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Anisotropy and Cross Fields

L. Simons1 and N. Amenta1

1University of California, Davis, Department of Computer Science

Figure 1: A cross field (left) in the plane, with singular points of valence 3 or 5 (highlighted). We assign two lengths at every point to define
an anisotropic orthogonal frame field (visualized as an orange rectangle) at each point, and optimize to minimize the anisotropy (center). A
quad mesh constructed with the cross field as a guide using an approach based on [CBK15] shows the effects of the anisotropy inherent in
the cross field (right). Brighter shades indicate larger element anisotropy.

Abstract
We consider a cross field, possibly with singular points of valence 3 or 5, in which all streamlines are finite, and either end
on the boundary or form cycles. We show that we can always assign lengths to the two cross field directions to produce an
anisotropic orthogonal frame field. There is a one-dimensional family of such length functions, and we optimize within this
family so that the two lengths are everywhere as similar as possible. This gives a numerical bound on the minimal anisotropy
of any quad mesh exactly following the input cross field. We also show how to remove some limit cycles.

CCS Concepts
• Computing methodologies → Mesh geometry models; Shape analysis;

1. Introduction

A cross field assigns two orthogonal unoriented directions to every
point in a two-dimensional region. A common approach to con-
structing a quad-mesh is, roughly, to construct a cross field on the
input domain, and then sample streamlines from the cross field to
produce quads; but it rarely works out to be so easy!

Here is one fundamental issue with this approach. Within any
regular infinitesimally small region we can always sample stream-

lines to form a mesh in which the quads approach perfect squares
as the density increases. But globally, the curvature of the cross
field might force some quads to be arbitrarily anisotropic. This is
well-known, in the sense that existing methods deal with it; for
instance, Quantized Global Parameterization [CBK15] empirically
chooses streamlines so as to minimize anisotropy (as in Figure 1).
In this paper, we lay out the math describing how the curvature
of a cross field may force any mesh directly derived from it to be
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be anisotropic, and we give a numerical algorithm to measure the
minimal anisotropy inherent in a given cross field.

We only handle a simple case. We assume we are given a smooth
cross field, defined on an open or closed domain R in the plane
(not necessarily a disk). We allow the cross field to have singular
points, but only of valence 3 or 5 (see Figure 2). We require every
streamline to have finite length, and we do not allow any streamline
to both begin and end at a singular point. Thus, although we allow
cycles, we exclude cross fields that contain limit cycles (Figure 2),
and also cycles containing singular points.

Given our limitations on R, our conditions on the the input cross
field are reasonable. Other kinds of singular points can be (and of-
ten are) simulated by clusters of singular points of valence 3 and
valence 5. A streamline with two singular endpoints can be elimi-
nated by a local perturbation of the cross field. Limit cycles cause
infinite anisotropy and streamlines of infinite length, so we cannot
say much about cross fields that contain them.

We show that a cross field meeting our conditions is always 2-
integrable, by which we mean we can assign two lengths to the two
orthogonal directions at each point, consistent with the curvature
of the cross field. We explain intuitively what we mean by “con-
sistent” via the following purely theoretical construction. For some
large enough n, we select a discrete set of n streamlines that decom-
poses R into intrinsic rectangles, that is, four-sided regions whose
curved sides are segments of streamlines or closed boundaries, so
that the region sides meet at right angles, except at singular points.
We increase n towards infinity, interpolating, if possible, our initial
discrete set of streamlines with a smooth distribution of stream-
lines. In the limit, the streamlines divide R into infinitesimally small
perfect rectangles with straight sides (“tiny bricks”). In this sense,
R is the the infinite sum of a set of infinitesimal rectangles. Defini-
tion 1, below, is a more technical definition of integrability.

The infinitesimal limit rectangles may be arbitrarily anisotropic
(that is, their two side lengths may differ). Some of the anisotropy
may come from our choice of the smooth streamline distribution,
and some may be forced by the curvature of the cross field. What
distribution of streamlines minimizes the anisotropy, so that our in-
finitesimal rectangles are as square as possible? That is, how much
anisotropy is forced by the cross field? This is the question we ad-
dress.

The infinitesimal rectangles might all be perfect squares, in
which case we only need one length function (known as the confor-
mal factor); we say such a cross field is 1-integrable. It is widely
understood that a cross field is 1-integrable if and only if it can be
produced by a conformal map from the plane to itself (see Sec-
tion 5). But not all cross fields can be produced in this way; Fig-
ures 1 and 7 show examples. In this more general case, we show
that there is a always a one-dimensional space (up to scale) of ways
to assign two length functions consistent with the curvature of the
cross field.

Next, we describe how we optimize the length functions within
the set of feasible assignments so as to minimize anisotropy. Given
an input cross field obeying our conditions, we can thus compute
and visualize the minimal anisotropy of its best infinitely fine “tiny

bricks” mesh. We present some results on measuring the anisotropy
of an input cross field.

Finally, we observe that if a limit cycle is simple - that is, if it
does not cross itself - it can be removed without adding any new
singularities.

We emphasize that producing a finite quad mesh at a rea-
sonable resolution poses additional challenges beyond controlling
anisotropy. For instance, the finite mesh must incorporate the sep-
aratrices (the streamlines incident to the singular points) and any
corners of the closed boundaries, and mesh quality includes other
measures such as angle error. Thus the output mesh may depart
from the optimal streamline distribution or from the streamlines
themselves, as in, for example [TPP∗11] or [LCK21], or in Fig-
ure 1.

Figure 2: We allow our cross fields to contain singular points of
valence 3 (top left) and 5 (bottom left), but not limit cycles (right).

Nonetheless our results are useful in various ways.

• If we construct a quad mesh which fails to meet a target sizing
function or minimum anisotropy bound, we can estimate how
much of this failure was inherent in the cross field and how much
was due to downstream steps of the meshing process. This is
useful since the cross fields we compute in practice are almost
never exactly 1-integrable.

• Instead of designing cross fields only for smoothness under
constraints, we could also optimize for isotropy or targeted
anisotropy.

• The idea for removing limit cycles in Section 12 appears to be
novel.

2. Related work

There is a great deal of research on using cross fields to con-
struct quad meshes. The design of cross fields was surveyed in
[VCD∗16], and their use in quad meshing appears in the surveys
[BLP∗13, Cam17].

Since harmonic angle functions lead to 1-integrable cross fields,
most cross field design papers focus on this goal. This difficult com-
putational problem has inspired a great deal of research, includ-
ing [RVAL09, KCPS13, ACBCO17, VO19, CCS∗21]. Much of this
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research focuses on quad meshing on a closed orientable surface
embedded in R3, where a cross field might be computed as part of
a seamless parameterization, eg. [BCE∗13, CSZZ19]. In this sit-
uation there are stronger constraints on the cross field, which we
avoid in our simple planar case; we return to this important topic in
Section 14.

All singular point configurations allowed under Euler’s Theorem
can be quadrangulated, with the exception of the torus with two sin-
gular points of valence 3 and valence 5 [SZC∗22, JT73]. However,
this does not mean that they all admit 2-integrable cross fields or
that all smooth cross fields are 2-integrable.

More closely related to our work is research on the explicit con-
struction of 2-integrable cross fields. Constructing a frame field,
in which the two unoriented directions at a regular point need
not be orthogonal and may have different lengths, was explored
in [PPTSH14] and [DVPSH15]. Odeco tensors, studied in [PSS21],
were used recently in a section of [JCR23] to construct 2-integrable
frame fields, by solving a PDE with objectives equivalent to our
Equations 3 and 4.

Another relevant line of research has approached the problem of
constructing a frame field by constructing a metric on the domain.
In [JFH∗15], a smooth orthogonal frame field is optimized so as
match an arbitrary input metric as well as possible. In [CZK∗19],
they construct a metric that is guaranteed to admit an orthogonal
frame at every point, which is equivalent to constructing the or-
thogonal frame field itself (see Section 3).

We can handle our simple case using fairly accessible mathemat-
ics, although we will point out some relevant sophisticated concepts
as we go along.

3. Definitions

3.1. Input

We assume that we are given a smooth cross field X(α) represented
by an angle-valued function α : R →R mod π

2 in a region R of the
plane; see Figure 3. Specifically, for any real-valued a : R → R,
let α = a(x,y) mod π

2 , and define the cross at (x,y) to be the un-
ordered set of four directions [α,α+ π

2 ,α+ π,α+ 3π

2 ], or, equiv-
alently, the unordered set of two unoriented directions [α,α+ π

2 ].
(Often the angle is represented by a complex number, which is eas-
ier for computation, but this representation will yield some intuitive
equations later on.)

Locally, we can orient the two directions and write the cross at
any point as two orthogonal unit vectors, the columns of a rotation
matrix: [

cosα −sinα

sinα cosα

]
.

Cross fields are also called 4−RoSy fields [PZ07] or 4−directional
symmetry fields [RVLL08].

A streamline in a cross field, like a streamline in a vector field
or direction field, is a curve γ(t) whose tangent at every point is the
direction of the field. In a cross field, two unoriented streamlines
pass through every regular point. Each streamline either forms a
cycle or begins and ends at a boundary or singular point. In a cross

Figure 3: The cross field is given by a periodic angle-valued func-
tion α(x,y), in radians, defined on the region R. The range of α(x,y)
is [0,π/2]. The cross at a point (magenta), is given by four rota-
tions of the vector (cosα,sinα). The blue curves are streamlines.
The orange arc indicates α, and the orange vector indicates ∇α,
the direction in in which the cross rotates counter-clockwise most
quickly. We observe that ∇α is not aligned with the streamlines.

field, a streamline may cross itself at right angles; that is, cycles are
not necessarily simple.

The cross field X(α) may contain isolated singular points, at
which the number of incident streamlines is not two. We only con-
sider singular points of valence 3, incident to three streamlines, and
valence 5, incident to five (these are also called singular points of
index −1 and 1, respectively). Let S be the set of singular points.

Figure 4: Some vectors from ∇α superimposed on the cross field
X(α), colored based on distance to the nearest singular points. The
magnitude of ∇α increases near the singular points.

In a disk-shaped neighborhood of any regular point, we can rep-
resent α using a scalar function a which may extend beyond the
range [0,π/2]. In particular, the vector field ∇α = ∇a is well-
defined, and it forms (like all gradients) a vector field with zero
curl, although possibly with non-zero divergence (recall that the
curl of vector field (u(x,y),v(x,y)) is vx − uy, and the divergence
is ux + vy). The magnitude of ∇α increases near a singular point s.
The singular points of ∇α are the singular points of X(α), where α

is undefined.

A limit cycle is a cycle into which other streamlines “spiral in”;
that is, a streamline γ is a cycle and there is another streamline
ζ such that ζ(t) approaches γ as t goes to infinity; see Figure 2.
X is smooth at a limit cycle γ. Since we forbid limit cycles, the
neighborhood of a cycle streamline is covered by a set of nearly
parallel cycles.

The cross field X is defined on a region R of the plane. We can
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require X to be aligned with the boundaries of R, or not; but we do
not allow periodic boundaries, at which X would have to match.

Figure 5: Sometimes streamlines, like the one highlighted in ma-
genta, can cross themselves, locking the aspect ratio σ : τ at the
point of intersection. This shows that some cross fields require
anisotropy.

3.2. Orthogonal frame fields

Our goal will be to assign a length function along every undirected
streamline, and hence two lengths at every regular point. Since, for
example, a streamline can cross itself at right angles, as in Fig-
ure 5, we usually can’t define the lengths as two separate continu-
ous scalar functions on R. Instead, we will focus on a local neigh-
borhood of every regular point, and require the length functions to
be smooth in every neighborhood. Then we will make a global ar-
gument to show that the functions can be globally as well as locally
smooth.

Let’s define some local notation. In a neighborhood N(p) of any
regular point p, the two sets of streamlines, and their length func-
tions, can be separated. Within the neighborhood, we call the two
length functions σ(x,y),τ(x,y) (even if, globally, both come from
the same set of streamlines). Also locally, we can orient both sets
of streamlines. Now we can write a local orthogonal frame as two
vectors, or the columns of a matrix:[

σcosα −τsinα

σsinα τcosα

]
In the next section, we will see that the change in σ or τ along a
streamline is determined by the curvature of the orthogonal set of
streamlines. We use these relationships to give the following defi-
nition.

Definition 1 A cross field is 2-integrable if we can define a length
function for each direction vector at each point, creating an orthog-
onal anisotropic frame field, such that

1. (smoothness) in the neighborhood of any point p ∈ R, the two
scalar length functions are both smooth (say C2-continuous),
and

2. (α-consistency) along any streamline, the associated length
function is consistent with α, as defined by Equations 3 and 4,
below.

4. Local parameterization

What is stopping us from assigning, for example, σ = τ = 1 ev-
erywhere? Unless we are extremely lucky, this will not correspond
to the aspect ratios of any possible set of infinitesimal rectangles
aligned with X(α). We capture this idea as follows. Let Px,y and
Pu,v be two copies of the Euclidean plane. Assume there is a smooth
map M from some neighborhood in Pu,v to N(p), the neighborhood
of p ∈ R ⊂ Px,y. Under map M, infinitesimal axis-aligned squares
in the Pu,v are mapped to rectangles aligned with the cross field in
Px,y. See Figure 6.

Figure 6: On any neighborhood, we consider a local map M from
plane Pu,v into plane Px,y. The Jacobian K of M takes infinitesimal
axis-aligned squares in (u,v) to infinitesimal rectangles aligned
with the cross field in (x,y). The inverse Jacobian takes infinites-
imal squares in (x,y) to parallelograms in (u,v).

We don’t need to write down M explicitly in order to understand
the local behavior of infinitesimal squares. We are just interested in
its derivative, the Jacobian matrix

K =

[
xu xv
yu yv

]
=

[
σcosα −τsinα

σsinα τcosα

]
Here σ,τ and α are functions of (x,y), but x(u,v),y(u,v) are func-
tions of u,v.

Locally, the inverse map M−1 always exists, and its Jacobian
K−1 is the inverse of the Jacobian of M:

K−1 =

[
ux uy
vx vy

]
=

[
(1/σ)cos(−α) −(1/σ)sin(−α)
(1/τ)sin(−α) (1/τ)cos(−α)

]
(1)

It’s easier to figure out how σ,τ have to change with α by looking
at K−1 because its elements ux,uy,vx,vy are all functions of (x,y).

We note that K−1 also represents a Riemannian metric at p. If
γ(t) is a unit-speed curve in (x,y), then the length of γ using the
metric K−1 is the length of M(γ(t)) in (u,v)∫ length γ

t=0

[
(K−1

γt)
T (K−1

γt)
]1/2

dt (2)

We also observe that the rows, rather than the columns, of K−1 are
orthogonal (unless σ = τ), so K−1 is not in general an orthogonal
frame, and it maps squares to parallelograms.

The functions u,v have to satisfy

(ux)y = (uy)x

(vx)y = (vy)x.

© 2024 The Authors.
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That is, ∇u and ∇v, like all gradients, have zero curl. From (ux)y =
(uy)x we have

((1/σ)cosα)y = ((1/σ)sinα)x

−σy cosα−σsinα αy = −σx sinα+σcosα αx

∇σ(−sinα,cosα) = −σ ∇α (cosα,sinα)

and using (vx)y = (vy)x we have

((−1/τ)sinα)y = ((1/τ)cosα)x

τy sinα− τcosα αy = − τx cosα− τsinα αx

∇τ(cosα,sinα) = τ ∇α (−sinα,cosα)

We highlight these two partial differential equations.

∇σ(−sinα,cosα) = −σ ∇α (cosα,sinα) (3)

∇τ(cosα,sinα) = τ ∇α (−sinα,cosα) (4)

(One could get equivalent equations by requiring a Lie bracket to
be the zero vector, as in [JCR23]. Alternatively, one could relate the
metric to the curvature of ∇α via the Levi-Civita connection.)

5. Isotropic cross fields

If τ = σ everywhere, then the maps M,M−1 are conformal, and
the isotropic metrics K,K−1 are called isothermal. Most cross field
design programs optimize towards conformal maps (by minimizing
the Dirichlet energy or the Ginzberg-Landau energy, or following
the Ricci flow, etc.). With τ = σ, our two differential equations be-
come

∇σ(−sinα,cosα) = −σ ∇α (cosα,sinα)

∇σ(cosα,sinα) = σ ∇α (−sinα,cosα)

Thinking of the vectors (cosα,sinα) and (−sinα,cosα) as an or-
thonormal coordinate system, we see that

σx = −σαy (5)

σy = σαx (6)

So in a region where σ = τ, there is a unique solution for σ given
α, up to a global scale factor. We can think of Equations 5 and 6 as
a way of writing the usual Cauchy-Riemann equations ux = vy and
uy =−vx, which describe an isothermal metric.

In order for these differential equations to be solvable, however,
(σx,σy) has to have zero curl. That is, at every point in R,

(σαx)x = (−σαy)y

σxαx +σαxx =−σyαy −σαyy

−σαxαy +σαxx =−σαxαy −σαyy

which shows that α must be harmonic (that is, αxx +αyy = 0), and
∇α has zero curl and zero divergence.

6. Singular points

In a neighborhood containing a singular point s of odd valence,
we cannot separate the streamlines into two distinct sets; so the
functions σ,τ can be smooth on the entire neighborhood only if
they are identical at s.

Observation 2 At a singular point s, σ(s) = τ(s).

So to understand the relationship of σ and α at singular points we
can examine the well-understood isotropic case. A singular point
s of valence 3 is similar (scaled, rotated and/or translated) to the
singular point at the origin induced by the complex map M−1(z) =
z3/4, which we can write in terms of (x,y) and (u,v) as

M−1(x,y) = (x2 + y2)3/8e(3/4)i arctan(y/x) = (u,v)

We can similarly write the complex derivative K−1(z) = 3/4z−1/4

as

K−1(x,y) = 3/4(x2 + y2)−1/8e(−1/4)i arctan(y/x) = (u,v)

From Equation 1, we see that 1/σ(x,y) = 3/4(x2 + y2)−1/8

and −α = (−1/4)arctan(y/x). Recalling that ∇arctan(y/x) =
(−y,x)/(x2 + y2), we find

σ =4/3 (x2 + y2)1/8

∇σ =1/3 (x2 + y2)−7/8(x,y)

α =1/4 arctany/x

∇α =1/4 (x2 + y2)−1(−y,x)

We can verify that these equations obey Equations 5 and 6. They
imply a counter-clockwise rotation of ∇α around s (as in Figure 4),
and a zero of σ at s.

Similarly, a singular point s of valence five at the origin is pro-
duced by M−1(z)→ z5/4, with K−1(z) = 5/4 z1/4. In this case we
find that ∇α rotates clockwise, and s is a pole.

In either case, we avoid tracing streamlines very close to singu-
larities due to the difficulty in accurately estimating σ and τ as ∇α

grows without bound.

7. Integrating σ and τ

When α is not harmonic, we must allow τ and σ to differ. Equations
3 and 4 are not sufficient to determine ∇σ and ∇τ. But they do
completely determine two directional derivatives per point, one for
σ and one for τ. (This section is an example of the “method of
characteristics” for solving first-order PDEs.)

In particular, for a unit-speed curve γ(t) through a point p ∈ R,
with unit direction vector (−sinα,cosα), the directional derivative

dσ

dt
=∇σ (−sinα,cosα) =−σ ∇α (cosα,sinα)

So, for a streamline following (−sinα,cosα), given a single value
of σ somewhere along the streamline, we can find all the other val-
ues of σ along the streamline by integrating using Equation 3.

Similarly we can integrate τ along the streamlines with direction
(cosα,sinα), using Equation 4:

dτ

dt
=∇τ (cosα,sinα) = τ ∇α (−sinα,cosα)

Fortunately, these are exactly the streamlines we have.

For example, consider an intrinsic rectangle not containing a sin-
gular point. We can set arbitrary values of σ along one edge, and
arbitrary values of τ along another, and then integrate both into the
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Figure 7: Given the isotropic cross field derived from by the con-
formal map z → z3/4 (left) we (of course) find that the minimum
anisotropy is zero; that is, we can set σ = τ everywhere. A cross
field with nonzero divergence (right) exhibits large anisotropy, even
in some regions where ∇α = 0. We computed this twisting cross
field by requesting a large isotropic scale in the center and a
smaller isotropic scale on the outside, and minimizing the Dirichlet
energy. Like most sets of user-defined cross field constraints, there
is no harmonic α function that meets them. The non-harmonic X(α)
we found does achieve the large isotropic scale in the center and
smaller isotropic scale in the corners, but requires large anisotropy.
Requesting a larger scale difference in this case produces singular
points, which allows the scale change with lower anisotropy.

interior using equations 3 and 4. If the initial values of σ are smooth
along the edge, the two-dimensional σ function across the interior
of the intrinsic rectangle will be smooth, and similarly for τ.

Recall that the variables σ and τ are only defined on a small local
neighborhood not containing a singularity. As seen in Figure 5, a
streamline in a cross field can intersect itself at right angles, and at
the intersection point σ and τ are defined by different points along
the same field line. At points of self-intersection like these, the ratio
between σ and τ is fixed, since any change to one value on the
streamline changes the other.

8. Global consistency of σ and τ

The previous section established that we can locally integrate σ and
τ along streamlines within a disk-shaped singularity-free neighbor-
hood. So the length function along an entire streamline γ is deter-
mined if we set the value at any one point p ∈ γ. A connected set of
adjacent streamlines whose length values are continuous along any
curve orthogonal to them all will have continuous values through-
out their length.

Self-intersecting streamlines are not a problem. But what
about cycle streamlines? Say γ is a cycle following direction
(cosα,sinα). If we fix the value of τ(p) at one point p ∈ γ, and
we integrate along γ using Equation 4 and return to p, do we al-
ways get the same value of τ? Notice that this is not true of every

Figure 8: Illustration for Theorem 3. Mapping a point p on cycle
γ(0) to parameter space Pu,v takes the cycle to a line. A parallel
line at distance ϵ maps back (pulls back) to a nearby cycle. The
distance between the two cycles in Px,y always returns to the same
value as we loop around, and converges to ϵτ(p) as ϵ→ 0.

function; for instance, integrating ∇α around a cycle would give us
2π rather than zero, even though ∇α has zero curl.

Theorem 3 Let γ be a cycle streamline, not a limit cycle, with no
singular point in its neighborhood. Let τ be the length function or-
thogonal to γ. The function τ is smooth everywhere on γ, including
at p.

Proof Since γ is not a limit cycle, a small neighborhood of γ is
covered by a set of nearby disjoint parallel cycle streamlines.
Let γ(0) = γ. Recall the mappings M : (u,v) → (x,y) and M−1 :
(x,y) → (u,v) from Section 4. At an arbitrary point p ∈ γ, let
q = M−1(p). See Figure 8. From q, a an ϵ step in the v direction
takes us to point q+ ϵv, which is mapped by K to step orthogonal
to γ(0), landing us on a nearby cycle γ(ϵ). As ϵ goes to zero, the
distance from p ∈ γ(0) to the nearest point on γ(ϵ) converges to the
infinitesimal width w(p,ϵ) =[[

0 ϵ
][ σcosα σsinα

−τsinα τcosα

][
σcosα −τsinα

σsinα τcosα

][
0
ϵ

]]1/2

= τϵ

with w(p,ϵ)/ϵ converging to τ. Since cycles γ(0) and γ(ϵ) are
smooth and closed, if we traverse all the way around γ(0) and re-
turn to p, we get the same infinitesimal width w(p,ϵ) and converge
to the same value of τ.

Setting the value of σ = τ at a singular point s determines the
length function along the (3 or 5) separatrices adjacent to s. We
required each of these separatrices to end at the boundary, not at
another singular point. Hence,

Observation 4 We can choose the values of σ = τ at each singular
point independently of each other.

Theorem 5 There is an infinite one-dimensional set of ways to
choose the length functions along each streamline, consistent with
σ,τ being smooth on the neighborhood of any point in R.

Proof First, we select the size values σ = τ at the singular points.
There is a discrete finite set of such values, and we can choose them
independently because of Observation 4. This choice determines
the length values along the separatrices. The separatrices divide the
remaining streamlines into groups, such that we cannot deform a
streamline from one group into one from another group without
crossing one or more singular points, or leaving the region (that is,
the groups are homotopic).
Some groups may be unions of cycles, while others begin and
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end on the boundary. Within each group, we can pick any one-
dimensional curve segment g crossing each streamline in the group
once (for example, g might be a segment of one of the stream-
lines in the orthogonal direction, or a boundary curve). We pick a
smooth length function along g, respecting any length values al-
ready fixed at the endpoints because they lie on separatrices. This
fixes the length values all along the entire group of streamlines.
The length values are continuous at the separatrices since they were
continuous at g. All of the length values along all of the segments
g form an infinite one-dimensional set, parameterizing all the pos-
sible length assignments.

9. Divergence of τ∇α

In this section we comment on the behavior of ∇α on a cycle
streamline. Let γ be a cycle streamline γ, not a limit cycle, and let’s
use τ as the length function that is integrated along γ.

The flux of the vector field ∇α across a cycle γ is∫
γ

∇α (−sinα,cosα).

The usual physical intuition is that if α is the flow of some quantity
as a function of time, the flux is the net movement of the quantity
across the curve γ per unit time.

Observation 6 If x > 0, we have (lnx)x = 1/x. So

∇ lnτ =
∇τ

τ

Lemma 7 The flux of the vector field ∇α is zero across any cycle
streamline γ.

Proof The proof of Theorem 3 showed that the function τ is smooth
everywhere on cycle γ, and thus, so long as τ > 0 everywhere, the
function lnτ is also smooth everywhere on γ. So

0 =∫
γ

∇(ln τ) (cosα,sinα) =∫
γ

∇τ

τ
(cosα,sinα) =∫

γ

∇α (−sinα,cosα)

If γ is a simple cycle, the flux is also the right-hand side of Gauss’s
divergence theorem:∫ ∫

interior γ

∇·∇α =
∫

γ

∇α (−sinα,cosα)

That gives us:

Observation 8 Let γ be a simple cycle streamline. The total di-
vergence of the vector field α in the region bounded by γ must be
zero.

This tells us, on the one hand, that simple cycles only appear in
quite special cross fields, since in general the divergence of ∇α

at an arbitrary point is not zero. The situation in which ∇·∇α is
everywhere zero is the useful case in which α is everywhere locally
harmonic.

On the other hand, since divergence can be positive or negative,
the total divergence of ∇α in the interior of a cycle streamline γ

may be zero without ∇·∇α = 0 at any point in the interior.

10. Definition of anisotropy

For non-harmonic α, we need a functional that we can optimize to
choose among the valid values of σ,τ. In this section we consider
minimizing the anisotropy. Making σ and τ as similar as possible
also encourages them to be smooth; if, say, the smoothness of σ

along a streamline is given by the smoothness of ∇α, encouraging
τ to change similarly to σ also encourages τ to be smooth.

Using Equations 3 and 4, we can solve for the values of σ,τ at
the vertices of the mesh formed by the representative streamlines,
minimizing the maximum anisotropy over the region. Let A be our
measure of anisotropy.

min
σ,τ

∫
R

A(x,y)

st.

− (σy)cosα−σαy sinα = −(σx)sinα+σαx cosα

(τy)sinα− ταy cosα = −(τx)cosα− ταx sinα∫
R

σ
2 + τ

2 = 1

Making σ
2 + τ

2 integrate to one over the whole region keeps them
from going to zero.

There are many ways we could define the anisotropy function A.
We use:

A =
[

σ

τ
+

τ

σ
−2

]2k
(7)

The exponent k ≥ 1 is an integer. Raising the anisotropy to an even
power ensures it’s positive, although the constant offset −2 suffi-
ciently penalizes negative aspect ratios that we do not see negative
σ or τ in practice. The greater k, the more it penalizes the max-
imum. Subtracting two from the sum of the two ratios gives an
energy function that equals zero for isotropic size functions.

11. Discretization, optimization and visualization

We select a sparse set L of streamlines to represent the cross field.
For each ℓ ∈ L, we arbitrarily set σ(p) for some point in ℓ, which
determines the σ values along the streamline, based on Equation 3.
We then define a scalar multiplier for each streamline ℓ, which
changes all of its σ values simultaneously. Each intersection be-
tween two streamlines in L is a point where both σ and τ are de-
fined. We evaluate the function A from Equation 7 at each of these
points.

Minimizing the anisotropy measure is achieved through an iter-
ative process. We resize σ along each chord ℓ ∈ L in turn, so as to
minimize the sum of the anisotropy measures of all intersections
involving ℓ. If a pass through all chords yields no improvement, or
an improvement below a given threshold, the optimization is com-
plete. Since the total sum of the anisotropy measures at all intersec-
tions is reduced at each step, this process terminates.

To select the lines in L, we start with a subset T of streamlines

© 2024 The Authors.
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that captures the topology of X . These may be the separatrices (as
in Figure 1) or they may be regular streamlines (as in Figure 10).
Along the streamlines in T , we select orthogonal streamlines to
include in L, until every point on a line in T is sufficiently close to
a streamline of L. We do not use separatrices in L, as growth of ∇α

near singularities makes robust size estimation difficult.

As a check, we find that this solve behaves well on conformal
cross fields, even though we do not use Equations 5 and 6. The
conformal cross field in Figure 7 (left) exhibits a worst-element
numerical anisotropy of 1 : 1.0033.

To visualize cross fields, we use line integral convolution, a tech-
nique that “smears” a noise function into strokes along the stream-
lines, as suggested by [CL93].

We visualize anisotropy in two ways. In low-anisotropy cases,
we draw an orange rectangle centered at every intersection point
p of two lines in L, reflecting the aspect ratio and sizes given by
σ(p),τ(p). One might expect that there is some scale factor that
would grow all of the squares to nicely “collide” with their neigh-
bors, creating a rough approximation of a mesh; this is not true
because L is chosen before we find σ and τ. When anisotropy is
very large, we visualize it instead using a color scale, as in Fig-
ure 10. There σ and τ are interpolated over the region, and a per-
pixel anisotropy is calculated (except for near singularities along
the wing surface where the singularity is not fully enclosed by rep-
resentative streamlines).

12. Removable limit cycles

Simple limit cycles appear in vector fields as well as cross fields
and are studied in dynamical systems. There are two kinds of limit
cycles, stable and unstable. Unstable limit cycles do not cause
much trouble; they disappear under small smooth perturbations of
α, while stable limit cycles persist. A stable limit cycle is one in
which, as we traverse γ, the nearby streamlines on either side either
all approach or all move away from γ (depending on our direction
of travel on γ). See Figure 9.

Some limit cycles in cross fields are forced by the topology, for
example, the torus with one singular point of valence 3 and one of
valence 5 must have a limit cycle which is also a fundamental cycle
of the torus; this is why it cannot be meshed. But limit cycles may
also appear where they are not forced.

As we see in Figure 9, a stable simple limit cycle γ in a pla-
nar cross field can be removed by replacing a small neighborhood
around γ, without adding new singular points. Before removal, on
one side of γ, one set of streamlines cycles in towards γ, and the
other set crosses γ, and similarly on the other side. To remove γ,
we smoothly add a twist of π/2 to α in the neighborhood of γ, so
that each streamline spiraling into the neighborhood is connected
to a streamline crossing γ, and visa versa. Since we need two sets
of streamlines, this trick does not work on vector fields.

13. Results

The cross field in Figure 1 is the upper-left portion a cross field
computed using a method similar to that of [KCPS13]; it was given

Figure 9: A simple limit cycle (left) can be smoothly replaced with a
region within which a twist of π/2 swaps the two sets of streamlines
(right). The streamlines away from the cycle remain unchanged,
and the region in which the swap occurs can be made arbitrarily
thin. An exaggerated ∇α vector (yellow) has been drawn on top of
the left image, along with the components tangential (green) and
normal (red) to the limit cycle; limit cycles are distinguished by the
nonzero normal component (and hence have a non-zero net flux of
∇α.)

initial conditions requiring small isotropic elements over a region
in the center and large isotropic elements on the outside.

In figure 10, we show a cross field generated from a two-
dimensional simulation of airflow over a wing, NACA Airfoil 8650
from [SQB21]. The original flow vector field had more than one
hundred singularities. We created a cross field by adding the or-
thogonal direction at each point, and then smoothed. This reduced
the number of singularities and had the additional benefit of remov-
ing two ellipse-shaped limit cycles corresponding to vortices in the
fluid flow. Each limit cycle was replaced by a pair of valence-three
singularities, surrounded by a lens-shaped region with less total
curvature. The central part of the image has very low anisotropy, as
the vertical path lines can be freely adjusted to match the horizontal
path lines. The left side of the image has slightly more anisotropy,
as those collisions represent streamlines that form cycles around the
entire wing. The turbulent airflow to the right of the wing creates
extreme anisotropies, as areas of high rotation in the field require
tiny chord widths. This could be fixed by adding more singularities
as we move away from the turbulent region.

14. Discussion

The main limitation of this work is that it only applies to regions in
the plane with boundary. The interesting case of a cross field where
all streamlines have finite length on a two-dimensional surface em-
bedded in R3 is much more structured. The separatrices all begin
and end at singular points, and all other streamlines must be cycles.
Observation 4 does not hold. Might there be a cycle of separatri-
ces for which there is no set of lengths obeying Equations 3 and 4
and Observation 2? In [CZK∗19], they use a version of the “tiny
bricks” argument to establish that we can consistently assign two
length functions at every point away from the separatrices, but it is
not clear that these length functions can or must be continuous at
the separatrices or singular points.

© 2024 The Authors.
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x1 : 1 2 : 1
x 200 : 1

x
Figure 10: Airflow over an airfoil, with prominent trailing vortices.
We start with a cross field that is aligned with the airflow around the
wing (top); the background LIC is colored to match field direction
to highlight singularities. Next, representative streamlines (top im-
age, white) are traced. We optimize for a minimal-anisotropy con-
figuration on the representatives, and we visualize the anisotropy
by interpolating colors (bottom). The most extreme aspect ratio is
192:1.
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