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Figure 1: Surface meshes with initial (black) and smoothed (blue) surface curves generated by our algorithm.

Abstract
The smoothing of surface curves is an essential tool in mesh processing, important to applications that require segmenting and
cutting surfaces such as surgical planning. Surface curves are typically designed by professionals to match certain surface
features. For this reason, the smoothed curves should be close to the original and easily adjustable by the user in interactive tools.
Previous methods achieve this desired behavior, e.g., by utilizing energy-minimizing splines or generalizations of Bézier splines,
which require a significant number of control points and may not provide interactive frame rates or numerical stability. This
paper presents a new algorithm for robust smoothing of discrete surface curves on triangular surface meshes. By using a scalar
penalty potential as the fourth coordinate, the given surface mesh is embedded into the 4D Euclidean space. Our method is
based on finding geodesics in this lifted surface, which are then projected back onto the original 3D surface. The benefits of this
approach include guaranteed convergence and good approximation of the initial curve. We propose a family of penalty potentials
with one single parameter for adjusting the trade-off between smoothness and similarity. The implementation of our method is
straightforward as we rely on existing methods for computing geodesics and penalty fields. We evaluate our implementation and
confirm its robustness and efficiency.

CCS Concepts
• Computing methodologies → Mesh geometry models;

1. Introduction

Curves on surface meshes are a basic building block for mesh pro-
cessing and segmentation (see, e.g., JI et al. [JLCW06], KAPLAN-
SKY and TAL [KT09], and LIVESU [Liv18]). Medical applications,
such as the resection of liver tumors [AR20], osteotomy planning
[ZGSZ03], or machine learning-assisted segmentation of CT data
[PYK*20], are particular use cases. Other applications include illus-
trative visualization of medical data sets [LVPI18] or engineering
[BLVD11].

In these application scenarios, surface curves are chosen manu-
ally or automatically. These initial curves typically show noise, e.g.,
small oscillations, which may originate from the finite precision of
the underlying surface mesh and the specific curve painting strate-
gies [Liv18]. These artifacts are not only perceivable by the human
eye, but they are generally not negligible for further processing like
segmentation and/or surface cutting [LGRP14]. Consequently, a
smoothing process must be applied to suppress noise, i.e., to reduce
the total (geodesic) curvature. This process has often competing ob-
jectives: the result is expected to be smooth, however, the smoothed
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curve should not deviate too much from the initial curve. The second
requirement is crucial in many cases: For medical surface-cutting
applications, for example, the shape of the initial curve is defined by
domain experts, such as physicians or bio-engineers, and most likely
indicates relevant anatomical landmarks or surface regions. There-
fore, the smoothing must preserve a certain degree of similarity to
its original so that no essential information is lost.

At first glance, smoothing surface curves may appear as a simple
problem with straightforward solutions. However, the restriction
of the curve to the curved surface makes this a difficult problem,
which is often underestimated. This is even more true, as many
applications require interactive control and robust results even for
poor surface tessellations. Previous solutions to this problem include
the use of energy-minimizing splines [HP04], generalizations of
Bézier curves in Euclidean space to curves on surfaces embedded
in 3D [MCV07; MNPP23], the iterative reduction of the geodesic
curvature [LGRP14], or the application of Laplacian smoothing to
the heat gradient [Liv18]. All of these methods show advantages and
disadvantages. Numerically robust smoothing may be difficult to
achieve at interactive frame rates due to computationally expensive
operations, or it requires a great deal of user interaction to achieve a
desired result [LGRP14].

In this paper, we present a novel algorithm for efficient and ro-
bust smoothing of simple, discrete surface curves that are given on
triangular surface meshes. In the absence of a precise definition of
smoothing in the literature [LGRP14; Liv18], we adopt the under-
standing that smoothing is a denoising process: Given an imperfect,
noisy surface curve, we find a smoother, “straighter” curve in the
same manifold that is close to the initial curve. Thus, the smoothing
of curves is seen as reducing the local geodesic curvature of the
initially given curve similar to LAWONN et al. [LGRP14]. In this
sense, geodesics are the smoothest possible curves since they show
zero geodesic curvature. Although possible, our method does not
aim at the design of fair surface curves in the sense of finding the
curve with the simplest shape subject to boundary conditions.

Our approach lifts the original surface and the surface curve into
a higher dimensional space and then constructs a potential that
penalizes the deviation from the initially given curve. The lifted
surface is a topological 2-manifold embedded in the 4D Euclidean
space. The lifted curve, now embedded in the lifted surface, is then
straightened to become a (locally shortest) geodesic in the lifted
surface. The purpose of lifting is to change the metric, specifically
the measurement of the arc length, to take into account the proximity
to the original curve. The generated geodesic belongs to the same
isotopy class as the initial curve and is a smooth surface curve by
construction: straight, with zero geodesic curvature in a smooth
setting or locally shortest on discrete surfaces. The projection of
this geodesic from the 4D surface back onto the 3D surface yields
a smooth curve that is close to the initial curve. Our method is
conceptually simple but offers significant advantages. To summarize,
the main contributions are

• Concise non-iterative algorithm with guaranteed convergence.
• Single-parameter to adjust closeness versus smoothness.
• Straightforward implementation with interactive performance.

2. Related Work

Our method depends on the tracing of discrete geodesics and the con-
struction of (geodesic) distance fields on surface meshes. The tracing
of geodesics manifests either by shortening an open curve with fixed
start and end points or by shrinking a closed loop. Most existing lo-
cal methods for tracing geodesics employ an optimization approach
and are capable of handling both of these cases [CLPQ20]. For a
detailed overview, we refer to the surveys BOSE et al. [BMSW11],
PATANÉ [Pat16], and CRANE et al. [CLPQ20]. Roughly speaking,
algorithms for computing geodesic distances or shortest geodesic
paths on meshes either establish local isometric parameterizations
for each path by locally “flattening” sequences of triangles, or they
rely on solving a partial differential equation like the heat or wave
equation.

The most intuitive approach to the design of discrete surface
curves by smoothing a given input curve probably consists of us-
ing subdivision techniques on polygons. This was first proposed
by MORERA et al. [MVC08]. The resulting curves, however, may
include line segments that are not included in the surface and, thus,
may violate the manifold constraint [JSW*19]. Furthermore, the
algorithm does not offer any parameters to control the trade-off
between similarity and smoothness. Besides, the generation of a
smooth curve from “fixed” discrete control points is not a smoothing
technique in the sense of denoising.

In geometry processing, smooth (planar or 3D) curves are often
represented as splines, i.e., piecewise smooth curves. This concept
has been extended to surface curves. HA et al. [HPY21] use the
conventional Hermite interpolation method by exchanging primitive
operations between points and vectors by geodetic queries such that
generated curves always fulfill the manifold constraint. HOFER and
POTTMANN [HP04] and POTTMANN and HOFER [PH05] determine
splines in general manifolds by modeling the design of smooth
curves as an optimization problem. They use a variational approach
and obtain smooth curves as minimizers of a quadratic energy. Their
approaches are not only applicable to curves on surface meshes but
can be used for a much broader variety of cases, including, e.g.,
the design of rigid body motions. Alas, the method’s generality
leads to computationally expensive operations and compromises its
performance [JSW*19]. JIN et al. [JSW*19] address this issue by
using a shell space approach, resulting in improved performance and
numerically robust results. Still, the major drawback of variational
methods is that enforcing closeness to the initial curve involves the
manual handling of many control points for the user [LGRP14]. In
general, these approaches are not expected to provide interactive
frame rates for high-resolution surface meshes [MNPP23].

An alternative to energy-minimizing surface splines is the gener-
alization of Bézier curves or piecewise Bézier curves, i.e., splines,
to surface curves as done by MORERA et al. [MCV07], XU et al.
[XJZ*23], and MANCINELLI et al. [MNPP23]. The idea is to lift 2D
Bézier curves in Euclidean space to geodesic Bézier splines located
in the surface with the initial curve samples used as control points.
By introducing a scalar potential inside a shell space around the
surface mesh, even feature-aware curves can be designed [XJZ*23].
Approaches based on Bézier curves seem to be superior to other
spline-based methods as they offer real-time performance even for
high-resolution meshes [MNPP23]. Nevertheless, they have in com-
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mon with variational methods that only the use of many control
points can ensure the closeness of the resulting curves to the orig-
inal. Also, a similar remark as for subdivision curves applies: the
evaluation of a smooth surface curve for given control points is not
a general smoothing technique. In summary, these approaches do
not fit our smoothing scenario of suppressing noise. Their strengths
consist in the design of smooth surface curves in particular for vector
graphics on surface meshes [MNPP23].

Another well-known approach uses surface features for automatic
mesh segmentation and cutting (see, e.g., SHAMIR [Sha08] for a
general survey). To classify surface features, LAI et al. [LZH*07]
use a feature-sensitive curve smoothing, which yields smooth bound-
aries for mesh features. JUNG and KIM [JK04] and BISCHOFF et
al. [BWK05] generalize so-called snakes or active contours well-
known from image processing on 2-manifolds to represent curves
on surfaces that “snap” to mesh features starting from an initial
curve. Snakes are closed curves that evolve over time, adapting to
features as they move. The iterative process is driven by minimizing
internal and external forces that are based on curvature, length, and
distance to features. While solving a related problem, feature-based
methods are different to general smoothing, because the main focus
is on matching the given features whereas smoothness acts as a
“regularization” when features are locally absent.

A different approach is presented by LAWONN et al. [LGRP14]:
Their method adapts a Laplacian smoothing where the movement
of the curve’s vertices is restricted to the edges of the surface mesh
and vertices are allowed to split and merge, hence expanding or
shrinking the number of curve segments. A restriction by a distance
envelope ensures that the result remains close to the initial curve.
This construction guarantees restriction to surface curves and the
authors show convergence of the iterative algorithm. Additionally, a
global parameter can be used to adjust the trade-off between simi-
larity and smoothness. However, the number of iterations and the
performance vary significantly with the use cases, and the method
may be too slow for interactive use.

Moreover, LIVESU [Liv18] introduced an elegant relaxation
scheme akin to the heat method [CWW13]. This approach effec-
tively smooths the boundary between two specified components.
By applying Laplacian smoothing to the gradient of the heat field
generated by the initial curve, the resulting curve is represented
by a level set of the smoothed gradient field’s potential. Notably,
the algorithm is not restricted to curves in 2-manifolds but can be
applied for general n-dimensional hyper-surfaces. The algorithm is
primarily employed in the realm of automatic mesh segmentation
and limited to bi-partitions and, consequently, to closed-edge curves
that partition the surface into two distinct subsets and do not self-
intersect. For curves in high-resolution surface meshes, this method
requires several seconds or even minutes and thus lacks interactivity.

The methods of LAWONN et al. [LGRP14] and LIVESU [Liv18]
are closest to our problem scenario. Unfortunately, neither method
provides a rigorous definition of smoothing that would allow for a
quantitative comparison. Instead, they discuss specific applications
to illustrate the concept by example. In our approach, the smoothing
of initially provided discrete surface mesh curves is conceptualized
as as a reduction in local geodesic curvatures while preserving the
manifold constraint. This is similar to LAWONN et al. [LGRP14].

By employing a specific one-parameter family of penalty potentials,
our approach facilitates adjusting the balance between similarity
and smoothness without the need for any manual control point defi-
nition. The construction of these penalty potentials from (geodesic)
distance fields ensures that the smoothing serves as intended feature-
independent regularization near the original curve. Given an efficient
and robust algorithm for the construction of discrete geodesics, our
approach consists of finitely many steps, is guaranteed to compute
a solution, and shows interactive performance for high-resolution
meshes for open and closed curves.

The fundamental approach of our algorithm is to lift the geometry
to a higher dimension, thereby transforming a challenging optimiza-
tion problem with manifold constraints into the more straightforward
problem of tracing geodesics. The general concept of lifting is not
new, in particular, lifting techniques have been successfully applied
in geometry processing: In a series of papers Du et al. [DAZ*20;
DKZ*21; DKZ*22] utilize lifting schemes for constructing guaran-
teed bijective surface parametrizations given nontrivial and noncon-
vex boundary curves.

3. Algorithm

Our algorithm consists of four conceptual stages that can be purely
described in terms of operations on smooth manifolds. The input is
given by a surface S and an initial surface curve γ in S . The output is
denoted by λ, which again is a surface curve in S . Mathematically, S
is a smooth 2D Riemannian submanifold embedded in 3D Euclidean
space. Both, γ and λ, are simple curves in S parameterized by arc-
length. λ is of class C1 and γ is assumed to be sufficiently smooth.
Furthermore, for a scalar function ϕ : S → IR, the lifting operator
χϕ is given as

χϕ : S → IR4 with χϕ(x) := (x,ϕ(x)) .

Using this notation, our algorithm can be summarized as follows.

Algorithm: Geodetic Smoothing

1. Construct a potential ϕ : S → IR
that penalizes larger distances to γ by higher values.

2. Apply χϕ to S and γ to get Sϕ := χϕ(S) and γϕ := χϕ ◦ γ.

3. Determine a (locally shortest) geodesic λϕ in Sϕ

that lies in the isotopy class of γϕ.

4. Find λ such that λϕ = χϕ ◦λ holds.

Figure 2 demonstrates the stages of our method for a planar surface.
In this 2D case, the lifted surface Sϕ can be embedded in the 3D
Euclidean space for illustration. To provide an intuitive explanation,
imagine the potential as a relief of mountains, with the initial curve
representing a river flowing through a valley. The river is located at
the lowest height potential, which is constant, i.e., the river flows
“magically” without gravity. The shape of the mountain relief allows
the river to “cut through”: Over time, the river naturally straightens,
influenced by its current, always following the locally shortest path:
it gets smoothed. Hereby, the mountains serve as obstacles, prevent-
ing the river from becoming a straight line and deviating too much
from its original shape. Thus, the incorporation of a penalty poten-
tial serves as a distance-based constraint, while tracing the locally
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(a) 2D Input (b) Step 1: Penalty Potential (c) Step 2: Lifting to 3D (d) Step 3: Geodesic in 3D (e) Step 4: Projection to 2D

Figure 2: Application of the algorithm to a planar surface. The stages of our algorithm are shown from left to right by using a surface with an
initially jagged surface curve (black). As the surface is planar, the lifted surface can be embedded and visualized in 3D Euclidean space.
The penalty potential is color-coded from blue (low) to red (high). The lifted surface is curved due to the penalty potential, here as height
coordinate. The geodesic and its projection are shown as orange curves.

shortest geodesic functions as the smoothing strategy to relax the
curve and remove noise. It is straightforward to extend this concept
from planar surfaces to curved surfaces in 3D Euclidean space and
thus from planar curves to surface curves: introduce the potential
as a fourth coordinate to the surface position, effectively lifting the
surface into 4D Euclidean space.

In a more formal explanation, the first step of our algorithm
constructs the penalty potential ϕ. This is non-trivial and is discussed
in Section 3.3. For the moment, we assume that ϕ is given and
maps points further away from the initial curve to higher scalar
values. In the second step, the lifting operator χϕ utilizes ϕ as the
fourth coordinate for positions. This way, the surface S and the
initial curve γ are lifted into the 4D Euclidean space. Note that the
lifted surface Sϕ now bends differently in 4D space and exhibits a
modified surface metric compared to its 3D counterpart, similar to
mountains versus plane in the illustrative example. We exploit this
change in the surface metric in step three and determine a geodesic
λϕ in Sϕ and γϕ’s isotopy class, that automatically adjusts itself
to the shape of γϕ, either by shrinking a closed loop or shortening
an open curve with fixed endpoints. The fourth step is trivial: it
only projects λϕ back into 3D by dropping the fourth coordinate.
This yields our result λ. Please note, that this final step does not
preserve the geodesic property, i.e., the smoothed surface curve λ is
in general not a (locally shortest) geodesic curve in S.

3.1. Existence and Uniqueness

Assume that ϕ is a smooth function. Then χϕ is a smooth embedding
as χϕ : S → Sϕ is a homeomorphism with inverse χ

−1
ϕ and its

differential dχϕ(x) is injective for all x ∈ S. Consequently, Sϕ is a
smooth 2D Riemannian submanifold embedded in 4D Euclidean
space. Let Γγ(S) be the set of C1 surface curves in S that are
also part of γ’s isotopy class. In the case of γ being open, their
endpoints additionally are required to coincide with γ’s endpoints.
For the lifted initial curve γϕ, there must exist at least one geodesic
λϕ ∈ Γγϕ

(Sϕ) . In the absence of boundaries, λϕ must be smooth
[AA81]. Using the inverse χ

−1
ϕ as smooth projection, it follows that

λ = χ
−1
ϕ ◦λϕ must be smooth as well. In the more general setting

of manifolds with non-empty boundaries, λϕ and, consequently, λ

are at least of class C1 [AA81; ABB87].

It is generally observed that λϕ and λ are not necessarily unique

as, for instance, two antipodal points connected by γ on the unit disk
could be lifted onto a hemisphere, resulting in an infinite number
of possible geodesics that solve the boundary value problem in the
lifted surface. Nevertheless, geodesic tracing techniques, such as the
FlipOut algorithm, are capable of identifying one of these curves,
even in the presence of other geodesics in the same isotopy class
[CLPQ20]. This is typically achieved by leveraging an iterative op-
timization approach [MVC05; SC20; MNPP23]. Since the initial
guess provided in the form of γϕ is used as the basis for this opti-
mization, the method is more likely to converge to a closer local
minimum.

3.2. Smoothness and Closeness

To demonstrate that the algorithm indeed yields a result representing
a relaxed version of the original, similar in shape, we employ the
common strategy of reformulating its result as a local solution to
an optimization problem. Geodesics in Riemannian manifolds can
be characterized as local minima of an energy functional. With that,
step three of our algorithm can be expressed as a local solution to
the following optimization problem:

argmin
α∈Γγϕ

(Sϕ)
E(α) with E(α) :=

1
2

∫
D(α)

∥α̇(t)∥2 dt . (1)

Here, α̇ denotes the tangent of α and D the domain of its argument.
Furthermore, χϕ : S → Sϕ is a smooth diffeomorphism and, con-
sequently, for every curve α̃ ∈ Γγϕ

(Sϕ) there is a curve α ∈ Γγ(S)
with α̃ = χϕ ◦α. Using this, the optimization problem can be refor-
mulated to describe our whole algorithm:

argmin
α∈Γγ(S)

E(χϕ ◦α) with

E(χϕ ◦α) =
1
2

∫
D(α)

∥α̇(t)∥2 + |⟨∇ϕ◦α(t) | α̇(t)⟩|2 dt .
(2)

The magnitude of ∇ϕ is expected to take higher values for points
that exhibit larger distances to the initial curve. Although traversing
parts of ϕ’s level sets does not result in an energy increase regardless
of the distance to the initial curve, changing level sets generates a
cost at least for open curves. This is because the curve must travel
along the direction of ∇ϕ to reach a different level set.

The situation is different in the case of closed curves, where there
are no fixed endpoints and the same cannot be assumed. It is possible
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to construct pathological cases with geodesics as level sets in which
a local solution to the optimization problem leads to geodesics that
are arbitrarily far away from the original. These cases are, however,
unlikely and structurally unstable as a small perturbation of the
potential resolves the situation. Also, the algorithm employed for
geodesic tracing is a local method. Consequently, it is more likely
to converge to a closer solution even in the presence of pathological
cases.

Based on this discussion, the energy increases for both, open and
closed curves, that are further away from the initial curve. However,
the first term in the integrand still leads to a local shortening and will,
therefore, also reduce geodesic curvatures, although not in a uniform
sense, which fits our understanding of smoothing. As the output
λ of our algorithm also represents a local minimizer to the above
optimization problem with the initial guess γ, this formulation makes
apparent that it will need to locally shorten and reduce traveling at
the same time. Hence, a result from the algorithm must achieve a
balance between smoothness and closeness to the initial curve.

Moreover, this formulation validates the earlier explanation of the
penalty potential as a distance-based constraint and the tracing of
locally shortest geodesics as the smoothing strategy. This indicates
that employing the fourth dimension is not an obligatory prerequi-
site, as we can resort to the optimization problem as an alternative
formulation. Nevertheless, lifting into 4D Euclidean space gives an
alternative and intuitive explanation. And most importantly, lifting
transforms the numerical optimization problem to a significantly
simpler problem: the computation of geodesic paths, for which effi-
cient, robust, and practical implementations exist. In addition, lifting
provides the potential for algorithmic extensions.

3.3. Construction of Penalty Potentials

The construction of the penalty potential poses the primary challenge
in implementing our algorithm, and there are numerous reasonable
choices. Our goal is to present a one-parameter family of potentials,
allowing for the adjustment of the trade-off between smoothness
and similarity to the initial curve. This ensures some flexibility
of the algorithm while maintaining an intuitive user interface. We
note this generic potential function works well for a wide range of
applications but is not tailored to specific scenarios. However, this
can be done easily by adapting our family of potential functions
or designing new ones. In this sense, the following construction
can serve as a template and guide for creating individual penalty
potentials.

The potential ϕ penalizes points further from the initial curve
by mapping them to higher values. According to the optimization
formulation in Section 3.2, this must be accomplished in a manner
that ensures ∥∇ϕ∥ also increases for higher distances. For that, let
dγ : S → [0,∞) be the geodesic distance field that assigns every
point on the surface its minimal geodesic distance to the initial curve.
Unfortunately, dγ is in general not smooth [CWW13], which poses
a challenge to our approach of describing everything in terms of
operations on smooth manifolds. Luckily, a smooth distance field δγ

can be obtained as a by-product by employing the heat method with
larger time steps [CWW13]. However, the use of the heat method is
not mandatory. In cases where it is not used, we recommend using a

convolution with a normalized bump function h ∈ C∞
c (S), similar

to Laplacian smoothing as proposed by LIVESU [Liv18]:

δγ(x) :=
∫
S

h(y)dγ(x−y)dσ(y) , (3)

which is simple and efficient. Alternatively, more advanced methods
can be used. Using general statements from calculus, the result of a
convolution inherits various properties from its arguments. δγ must
be smooth as h is a smooth function. On the other hand, the small
and compact support ensures that δγ only slightly changes in com-
parison to dγ. In practice, the non-smoothness of dγ mostly affects
the computation of derivatives and, consequently, is negligible in
this particular family of potentials. For potentials that rely on the
gradient of the distance field, smoothness is an essential requirement
and should be accomplished by one of the mentioned methods.

The smooth distance field δγ itself is not sufficient as a penalty
potential. The intrinsic nature of a geodesic distance field dictates
that ∥∇δγ∥ ≈ 1 does not increase with higher distance. We fix
this issue by introducing a family of smooth modifier functions
mτ : [0,∞) → [0,∞) that is parameterized by a tolerance value
τ ∈ [0,∞) and simply define ϕ to be the composition of a chosen
modifier function and the smoothed distance.

ϕ := mτ ◦δγ (4)

Our choice for mτ composes two functions f ,g : [0,∞)→ [0,∞):

mτ(x) := g(aτx) g(x) := L · f
( x

L

)
f (x) := x2 (5)

a := 10 L := ∥δγ∥∞ (6)

As these choices may seem arbitrary and ad-hoc, we give the follow-
ing rationale: For the definition of mτ, there exist various options that
accomplish the objective. To narrow options, we consider additional
properties and trade-offs such as simplicity, efficiency, numerical
robustness, and mesh independence.

In this regard, f is one of the simplest functions that can ensure a
decent increase of ∥∇ϕ∥ for larger distances from the initial curve.
Other strictly monotone functions, e.g., such as xn for n > 2 or ex,
are also valid choices but may more quickly lead to numerical failure
for finding geodesics in the lifted surface when distances get too
large. Also, one multiplication is an inexpensive operation.

For τ, the adjustment between smoothness and proximity of the
resulting curve shall lead to similar results across various surface
mesh scales. To achieve this, g incorporates a characteristic length
L that may depend on the surface mesh and the initially given
curve. The idea is to scale the input distance and the resulting
potential value equally. In our test cases, we set L := ∥δγ∥∞, i.e.,
the maximum over all possible values of δγ. This choice yields
uniform outcomes across our range of different surface meshes.
An alternative would be to consider L := L(γ), i.e., the length of
the initial curve. In this case, it can be observed that longer curves
will be affected by stronger smoothing, whereas shorter curves will
stick more closely to their original shape. This can result in a more
desirable behavior for some applications.

The final component of our construction involves the scaling of
the argument of the potential by τ to allow for a more restrictive
or relaxed potential. This again is a particularly simple choice to
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achieve this behavior that also allows for fast computation without
introducing large numerical errors. When τ = 0, the resulting poten-
tial is zero, and the smoothed curve describes a geodesic. As τ is
increased, the curve is constrained to traverse closer to the original.
Additionally, we introduce a normalization constant a to provide
a superior default trade-off when τ = 1. This particular choice is
arbitrary and would most likely need to be changed for a different
characteristic length. We remark that this choice is not crucial for
the construction.

4. Implementation

We represent surfaces as triangle meshes and surface curves as
piecewise linear curves with vertices on surface edges or faces. The
essential steps of our algorithm are the construction of a smoothed
distance field and finding a locally shortest geodesic in the lifted
surface. Both problems have been studied extensively for discrete
geometry representation, and there exist robust and efficient algo-
rithms with publicly available implementations. We build upon prior
work: For our implementation, we chose Geodesics in Heat (The
Heat Method) [CWW13] and FlipOut [SC20]. We emphasize that
this choice is not unique, and alternative methods can be employed
as well (refer to surveys mentioned in Section 2). The only require-
ment for any method is being able to measure (edge) lengths on a
given oriented topological 2-manifold.

For the construction of a smoothed distance field δγ, we use the
implementation of the heat method [CWW13] in Libigl [JP*18].
The use of Libigl does not constrain the choice of data structures
for the surface mesh or the surface mesh curve. In brief, the heat
method proceeds in two steps. First, an initial heat flow is integrated
for a given time step. The source of this flow is given by the curve
from which the distance is measured. Second, the method finds a
scalar field whose gradient approximates the normalized gradient of
the heat flow in a least-squares sense. This leads to solving a sparse
linear system. Since time steps control the amount of diffusion in
the first step, this heat method yields smoothed distance fields as a
side effect when using large time steps. As mentioned in Section 3.3,
for potentials where the distance field’s smoothness is essential,
this eliminates the need for post-processing, e.g., convolution-based
smoothing.

To identify locally shortest geodesics within a given isotopy class,
we use the FlipOut algorithm [SC20] in the implementation pro-
vided by Geometry Central [SC*19]. The implementation relies
on intrinsic triangulations and the signpost data structure [SSC19].
For this reason, we use the surface mesh data structure provided by
Geometry Central to represent triangle meshes. FlipOut expects the
initial surface mesh curve to be a simple vertex curve in the intrinsic
triangulation. This is not a restriction as we can freely add other
points on edges or even inside faces as new intrinsic vertices. In
essence, FlipOut leverages intrinsic edge flips to iteratively shorten
the given curve. The resulting curves are locally shortest geodesics
in the discrete setting and approximate smooth geodesics. The al-
gorithm is efficient, it offers a robust handling of open and closed
curves as well as several edge cases, and termination is guaranteed
as there is no convergence in a continuous sense involved. As a fur-
ther benefit, the algorithm can be configured to prevent the shrinking

of closed loops to single points by specifying a minimal scale of
length reduction.

In our implementation, the initial surface curve γ is determined
by user interaction similar to LAWONN et al. [LGRP14]: The user
adds points on the surface mesh by literally painting a line. Each
pair of neighboring points is then connected by the shortest path on
the surface mesh, resulting in an initial jagged curve. To improve
overall robustness, we filter the initial curve by capping corners:
If two consecutive segments run through one triangle they are re-
placed by the single line segment spanned by the opposite edge.
We remark that the particular origin of the initial curve is not im-
portant to our method. It may be generated differently, e.g., from
(semi-)automatic methods like feature extraction or feature-based
segmentation [LGRP14; Liv18].

The implementation of the heat method in Libigl computes the
average edge-length of the surface mesh, to determine the time step,
and sets up the mass and stiffness matrices [CWW13; JP*18]. This
is a preprocessing step that is independent of the input curve. Op-
tionally, we enlarge the time step by a specific scale to be able to
obtain a smoothed distance field. After that, each vertex of the initial
curve γ is provided as a source to the heat method computation to
determine the smoothed distance δγ as a piecewise linear function
by assigning every vertex a distance value. Subsequently, the char-
acteristic length can be calculated and the modifier function mτ can
be applied directly to the values of all vertices (see Section 3.3). Our
implementation computes the distance field on the whole mesh. For
large meshes, one could alternatively determine a region of interest,
such that all computations are restricted to this subset of the surface,
similar to the distance envelope used by LAWONN et al. [LGRP14].

There is no need for an explicit representation of the lifted surface
mesh Sϕ. Instead, we provide a function to compute edge lengths,
which uses lifted vertex positions, thus changing the surface metric.
For two adjacent vertices p,q ∈S , their lifted edge distance gϕ(p,q)
is given as:

gϕ(p,q) :=
√

∥p−q∥2 + |ϕ(p)−ϕ(q)|2 . (7)

Applying the FlipOut algorithm to this altered edge distance, it au-
tomatically determines the topology of the locally shortest geodesic.
The last step of the algorithm is the projection operation and consists
of gathering all points on edges and vertices and to compute their
actual position by using the original 3D geometry.

In the previous section, we operated on smooth manifolds and,
as with the heat method, we must address the numerical errors
arising from a discrete surface mesh. We neglect approximation
errors originating from the heat method which can be resolved by
adaptive refinement. On the other hand, ϕ is only approximated by
a piecewise linear function. The smoothing process, however, relies
on a smooth change of curvature around the initial curve γ in the
lifted surface Sϕ to ensure that the projected geodesic λ is an actual
smoother version. As ∇ϕ will be constant across each face, a (too)
coarse triangulation must lead to discretization artifacts. Especially
in areas of larger amounts of negative curvatures in the lifted surface
Sϕ, ∇ϕ may fluctuate. This would result in a loss of smoothness for
the projected geodesic λ that manifests in the form of small noise
(see Figure 9).

© 2024 The Authors.
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Table 1: Performance results for various surface mesh models. n0 is the number of vertices of the initial curve. n is the number of vertices of
the resulting curve. tϕ and tλ denote the time need to determine the penalty potential and finding the geodesic, respectively. t = tϕ + tλ is the
overall running time. Figures 1, 3, 4, and 7 illustrate the models and curves corresponding to this table.

Model Faces τ n0 n t [ms] tϕ [ms] tλ [ms]

Fandisk ∼ 14,000 2.0 257 440 12 2 10
Bunny ∼ 15,000 1.0 196 325 13 4 9
Armadillo ∼ 86,000 2.0 555 949 52 7 44
Dragon ∼ 124,000 1.5 548 951 80 27 53
Sappho’s Head ∼ 282,000 2.5 698 1225 189 70 118
Grumpy Pumpkin ∼ 395,000 1.8 1258 2202 362 163 199
Brain ∼ 554,000 1.5 1655 3061 453 171 282
Fox Skull ∼ 700,000 1.5 789 1512 589 227 362
Fairing ∼ 994,000 1.5 2007 3996 1070 450 620

(a) Fandisk (b) Bunny (c) Armadillo (d) Armadillo Zoom Left Shoulder

Figure 3: Models with initial (black) and smoothed (blue) curves. These images correspond to the data shown in table 1.

These artifacts from inappropriate tessellation can be fixed by
an optional post-processing following the constrained Laplacian
smoothing proposed in LAWONN et al. [LGRP14]. After the projec-
tion of the lifted geodesic, the curve is already close to the desired
solution. Thus, the post-process requires only a few iterations of
relaxation and there are no issues with convergence. We relax only
on the mesh edges supporting the curve and don’t apply splitting
and merging of curve vertices.

5. Results and Discussion

We apply our method for a number of triangle meshes and inter-
actively painted surface curves. Table 1 provides an overview of
the data sets, timings, and parameters τ. All times reported in fig-
ures and tables were measured using a single core of the Intel Core
i9-13900K CPU on a machine with 32GiB RAM. The initial dis-
crete surface curves are created by the painting process described in
Section 4. To simulate noise, we restrict the initial curves such that
they are spanned by vertices of the mesh, i.e., curves intersect edges
only at their end points. We run tests on different surface meshes
of varying sizes ranging from the order of 10000 to near a million
faces. The benchmark surfaces show varying degree of smoothness
and local detail. The results are shown in Figures 1, 3, 4, and 7.
In all experiments, we used different but similar open and closed
curves and observed no significant differences in performance or

quality. The figures only ever depict one exemplary curve. For each
surface mesh, the initial time steps of the heat method, given by
the average edge length, were scaled by a factor of 10 to obtain
smoother distance fields.

In summary, we achieve interactive frame rates for most examples
and are near interactive for the meshes with more than 500000 faces.
For all examples, the smoothing increases the number of curve
vertices by less than a factor of two. The figures show that the initial
curves are effectively smoothed. The reduction of noise and artifacts
(also in the absence of curvature) can be confirmed visually. The
deviation of the smoothed curve from the initial curve is effectively
controlled by the parameter τ.

Performance Interestingly, for the small to medium size meshes,
the time for construction of penalty potentials is lower than the
time for tracing geodesics. Only for large meshes with millions
of triangles, the heat method becomes the bottleneck of our ap-
proach. This could be remedied by restricting the curve and hence
the penalty potential to a submesh that covers the original curve.
The heat method uses a sparse Cholesky factorization that in theory
offers a sub-quadratic complexity for Poisson-type problems. In
practice, this is often better and roughly linear in the number of ver-
tices. Alternatively, iterative solvers such as the conjugate gradient
method could be applied. [CWW13]. On the contrary, FlipOut’s
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(a) Grumpy Pumpkin (b) Brain (c) Fox Skull (d) Fairing

Figure 4: High-resolution models with initial (black) and smoothed (blue) curves. These images correspond to the data shown in Table 1.

(a) Initial (b) τ = 0.0 (c) τ = 0.5 (d) τ = 1.0 (e) τ = 1.5 (f) τ = 2.0 (g) τ = 2.5

Figure 5: Influence of the parameter τ. The images show the Carotid Artery with initial (black) smoothed (blue) curves for varying parameters τ.
Each application of the algorithm took approximately ∼ 42−47ms. The construction of ϕ took ∼ 20ms and the tracing of λϕ took ∼ 22−27ms
with smaller τ resulting in larger values.

complexity is sub-linear [SC20] which explains the break-even point
of computation times.

Effect of Tolerance Parameter The parameter study in Figure 5
visualizes the effect of varying τ for the Carotid Artery model: For
small τ, the output curve can move more freely on the surface and is
smoother, while large values constrain the output close to the initial
curve. As described in Section 3.3, for τ = 0, the algorithm yields
a locally shortest geodesic in the same isotopy class. According to
our conceptualization of smoothing, this is one of the smoothest
curves possible. However, it is also evident that such a geodesic
can be located at a considerable distance from the initial curve. For
values of τ that are exceedingly large, it is not possible to adhere
to the initial curve’s shape with absolute precision. This is because
the penalty potential ϕ would have to converge to infinity for points
that are not part of the curve, while remaining zero at curve vertices.
Mathematically, this case may not even exist, as it would contravene
the property of smoothness. In practice, numerical errors prevent
this possibility at all.

The variation of τ only has a slight effect on the overall run times.
Smaller values result in an increase of time to trace the geodesic.
This is expected, as the computation of the potential is independent

of τ, and only the tracing of geodesic curves is affected. As FlipOut
is working with intrinsic edge flips, a smaller tolerance value will
give the curve more freedom and, consequently, result in more edge
flips to reach the final result.

Robustness and Comparison Figures 6 and 7 illustrate our curve
smoothing approach for surface meshes with varying spatial dis-
cretization for planar and more complex geometry. From right to left,
the surface mesh resolution of the Dragon scene from Figure 1 has
been modified to get continuously higher. The Circle incorporates
a sudden change in its face resolution. In both cases, comparable
degrees of smoothing are achieved under identical parameter set-
tings. For coarser triangulations, the constraint associated with the
potential ϕ is somewhat less stringent, as ϕ is only a piecewise linear
approximation across vertices.

Also, we compared our implementation to the hyper surface
smoothing of LIVESU [Liv18] (see Figures 8 and 9). For a fair
comparison, we used its original implementation in our code. In all
cases, our algorithm was several times faster than the hyper surface
smoothing. Furthermore, as the hyper surface smoothing is mainly
applied in the context of mesh segmentation, its input is restricted to
closed curves that partition the surface into two distinct subsets. The
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(a) τ = 1.5 (b) τ = 5.0

Figure 6: Robustness for Circle scene with a sudden resolution
change, initial curve (black), and smoothed curve (blue).

Figure 7: Robustness for the Dragon with continuous resolution
change, initial curve (black), and smoothed curve (blue).

algorithm’s output is not directly given as another surface curve but
instead implicitly returned by a scalar field. The actual smoothed
curve can only be evaluated by tracing the 0-level set of this field.
The level set is mathematically not required to fulfill the conditions
of a single closed surface curve. Indeed, in Figure 8, we could easily
construct a case for the Armadillo scene for which this approach
is not robust and not returning meaningful results. Also, for the
Cow scene, a strong bias of the solution due to varying face sizes
could be observed. For each valid result produced by hyper surface
smoothing, we observed that our approach offers a comparable
smoothing quality. In conclusion, our approach produces robust
results for all tested cases more efficiently (i.e. within a smaller
amount of time) with comparable quality.

Post-Processing For high-resolution meshes, differences arising
from using the optional Laplace relaxation post-processing are
barely visible, i.e., there is no need for post-processing. On the
other hand, curves on coarsely triangulated meshes may signifi-
cantly benefit. On the left side in Figure 9, noise artifacts can be
observed for coarse triangulations in our smoothed curve without us-
ing a post-processing filter. In this case, the quality of hyper surface
smoothing by LIVESU [Liv18] offers a higher quality. The right side
shows a much smoother (blue) curve with post-processing turned
on. Please note that the underlying triangle strip of our smoothed
curve does not change and now again offers a comparable quality.
With respect to performance measurements, the post-processing

Figure 8: Robustness comparison of our curve smoothing approach
(blue) with LIVESU [Liv18] (orange) based on the same initially
given curve (black).

(less than 1% of the overall running time) can be neglected. In all
our experiments, there were no significant differences after only 5
iterations of relaxation.

Figure 9: Effect of post-processing for coarse triangulations with
initial curve (black), smoothed curve (blue), and LIVESU [Liv18]
(orange). Post-processing is switched off (left) and on (right).

Applications We see potential use of our method in medical applica-
tions, which are also emphasized in LAWONN et al. [LGRP14]. One
particular use case is the detection and segmentation of aneurysms:
LAWONN et al. [LMW*19] presented a method for identifying tri-
angles that either belong to an aneurysm or to the remaining vessel
parts. This resulted in a partition of the surface that was represented
by a scalar field. The authors then applied a smoothing scheme to
this scalar field in order to achieve a smoother curve that separates
the two subsets. The method identifies the smoothed curve as a level
set of the smoothed potential. Our algorithm, seen in Figure 10,
allows for the robust and direct smoothing of the underlying curve
itself, in contrast to the scalar field. A second application is given
by EULZER et al. [ERM*21], who automatically cut and flatten
vascular geometry to obtain an intuitive mapping between the 3D
and 2D domains. Their automatic cuts are only represented as edge
curves. To improve intuition behind the obtained mapping, our algo-
rithm could be employed to smooth these cuts. Figure 5 shows an
exemplary Carotid Artery surface mesh [EvDH*23; ERP*24]. Ad-
ditionally, the right side of Figure 10 also illustrates the application
of our algorithm to a more complicated blood vessel.
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(a) Aneurysms (b) Vessel

Figure 10: Application to the segmentation of aneurysms (left) and
blood vessels (right) with initial (black) and smoothed (blue) curves,
rendered without hidden line removal for better visibility.

Further Limitations Generally, our method suffers from inappro-
priate and/or coarse tessellations. The heat method may generate
(locally) unfeasible distance fields, and the surface mesh itself may
be too coarse to “support” a smooth curve that consists of vertices on
triangle edges. As shown on the left side in Figure 9, this manifests
in noise artifacts in the resulting curve. The post-processing can
leverage this but only to a certain degree. It can also be observed
that by definition our algorithm can only shorten curves which some-
times leads to a sub-optimal result whose shape is not following its
original close enough. This effect also originates from another prob-
lem: while it is evident that, with the use of an appropriate penalty
potential, a smoothed curve generated by our algorithm must stay
in close proximity to the initial curve, the opposite is less clear. In
fact, we cannot prove that for all points of the initial curve, a part
of the smoothed curve must pass nearby. Hence, our approach is
limited as it only controls a “one-sided Hausdorff distance”. Indeed,
our findings indicate that certain corners of the initial curves are
occasionally omitted. Our current implementation cannot handle

surface curves that self-intersect. This limitation arises from the
chosen algorithm for tracing geodesics, not the overall method. We
note, however, that input curves with self-intersections and curves
with parts of them getting close to each – the extreme is a space
filling curve – may result in penalty potentials that give too much
freedom to the smoothed curve. Such pathological cases require a
tessellation that is dense enough to support the curve and regions
between parts of the curve as well as a careful local choice of τ.

6. Conclusions and Future Work

We presented a new concise algorithm to robustly smooth discrete
surface curves on triangular surface meshes that is able to adjust
the trade-off between smoothness and similarity to the initial curve.
Our method is based on constructing a potential on the surface that
penalizes larger distances from the initial curve with larger values.
The potential is used to lift and embed the surface in 4D Euclidean
space to determine a geodesic that represents the smoothed curve
when projected onto the original surface in 3D.

We show that our approach can be interpreted as a reformulation
of a continuous energy minimization with non-trivial constraints as
the curve is part of the surface. The benefit of this reformulation
is an efficient and robust non-iterative algorithm that builds upon
well established building blocks for computing geodesic distance
fields and geodesics. The first requires only the solution of a sparse
linear system using the heat method. And the second typically uses
a discrete algorithm with guaranteed termination like FlipOut. The
implementation of our method is straightforward as we can take ad-
vantage of existing libraries. We propose a one-parameter family of
penalty potentials. Our experiments show that this works effectively
and efficiently for a wide range of surface meshes. The effect of
parameter variation is intuitive, and the result can be computed at
interactive frame rates, which enables variation with instant visual
feedback.

Future work includes further research into the construction of
alternative penalty potentials, possibly even complex-valued, to
achieve more advanced morphing of curves. We also want to allow
for more interaction with the curve by adding constraints and local
intuitive adjustments to the penalty potential for certain meshes.
In regard to the main algorithmic limitations, our algorithm can
only shorten curves and does not necessarily reduce the Hausdorff
distance between input and result. Regarding the main limitations
of our implementation, discretization errors from coarse triangula-
tions cause noise artifacts that need to be handled by further post-
processing routines. Furthermore, our implementation can only han-
dle non-crossing surface curves. This is due to the FlipOut algorithm
used to determine the lifted (locally shortest) geodesic, which cannot
handle self-intersecting curves [SC20]. To address this issue, an al-
ternative algorithm could be used to generate geodesics. To enhance
our implementation’s performance and introduce upper bounds for
the smoothed curve’s deviation, we suggest to limit the surface to
a smaller sub-mesh, so-called distance envelope [LGRP14]. Never-
theless, we believe that this work provides a new and elegant curve
smoothing tool for several application domains, such as illustrative
visualization and surgical planning.
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