to
follow next and select appropriate FBASE , FSIDE , and FBACK planes
when there are more than three generators for the vertex v. We em-
ploy the following strategy to ensure correct line and plane assign-
ments: For each candidate pair for FBASE and FSIDE , we designate
a test point on the next candidate line that they generate, on both
the upper and lower sides from v. Subsequently, we examine both
test points to determine whether they are located on the ABOVE or
INTER sides of the other generator planes, utilizing the Shewchuk
predicates. If either of the points does not fall on the BELOW side
of any of the other generators, then the selected pair of planes and
their common line are considered valid, and the planes are labeled
as FBASE and FSIDE . It is important to note that although the test
points used may not belong to the kernel, the selected line contains
a kernel edge (Lemma 4.2).

Lemma 4.2 The line selected according to the above specifications
contains a kernel edge.

Proof Since v is a kernel vertex, the kernel edges adjacent to v must
be intersection lines of some of the generator planes of v. Assume
l is one of those lines adjacent to v. Then any other bounding plane
which is not a generator of v already includes some portion of l
started from v. This follows from the fact that the corresponding
half-space of any bounding plane which does not pass through v
already contains some volume around v, including some segment of
l. Therefore, it is sufficient to check the properties of l with respect
to only the generator planes of v to understand whether it contains
a kernel edge. Note that any plane passing through v either aligns
with the line l itself or intersects l at v. This means that at least
one of the two sides of l starting from v completely resides in the
corresponding half-spaces of the generator planes of v, validating
predicate tests for any test point on each side.

It is also possible that no plane pairs could be labeled as FBASE
and FSIDE . This situation occurs when the kernel boundary ends at
the current vertex because the resulting kernel is not a polyhedron,
but rather consists of a single point, a single line segment, or a
single polygon. Additionally, there may be more than one pair of
planes suitable for the FBASE and FSIDE labels, indicating that the
current kernel vertex has a degree larger than three. In such cases,
all identified pairs are evaluated as lines spanning a kernel edge.

Next, we need to choose a face as FBACK from among the re-

maining generator planes. Any generator plane could be used as
FBACK provided that only one of the two test points is located on
the ABOVE side of it whereas the other is located on the BELOW
side. Once the selection is complete, we add the computed lines
into the queue. However, we ensure that the lines being added have
not been previously pushed into the queue. Figure 5 illustrates the
line selection process for the two possible types of plane neighbor-
hoods sharing vertex v. Also, Algorithm 2 gives the pseudo code of
the line selection and plane labelling procedure.

Algorithm 2: IDENTIFYLINES

Input: A kernel vertex: v,
The set of generator planes of v: {Fv}
The set of kernel edges: {EK}.

Output: The yet-to-be-traced lines adjacent to v: Qv
1 begin
2 Qv := ∅
3 foreach Fi, Fj ∈ {Fv} do
4 li, j := Fi∩Fj

// ensure li, j is not revisited
5 if li, j is not a line or li, j ∈Qv or ∃e ∈ EK on li, j then
6 continue
7 end
8 FBASE := Fi , FSIDE := Fj , FBACK := null

// define test points p1, p2 on li, j
9 F := The plane with the following properties:

li, j ⊥ F and v is INTER F
10 p1 := A point p ∈ li, j such that p is ABOVE F
11 p2 := A point p ∈ li, j such that p is BELOW F
12 p1.sign := true, p2.sign := true

// determine p1.sign, p2.sign and FBACK
13 foreach ptest ∈ {p1, p2} do
14 foreach Fk ∈ {Fv} do
15 if ptest is BELOW Fk then
16 ptest .sign←− false
17 FBACK ←− Fk
18 break
19 end
20 end
21 end

// decide on li, j to trace
22 if p1.sign ⊕ p2.sign then
23 li, j.planes←− FBASE ,FSIDE ,FBACK
24 li, j.vertex←− v
25 Push li, j into Qv

26 end
27 end
28 return Qv

29 end

Lemma 4.3 The proposed method accurately computes the kernel.

Proof The output mesh consists of vertices and the edges connect-
ing them, all of which are verified to belong to the kernel via predi-
cate checks. Thus, the produced shape is a part of the kernel. More-
over, due to the connectedness of the kernel of a star-shape, the
resulting mesh is guaranteed to include all the boundary vertices

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

M. Asiler & Y. Sahillioğlu / KerGen: A Kernel Computation Algorithm for 3D Polygon Meshes 7 of 13

F0

F1

F2

F3

F4

l1,2

l1,3
l1,4

v

l0,4

(a) Planes �ntersect�ng along a l�ne (b) Planes co�nc�d�ng at a s�ngle po�nt

F0

F1

F4

F3

F2

l1,4
l1,3

l1,2
v

l3,4
l2,3

l0,2

Figure 5: In the scenarios where the vertex v has more than three generator planes, gray arrows represent incoming traversal at v, while
red and green arrows indicate candidate next lines to follow. In both examples, the lines indicated by green arrows are the correct lines to
trace, while those indicated by red arrows are not. To illustrate FBACK determination, in both scenarios, F0 can chosen for line l1,4, while F1
can be selected for lines l0,4 (a) and l3,4, l2,3, and l0,2 (b).

and edges of the kernel. This can be summarized as follows: The
algorithm begins with a kernel vertex and iteratively identifies the
remaining kernel vertices and edges by traversing along the ker-
nel’s boundary lines. At each vertex, the algorithm identifies all the
kernel edges adjacent to it. Subsequently, each edge is traversed
exactly once until reaching the vertex at the opposite end, thus en-
suring prevention of infinite loops over previously traversed edges.
Therefore, the resulting mesh accurately captures the geometry of
the kernel itself.

Finally, Figure 6 illustrates the formation of the kernel on Star
and Ball models with the screenshots taken at some intermediate
stages.

4.3. Complexity Analysis

The algorithm starts with selection of an initial kernel vertex uti-
lizing Berg et al.’s O(N f) expected time algorithm where N f is the
number of faces on the input mesh. Next, the algorithm proceeds
with LINETRACKING module in which we traverse on each line
containing a kernel edge (Algorithm 1). To identify the lines pass-
ing through a kernel vertex v and assign appropriate labels to its
generator planes, we call IDENTIFYLINES module (Algorithm 2).
In most cases, v has exactly three generator planes, enabling effi-
cient operations in constant time. However, if v has more than three
generators, we need to check each pair of planes that intersect at
a line for unprocessed edges. This is accomplished by evaluating
the positions of two test points on the line relative to the other gen-
erator planes. Although checking the intersection of each pair of
planes results in quadratic complexity, we observe that this part is
amortized in constant time since the number of generator planes for
v is much smaller than the total number of planes in the input mesh.
Consequently, the practical impact of this operation is negligible.

While tracking on a line, we search for the closest plane to v. As

long as a data structure like a kd-tree is not used to define locations
of the planar sections, this operation requires labeling point posi-
tions with respect to each plane, which is O(N f). Consequently,
the time complexity for tracking a single line is O(N f). Since the
line walking operation is executed exactly once for every edge of
the kernel mesh, the computational complexity of LINETRACKING

module results in O(N f Ke) where Ke is the total number of kernel
edges. As a result, the computational complexity of our KerGen
algorithm is output-sensitive and equal to O(N f Ke).

While it is not feasible to provide an exact formula for the re-
lationship between Ke and N f (or Nv, the number of vertices on
the input mesh) to compare the complexity of KerGen with those
of CGAL (O(N f logN f)) and Polyhedron Kernel (O(N f Nv)), we
can roughly estimate an upper limit using Euler’s formula. This
estimation is based on the assumption that all polygonal faces of
the mesh are subdivided into triangles. Since the kernel of an input
mesh is the intersection of the bounding half-spaces, its boundaries
may consist of at most N f faces, resulting in half as many vertices
and 1.5 times as many edges. Although this imposes an upper limit
that turns into quadratic based on N f for both Polyhedron Kernel
and KerGen, our empirical analysis, which is based on the star-
shapes from the Thingi dataset [SBS22b] and the Princeton dataset
[CGF09], shows that in the majority of input shapes, the value of
Ke is significantly smaller than N f , as evidenced by Table 1 and
Figure 8. This characteristic of Ke allows for efficient performance
of KerGen.

5. Experimental Results

In this section, we conduct qualitative and quantitative evaluations
of the proposed method to comprehensively demonstrate its ef-
fectiveness. We implement and experiment on a computer with a
2.20GHz i7 CPU and 16GB memory. We also provide the source

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

8 of 13 M. Asiler & Y. Sahillioğlu / KerGen: A Kernel Computation Algorithm for 3D Polygon Meshes

Star model

Ball model

(a) (b) (c) (d) (e) (f)

Figure 6: (Top) Formation of the kernel of the Star model. The figure shows the snapshots taken during the construction of the kernel at the
12th (a), 30th (b), 60th (c), 85th (d), 115th (e) and 165th (f) edge. (Bottom) Similar formation is shown for the Ball model where little cavities
over the surface affects the kernel drastically. Final kernels of these models can also be seen in Figure 1.

code in C++ at https://github.com/merveasiler/
Geometric-Kernel-Generation, along with a supplemen-
tary video for further qualitative assessment.

We compare the running time performance of KerGen with both
CGAL [FP09] and Polyhedron Kernel [SBS22a]. In order to com-
pute kernels, CGAL uses the half-space intersection functionality
that is based on the algebraic approach given in [PM79]. Using the
fact that convex hull and half-space intersection problems are duals
of each other, it solves the inequality system constructed from the
input mesh boundaries by computing the convex hull of the sets ob-
tained through dual transformations. On the other hand, Polyhedron
Kernel uses a geometric subtractive approach which produces the
kernel after clipping an initial candidate box with each bounding
plane one-by-one.

In performance comparisons of all three algorithms, the
results demonstrated correspond to equivalently config-
ured implementations. For CGAL’s algorithm, its halfs-
pace_intersection_with_constructions() function
is invoked with half-spaces defined by explicit inequalities using
CGAL::Simple_cartesian<double>, contributing to its
efficient performance. Similarly, for both Polyhedron Kernel and
KerGen, which utilize the same algorithmic tools of plane inter-
sections and point identifications, a comparable implementation to
CGAL’s is employed, utilizing inexact constructions with limited
precision and CinoLib’s inexact predicates [Liv19]. However, we
further discuss the performance and accuracy variations when
employing other exact or implicit constructions along with exact
predicates in Section 6.2.

We evaluate the algorithms using the Princeton [CGF09] and
Thingi [SBS22b] datasets. The latter is a subset of the Thingi10K

[ZJ16] dataset, filtered to include only one-connected closed man-
ifold input meshes with both empty and non-empty finite kernels.
We conduct experiments on three types of data: star-shapes, non-
star shapes, and remeshed star-shapes. The timing results represent
the average of ten successive runs, ensuring statistical reliability.
Our experiments clearly demonstrate that KerGen yields accurate
results and outperforms both CGAL and Polyhedron Kernel across
the Princeton and Thingi datasets.

5.1. Comparison Over Star-Shaped Meshes

As star-shaped data, we use the so-called Acorn (ThingiID:
815480), Ball (ThingiID: 58238), Bot Eye (ThingiID: 37276), But-
ton (ThingiID: 1329185), Cross (ThingiID: 313882), Diamond
(ThingiID: 313917), Flex (ThingiID: 827640), Muffin (ThingiID:
101636), Part (ThingiID: 472063), Plus (ThingiID: 1120761), Rt-
4 Arm (ThingiID: 39353), Star (ThingiID: 313883) and Super El-
lipse (ThingiID: 40172) from Thingi dataset and Crossing Cubes
(PrincetonID: 325), Cube on Cylinder (PrincetonID: 326), Cylin-
der Trio (PrincetonID: 337) and Wringer (PrincetonID: 350) from
Princeton dataset. The visuals of the kernels computed by KerGen
is given in Figure 1. The blue volume inside the meshes represent
their kernels. Also, the execution times of all algorithms are given
in Table 1.

For the majority of the input star-shaped meshes listed in Table 1,
KerGen exhibits significantly faster kernel computation compared
to CGAL and Polyhedron Kernel. However, in the cases of the
Liver, Acorn, Ball, Muffin, and Star meshes, KerGen falls slightly
behind the other algorithms in terms of timing. This discrepancy
can be attributed to the presence of numerous edges on the rounded
boundary of the kernels for meshes like Acorn, Ball, and Muffin, as
well as diverse mesh surfaces on the rounded boundary of the in-

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://github.com/merveasiler/Geometric-Kernel-Generation
https://github.com/merveasiler/Geometric-Kernel-Generation

M. Asiler & Y. Sahillioğlu / KerGen: A Kernel Computation Algorithm for 3D Polygon Meshes 9 of 13

Table 1: Execution times (ms) of CGAL, Polyhedron Kernel and KerGen algorithms for star-shaped meshes. The last two rows present the
average values for the Thingi and Princeton datasets, where the number of star-shaped objects is provided instead of the number of faces.

Input # Mesh faces # Kernel edges CGAL Poly. Ker. KerGen
Crossing Cubes 29994 72 836 668 294

Cube on Cylinder 29986 108 802 1128 503
Cylinder Trio 23062 156 985 1116 94

Wringer 17514 42 405 141 52
Liver 112 106 10 2 5
Rock 916 24 32 10 3
Skull 2110 42 47 15 7
Acorn 8224 1601 370 337743 656
Ball 1316 714 55 766 62

Bot Eye 902 177 37 444 21
Button 2450 258 48 269 42
Cross 7824 153 1974 10814 87

Diamond 14080 869 2889 11289 255
Flex 1664 80 260 28 7

Muffin 17940 1464 784 151049 952
Part 10760 1038 6329 14196 1369
Plus 892 18 86 6 3

Rt-4 Arm 1306 526 72 239 54
Star 19262 165 4112 893 1021

Super Ellipse 576 168 16 28 8
Princeton (AVG) 12 790 1159 164

Thingi (AVG) 320 214 5132 79

put meshes themselves. In such cases, CGAL may outperform both
KerGen and Polyhedron Kernel due to its computational efficiency,
as it is less dependent on the shape of the input mesh or its ker-
nel compared to geometric methods. Conversely, Polyhedron Ker-
nel shows higher performance for Liver and Star meshes, thanks to
its efficient handling of small-sized meshes and meshes with many
co-planar bounding faces, respectively. Aside from these specific
cases, KerGen demonstrates higher efficiency for the remaining
sample star-shapes, even those with a high number of mesh faces,
due to its unique additive progress that avoids unnecessary compu-
tations.

Table 1 also reveals that, for half of the inputs, Polyhedron Ker-
nel outperforms CGAL, while the reverse is true for the other half.
The average timings for both datasets indicate that KerGen com-
putes kernels approximately 5 times faster than CGAL and 7 times
faster than Polyhedron Kernel for the Princeton dataset, and nearly
3 and 65 times faster, respectively, for the Thingi dataset.

Additionally, Figure 7 illustrates the timings of all algorithms
across the entire Thingi and Princeton datasets, clearly showcasing
KerGen’s superior computational efficiency for input meshes of all
sizes.

In terms of accuracy, we have not observed a notable differ-
ence between the computed kernels and the results obtained by
exact computations. All three algorithms consistently achieved ac-
curate kernels, with volumetric discrepancies averaging around 1e-
5% and similar Hausdorff distance measurements compared to ex-
act outputs. Further details on numerical precision are provided in
Section 6.2.

In conclusion, the performance of kernel computation algorithms
is significantly affected by the geometry of the input mesh and out-
put kernel, as well as the number of bounding planes. Polyhedron
Kernel exhibits an advantage for small-sized meshes and large-
sized meshes with many co-planar faces, while CGAL is preferable
for meshes whose kernel features a rounded shape. However, Ker-
Gen generally outperforms both algorithms, particularly for input
meshes with small-sized kernels as a result of its efficient output-
sensitive structure.

5.2. Comparison Over Non-Star-Shaped Meshes

We also provide performance comparisons using shapes with
empty kernels, as identifying non-star-shaped input is crucial for
efficient star decomposition processes. Thanks to our efficient ap-
proach, our additive algorithm, initiated with a kernel point, im-
mediately determines non-star-shaped input at the first stage. We
utilize Berg et al.’s linear programming solution [DVOS97] for this
stage, which runs instantly. In contrast, competitor algorithms like
CGAL and Polyhedron Kernel, which rely on algebraic transforma-
tions and carving-based subtractions, respectively, reach this deter-
mination at a later stage. To provide further insights, we present the
average timings obtained across the Thingi and Princeton datasets
in Table 2. In the Thingi dataset, consisting of 1482 non-star shapes,
the average execution time of the initial point finding algorithm
is 1e−5 milliseconds, while for the 368 non-star shapes in the
Princeton dataset, it is 4e−4 milliseconds.

In contrast, both CGAL and Polyhedron Kernel algorithms em-
ploy their standard intersection computation methods until encoun-
tering an empty set for non-star shapes. As indicated in Sorgente et

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

10 of 13 M. Asiler & Y. Sahillioğlu / KerGen: A Kernel Computation Algorithm for 3D Polygon Meshes

CGAL
Poly. Ker.
KerGen

103 104 105

CGAL
Poly. Ker.
KerGen

104

103

102

1

10 2 103 104

T
�m

e
(m

s)

T
�m

e
(m

s)

104

103

102

1

Faces # Faces

Th�ng� Pr�nceton

10

Figure 7: The statistics for the star-shaped meshes from the Thingi and Princeton datasets. The results clearly demonstrate KerGen’s state-
of-the-art performance.

al.’s study [SBS22a], the Polyhedron Kernel algorithm outperforms
CGAL for all non-star models. According to our experiments, Poly-
hedron Kernel detects empty kernels in an average time of 402
milliseconds and 626 milliseconds for the Thingi and Princeton
datasets, respectively. In comparison, CGAL’s detecting time aver-
ages 540 milliseconds for the Thingi dataset and 1071 milliseconds
for the Princeton dataset.

Table 2: The average execution times (ms) for non-star shapes.

Dataset # Shapes CGAL Poly. Ker. KerGen
Thingi 1482 540 402 1e−5

Princeton 368 1071 626 4e−4

5.3. Performance Analysis Over Remeshed Star-Shaped
Meshes

We finally investigate the sensitivity of KerGen to variations in
polygons and resolutions using remeshed models. We selected the
Spiral (ThingiID: 60246) and Vase (ThingiID: 85580) models from
the Thingi dataset, as they are commonly used for similar analyses
[SBS22a]. Each model has six remeshed versions, with each sub-
sequent version containing four times more faces than the previous
one.

To remesh the Spiral model, we divided each mesh face into four
sub-pieces by linking the center of the face to its corners. This ap-
proach maintains the same number of bounding planes despite the
increase in the total face count. Conversely, we utilized the Loop’s
subdivision algorithm to remesh the Vase model, potentially gener-
ating faces lying on entirely different planes.

Figure 8 depicts the kernels computed by KerGen for each
remeshed shape alongside the execution times of all three algo-
rithms. While the output kernel remains unchanged for the Spiral
model across its remeshed versions due to the consistent use of

bounding planes, a slight variation in the output kernel boundary is
observed for the Vase model. However, this difference is minimal
and difficult to perceive visually. Notably, the number of output
kernel edges demonstrates nearly linear growth across the differ-
ent remeshed versions. Our implementation of KerGen accurately
produces the kernels of the refined versions of both models without
any degeneracy.

The execution time for kernel computation gradually increases
for both models as the number of faces grows, which is consis-
tent with our complexity analysis in Section 4.3. The charts clearly
demonstrate the computational superiority of KerGen over both
CGAL and Polyhedron Kernel. In the case of the Spiral model,
KerGen proves to be 2 to 30 times faster than CGAL across vary-
ing resolutions of remeshing, with a relatively consistent ratio com-
pared to Polyhedron Kernel, which ranges from 3 to 5. Conversely,
for the Vase model, KerGen outperforms CGAL by a factor of 5 to
20, with more pronounced ratios compared to Polyhedron Kernel,
ranging from 4 to 80 as the resolution of the remeshing increases.

6. Discussion

6.1. Evaluation

Both the Polyhedron Kernel and KerGen algorithms approach the
problem from a geometric perspective, utilizing plane-plane and
line-plane intersections, and point classifications in relation to
planes. However, they differ in their fundamental strategies for
extracting the kernel: Polyhedron Kernel adopts a subtractive ap-
proach, initiating from the axis-aligned bounding box of the shape
and progressively eliminating its non-kernel portions by sequen-
tially filtering each half-space requirement. Conversely, KerGen
employs an additive method, beginning with an initial kernel point
and iteratively determining the kernel boundaries by following ad-
jacency relationships. Consequently, the resulting object consis-
tently resides within the kernel throughout the process, whereas our

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

M. Asiler & Y. Sahillioğlu / KerGen: A Kernel Computation Algorithm for 3D Polygon Meshes 11 of 13

competitor may include non-kernel components until completion.
This brings in KerGen a remarkable advantage over Polyhedron
Kernel, particularly in utilizing partial kernel data from specific re-
gions to address other geometry processing challenges, as elabo-
rated in Section 7.

On the other hand, CGAL adopts an algebraic approach involv-
ing operations and constructions interpreted in 4D. It converts the
half-spaces defined by homogeneous coordinates into their corre-
sponding dual points. Subsequently, it computes the convex hulls
of the point sets, performing linear transformations in the inter-
mediate steps, and projects the outcome back from dual space
to the original space. While CGAL’s computational complexity
(O(N f logN f)) is lower than that of geometric approaches (which
tend to be quadratic), its solution is insensitive to variations in in-
put and output mesh geometries. Consequently, it does not allow
for the possibility of truncating its execution, which would other-
wise reduce its operational cost. Empirical studies suggest that ge-

CGAL
Poly. Ker.
KerGen

T
�m

e
(m

s)

106

104

102

1
102 104 106

CGAL
Poly. Ker.
KerGen

T
�m

e
(m

s)

104

102

1
102 104 106

Faces

Sp�ral

Vase

Faces

Figure 8: The kernels computed by our KerGen algorithm on six
different remeshed versions of the Spiral and Vase models. Addi-
tionally, timings are plotted, revealing linear growth.

ometric methodologies may outperform the algebraic approach in
various practical scenarios. In essence, the efficiency of operations
in KerGen, particularly concerning only the kernel boundary while
excluding non-kernel parts, proves more performance-effective. In-
tuitively, when the number of edges on the kernel boundary are
expected to be minimal, KerGen demonstrates remarkable compu-
tational efficiency.

6.2. Numerical Precision

The precision adjustment of outputs across all three algorithms can
be facilitated through various computational tools. To ensure fair
comparisons, we have evaluated the timing performance of each
algorithm under identical settings, as detailed in Table 1, utilizing
implementations employing inexact predicates with explicit inex-
act constructions. While this methodology enables us to achieve
efficient results in terms of both execution times and output ac-
curacies, we also present a concise analysis of outcomes obtained
through alternative configurations.

In our quantitative accuracy assessment, we conducted a bench-
mark comparison against results derived from CGAL’s Ex-
act_predicates_exact_constructions option which
exhibited an average slowdown of approximately 2.4 times. This
involved evaluating volumetric discrepancies and Hausdorff dis-
tances between the computed kernels and their exact forms for
each input mesh in the Thingi and Princeton datasets. Across these
datasets, all three algorithms consistently achieved accurate ker-
nels, with volumetric discrepancies averaging around 1e-5% and
similar Hausdorff distance measurements. Our analysis included
meshes featuring numerous co-planar and nearly co-planar faces
such as Crossing Cubes, Cube on Cylinder, Wringer, Acorn, Di-
amond, Muffin, and Star, revealing outputs characterized by visu-
ally imperceptible deviations. In many instances, metric values ap-
proached zero, indicating a high level of accuracy.

Furthermore, CGAL offers a half-space intersection function-
ality without explicit constructions, resulting in greater reliability
compared to inexact constructions. Additionally, it achieves shorter
computation durations than exact computations. Our investigation
revealed that this functionality resulted in timings nearly 1.8 times
longer on average compared to those detailed in Table 1, with min-
imal error rates. A similar strategy could be explored for geometric
approaches through the utilization of indirect predicates introduced
by Attene [Att20], promising robustness with a modest increase in
execution times.

It is important to note that while KerGen using inexact configu-
rations produced high-accuracy kernels, it may not always gener-
ate a convex watertight 2-manifold output mesh converging to the
kernel itself. Inexact predicate checks and plane intersections can
lead to incorrect point classifications, plane labeling, and false line
generations and tracings, resulting in gaps, non-manifold edges, or
divergences. The first issue could be mitigated by computing the
convex hull of the identified kernel points to extract the final shape
of the output kernel, while the second could be limited by restrict-
ing the computation within the input mesh boundaries. However,
incorrect kernels may still occur in both applications. Similar erro-
neous kernels may also be observed in other existing methods due
to inexactness. A straightforward solution to prevent these issues

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

12 of 13 M. Asiler & Y. Sahillioğlu / KerGen: A Kernel Computation Algorithm for 3D Polygon Meshes

is using exact computations, albeit with an appreciable increase in
execution time. Alternatively, indirect predicates can be used by re-
placing current data structures with indirect ones that define kernel
vertices and lines over the generator planes.

In conclusion, our findings highlight the notable quality of our
approach, characterized by high accuracies achieved within short
timeframes, outperforming both CGAL and Polyhedron Kernel.
However, we also acknowledge that its implementation using in-
exact configurations with explicit constructions may compromise
robustness, although this concern could potentially be mitigated by
employing indirect predicates with a reasonable trade-off in com-
putational speed. We argue that the potential performance varia-
tions do not justify the significant gap in other application advan-
tages of KerGen, such as its additive process, which allows for par-
tial kernels to be generated at any time, and its dynamic feature
extraction capabilities on the kernel’s geometry.

6.3. Limitations

KerGen assumes that each edge in the input mesh is shared by ex-
actly two polygons and that the shape is oriented, thereby exclud-
ing non-manifold shapes. It relies on well-defined inside/outside
concepts, which are satisfied by unique regions or volumes of
the mesh. Consequently, KerGen may encounter failure with in-
puts lacking clear inside/outside definitions, such as non-manifold
meshes. However, non-star meshes with non-zero genus or discon-
nected components pose no issue for KerGen, as it does not proceed
after determining the non-existence of a single kernel point in such
cases. For manifolds with boundaries, KerGen can still be applied
by utilizing bounding planes aligned with the boundary edges, per-
pendicular to the shape along the edge, instead of employing alge-
braic definitions of those edges.

7. Conclusions and Future Works

In this paper, we propose a novel and fast solution named Ker-
Gen for computing kernels of 3D shapes represented as polygon
meshes. By relying solely on plane-plane and line-plane intersec-
tions, as well as point identifications based on their positions with
respect to planes, we have successfully computed the kernel of a
shape. While the computation of kernels has been extensively stud-
ied in 2D, it is still in its infancy when it comes to the 3D domain.
There are only two existing methods that can find 3D kernels, and
we have shown clear advantages over both of them. Specifically, we
provide an additive formulation enabling significantly faster execu-
tion times while producing very accurate kernels.

We believe that KerGen has significant potential in various com-
puter graphics applications such as remeshing, star decomposition,
shape guarding, mesh quality measurement, and both spherical and
planar parametrization, which may benefit from an explicit ker-
nel representation (Section 1). In the remainder of this section, we
further expand upon the application context of geometric kernels,
leveraging the properties of our KerGen algorithm as a future tool.

Parallelization. Our current implementation relies on a serial
mesh data structure, making it single-threaded. However, due to
the capability of our KerGen algorithm to initiate the process with
a single kernel point in any direction, parallelization could be eas-
ily achieved by initiating multiple processes with extreme points

in different directions safely. To enhance efficiency and prevent re-
peated edge traversals by different threads, a data structure like a
kd-tree could be utilized to partition the volume enclosed by the in-
put mesh. This would allow for the shared processing of explored
kernel vertices among threads based on their locations, thereby
managing the traversal of adjacent kernel edges more effectively.
Idle threads responsible for non-kernel locations could be seam-
lessly reassigned to other potential kernel locations.

Robustness. As mentioned in Section 6.2, KerGen’s current con-
figuration relies on inexact computations, which may pose concerns
regarding robustness. As a potential solution, similar to the appli-
cations presented in [CLSA20] and [CPAL22], indirect predicates
[Att20] could be employed for operations dependent on line gen-
erating intersections. Although those predicates support one level
of indirection, the kernel line and vertex constructions employed
in our method KerGen can be defined solely based on the gen-
erator planes, whose identifications are not affected by cascading
computations. We believe that with this approach, KerGen offers
high-performance results while preserving robustness.

Star-shape Decomposition. 3D art gallery problem could be ad-
dressed by decomposing the object into star-pieces [AT81; YL11;
YLL13]. Unlike previous subtractive methods, our additive ap-
proach in KerGen expands the kernel elements one by one, enabling
us to initiate kernel generation for a connected subset of the shape
and halt the generation at any stage that overlaps with the kernel of
a neighboring subset. Furthermore, akin to the concept presented
in [KYD*18], this approach facilitates the remeshing of the shape,
approximating it to a form that is closer to being star-shaped. As
a result, it yields a more suitable model for spherical parametriza-
tion, which is advantageous for achieving a smoother, interpolating
model, as elaborated in [SGU17].

Robot Motion Planning. For robot motion planning problems,
specific connected regions which are desired to visibly cover a cer-
tain domain can be defined as kernels, allowing the current vis-
ibility to be re-defined while accommodating the predefined ker-
nel [GS20; MB23]. Thanks to the incremental structure of KerGen,
kernel-aware shapes can be dynamically generated by tracing the
boundaries of the region intended to be the kernel. This approach
enhances flexibility in designing area of motion for robots based on
their standing points.

Acknowledgments

This work was supported by TUBITAK under the project EEEAG-
119E572.

References
[AS24] ASILER, MERVE and SAHILLIOĞLU, YUSUF. “3D geometric ker-

nel computation in polygon mesh structures”. Computers & Graphics
(2024), 103951 2.

[AT81] AVIS, DAVID and TOUSSAINT, GODFRIED T. “An efficient algo-
rithm for decomposing a polygon into star-shaped polygons”. Pattern
Recognition 13.6 (1981), 395–398 2, 12.

[Att20] ATTENE, MARCO. “Indirect predicates for geometric construc-
tions”. Computer-Aided Design 126 (2020), 102856 11, 12.

[BBC*13] BEIRÃO DA VEIGA, L, BREZZI, FRANCO, CANGIANI, AN-
DREA, et al. “Basic principles of virtual element methods”. Mathemati-
cal Models and Methods in Applied Sciences 23.01 (2013), 199–214 2,
3.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

M. Asiler & Y. Sahillioğlu / KerGen: A Kernel Computation Algorithm for 3D Polygon Meshes 13 of 13

[CGF09] CHEN, XIAOBAI, GOLOVINSKIY, ALEKSEY, and
FUNKHOUSER, THOMAS. “A Benchmark for 3D Mesh Segmen-
tation”. ACM Transactions on Graphics 28.3 (Aug. 2009) 7, 8.

[CHJ08] CHUN, SUNGKUK, HONG, KWANGJIN, and JUNG, KEECHUL.
“3D star skeleton for fast human posture representation”. World Acad.
Sci. Eng. Technol 2 (2008), 2603–2612 2.

[CLSA20] CHERCHI, GIANMARCO, LIVESU, MARCO, SCATENI, RIC-
CARDO, and ATTENE, MARCO. “Fast and robust mesh arrangements
using floating-point arithmetic”. ACM Transactions on Graphics (TOG)
39.6 (2020), 1–16 12.

[CPAL22] CHERCHI, GIANMARCO, PELLACINI, FABIO, ATTENE,
MARCO, and LIVESU, MARCO. “Interactive and robust mesh
booleans”. arXiv preprint arXiv:2205.14151 (2022) 12.

[DVOS97] DE BERG, MARK, VAN KREVELD, MARC, OVERMARS,
MARK, and SCHWARZKOPF, OTFRIED. Computational geometry.
1997 2, 3, 5, 9.

[ER97] ETZION, MICHAL and RAPPOPORT, ARI. “On compatible star de-
compositions of simple polygons”. IEEE Transactions on Visualization
and Computer Graphics 3.1 (1997), 87–95 3.

[FKR05] FLOATER, MICHAEL S, KÓS, GÉZA, and REIMERS, MARTIN.
“Mean value coordinates in 3D”. Computer Aided Geometric Design
22.7 (2005), 623–631 2.

[FM84] FOURNIER, ALAIN and MONTUNO, DELFIN Y. “Triangulat-
ing simple polygons and equivalent problems”. ACM Transactions on
Graphics (TOG) 3.2 (1984), 153–174 2.

[FP09] FABRI, ANDREAS and PION, SYLVAIN. “CGAL: The compu-
tational geometry algorithms library”. Proceedings of the 17th ACM
SIGSPATIAL international conference on advances in geographic infor-
mation systems. 2009, 538–539 2, 8.

[GK92] GARDNER, RJ and KALLAY, MICHAEL. “Subdivision Algo-
rithms and the Kernel of a Polyhedron”. Discrete & Computational Ge-
ometry 8.4 (1992), 417–427 2.

[GS20] GEWALI, LAXMI and SUBEDI, BIBEK. Random Generation of Vis-
ibility Aware Polygons. Springer, 2020 2, 12.

[JP17] JACOBSON, ALEC and PANOZZO, DANIELE. “Libigl: Prototyping
geometry processing research in c++”. SIGGRAPH Asia 2017 courses.
ACM New York, NY, USA, 2017, 1–172 2.

[KCP92] KENT, JAMES R, CARLSON, WAYNE E, and PARENT,
RICHARD E. “Shape transformation for polyhedral objects”. ACM SIG-
GRAPH Computer Graphics 26.2 (1992), 47–54 2, 3.

[Kei85] KEIL, J MARK. “Decomposing a polygon into simpler compo-
nents”. SIAM Journal on Computing 14.4 (1985), 799–817 3.

[KYD*18] KHAN, DAWAR, YAN, DONG-MING, DING, FAN, et al. “Sur-
face remeshing with robust user-guided segmentation”. Computational
Visual Media 4 (2018), 113–122 12.

[Liv19] LIVESU, MARCO. “cinolib: a generic programming header only
C++ library for processing polygonal and polyhedral meshes”. Transac-
tions on Computational Science XXXIV (2019), 64–76 3, 8.

[Liv24] LIVESU, MARCO. “Advancing Front Surface Mapping”. Com-
puter Graphics Forum (2024) 2, 3.

[LL86] LEE, D and LIN, ARTHURK. “Computational complexity of art
gallery problems”. IEEE Trans. Info. Theory 32.2 (1986), 276–282 3.

[LP79] LEE, DER-TSAI and PREPARATA, FRANCO P. “An optimal algo-
rithm for finding the kernel of a polygon”. Journal of the ACM (JACM)
26.3 (1979), 415–421 2.

[MB23] MANDAL, SHASHWATA and BHATTACHARYA, SOURABH. “Re-
lay Pursuit for Multirobot Target Tracking on Tile Graphs”. 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE.
2023, 7691–7698 2, 3, 12.

[OSN*20] OOI, ET, SAPUTRA, A, NATARAJAN, S, et al. “A dual scaled
boundary finite element formulation over arbitrary faceted star convex
polyhedra”. Computational Mechanics 66.1 (2020), 27–47 2.

[PCS*22] PIETRONI, NICO, CAMPEN, MARCEL, SHEFFER, ALLA, et al.
“Hex-mesh generation and processing: a survey”. ACM transactions on
graphics 42.2 (2022), 1–44 2, 3.

[PM79] PREPARATA, FRANCO P. and MULLER, DAVID E. “Finding the
intersection of n half-spaces in time O (n log n)”. Theoretical Computer
Science 8.1 (1979), 45–55 2, 3, 8.

[Sac19] SACRISTÁN, VERA. Intersecting Half-Planes and Related Prob-
lems. 2019 2.

[SBMS22] SORGENTE, TOMMASO, BIASOTTI, SILVIA, MANZINI, GI-
ANMARCO, and SPAGNUOLO, MICHELA. “The role of mesh quality
and mesh quality indicators in the virtual element method”. Advances
in Computational Mathematics 48.1 (2022), 3 2, 3.

[SBMS23] SORGENTE, TOMMASO, BIASOTTI, SILVIA, MANZINI, GI-
ANMARCO, and SPAGNUOLO, MICHELA. A Survey of Indicators for
Mesh Quality Assessment. Wiley Online Library, 2023 2, 3.

[SBS22a] SORGENTE, TOMMASO, BIASOTTI, SILVIA, and SPAGNUOLO,
MICHELA. “Polyhedron kernel computation using a geometric ap-
proach”. Computers & Graphics 105 (2022), 94–104 2, 3, 8, 10.

[SBS22b] SORGENTE, TOMMASO, BIASOTTI, SILVIA, and SPAGNUOLO,
MICHELA. Supplemental material for the paper "A Geometric Approach
for Computing the Kernel of a Polyhedron" by T. Sorgente, S. Biasotti
and M. Spagnuolo. — github.com. [Accessed 29-Aug-2022]. 2022 7, 8.

[SDG*19] SCHNEIDER, TESEO, DUMAS, JÉRÉMIE, GAO, XIFENG, et al.
“Poly-spline finite-element method”. ACM Transactions on Graphics
(TOG) 38.3 (2019), 1–16 2, 3.

[Sei91] SEIDEL, RAIMUND. “Small-dimensional linear programming and
convex hulls made easy”. Discrete & Comp. Geom. 6 (1991), 423–434 2.

[SGU17] SCHMITTER, DANIEL, GARCÍA-AMORENA, PABLO, and
UNSER, MICHAEL. “Smooth shapes with spherical topology: Beyond
traditional modeling, efficient deformation, and interaction”. Computa-
tional Visual Media 3 (2017), 199–215 12.

[SH76] SHAMOS, MICHAEL IAN and HOEY, DAN. Geometric intersec-
tion problems. IEEE, 1976 2.

[She97] SHEWCHUK, JONATHAN R. “Adaptive precision floating-point
arithmetic and fast robust geometric predicates”. Discrete & Computa-
tional Geometry 18 (1997), 305–363 2, 3.

[SJG19] STEIN, ODED, JACOBSON, ALEC, and GRINSPUN, EITAN. “In-
teractive design of castable shapes using two-piece rigid molds”. Com-
puters & Graphics 80 (2019), 51–62 3.

[SPO10] SCHVARTZMAN, SARA C, PÉREZ, ÁLVARO G, and OTADUY,
MIGUEL A. “Star-contours for efficient hierarchical self-collision detec-
tion”. ACM SIGGRAPH 2010 papers. 2010, 1–8 2, 3.

[SR95] SHAPIRA, MICHAL and RAPPOPORT, ARI. “Shape blending using
the star-skeleton representation”. IEEE Computer Graphics and Applica-
tions 15.2 (1995), 44–50 2, 3.

[Sub19] SUBEDI, BIBEK. “Generating kernel aware polygons”. PhD the-
sis. University of Nevada, Las Vegas, 2019 2.

[SVB*23] SORGENTE, TOMMASO, VICINI, FABIO, BERRONE, STE-
FANO, et al. “Mesh quality agglomeration algorithm for the virtual
element method applied to discrete fracture networks”. Calcolo 60.2
(2023), 27 2, 3.

[WLH*13] WONG, SAI-KEUNG, LIN, WEN-CHIEH, HUNG, CHUN-
HUNG, et al. “Radial view based culling for continuous self-collision
detection of skeletal models”. ACM Transactions on Graphics (TOG)
32.4 (2013), 1–10 2, 3.

[YL11] YU, WUYI and LI, XIN. “Computing 3d shape guarding and star
decomposition”. Computer Graph. Forum 30.7 (2011), 2087–2096 2, 3,
12.

[YLL13] YU, WUYI, LI, MAOQING, and LI, XIN. “Optimizing pyramid
visibility coverage for autonomous robots in 3D environment”. Int. Conf.
on Computer Science & Education. IEEE. 2013, 1023–1028 2, 3, 12.

[ZJ16] ZHOU, QINGNAN and JACOBSON, ALEC. “Thingi10k: A dataset of
10,000 3d-printing models”. arXiv preprint arXiv:1605.04797 (2016) 8.

© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

