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Figure 1: Our method solves the quantization problem of hexahedral meshing – deciding about the numbers of hexahedra between critical
elements – in a very quick yet high-quality manner. Its central ingredient are integer-sheet inflation/deflation operators (center), executed on a
cubical cell decomposition (also called T-mesh, left) of the object to be meshed, before actually materializing the hexahedral mesh (right).

Abstract
Several state-of-the-art algorithms for semi-structured hexahedral meshing involve a so called quantization step to decide on the
integer DoFs of the meshing problem, corresponding to the number of hexahedral elements to embed into certain regions of the
domain. Existing reliable methods for quantization are based on solving a sequence of integer quadratic programs (IQP). Solving
these in a timely and predictable manner with general-purpose solvers is a challenge, even more so in the open-source field. We
present here an alternative robust and efficient quantization scheme that is instead based on solving a series of continuous linear
programs (LP), for which solver availability and efficiency are not an issue. In our formulation, such LPs are used to determine
where inflation or deflation of virtual hexahedral sheets are favorable. We compare our method to two implementations of the
former IQP formulation (using a commercial and an open-source MIP solver, respectively), finding that (a) the solutions found
by our method are near-optimal or optimal in most cases, (b) these solutions are found within a much more predictable time
frame, and (c) the state of the art run time is outperformed, in the case of using the open-source solver by orders of magnitude.
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1. Introduction

Hexahedral mesh generation via global volumetric parametrization
was shown to be a powerful and expressive approach, enabling
high flexibility. With recent advances also several of the remaining
robustness gaps have been closed. This is discussed further in Sec. 2.

An important component of this approach is that of quantiza-
tion: State-of-the-art methods initially operate with relaxed continu-
ous problems (smooth aligned frame-field generation, field-guided
global parametrization), but at some point discrete integer decisions
need to be made – due to the fact that the desired hexahedral mesh

has a discrete structure. The process of making these decisions (as
well as the resulting integer choices themselves) are referred to as
quantization.

The most recent method to reliably compute a quantization in
the general volumetric context [BBC22] builds an auxiliary struc-
ture based on which this problem can be formulated efficiently: a
cell complex forming a partition of the to-be-meshed object into
parametrization-aligned blocks, as illustrated in Fig. 2. It may be
non-conforming, containing T-junctions, and is also called T-mesh.
The integer degrees of freedom are associated with the edges of this
structure, subject to a number of constraints. Finding the optimal
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Figure 2: Left: Volumetric cubical cell decomposition of an exam-
ple object. Concretely, this is the motorcycle complex, computed
based on a global seamless map. This is a non-conforming complex
with T-junctions (see blow-up). The integers denote a quantization
expressed on this structure. Right: Hexahedral mesh implied by this
quantization. Its (conforming) base complex is indicated in black.

(or just a valid) assignment of integer values is then delegated to a
general-purpose Integer Quadratic Programming solver.

We observe that a commercial solver performs well on this task
in the average case. However, there are also outliers where run time
is quite impractically high. Furthermore, the required time is very
unpredictable, as there is limited correlation between problem size
and required time. For practical purposes, therefore additional early-
stopping criteria for the solver need to be set (a time limit and/or
optimality gap threshold), and choosing these can be challenging.
Even more importantly, we observe that open source solvers show
significantly lower performance on this task also in the average case.

1.1. Contribution

We propose a special-purpose strategy to efficiently compute near-
optimal guaranteed-valid quantizations. Effectively: A minor amount
of quality is traded for a major gain in speed and predictability,
while retaining full reliability.

Key to this is that our method does not require a complex inte-
ger quadratic programming (IQP) solver, but relies only on much
simpler continuous linear programs (LPs).

It builds on the same auxiliary T-mesh structure as the above state-
of-the-art method. But the task is not delegated in its entirety to an
external problem-agnostic solver. Instead, we exploit the geometric
nature of the problem, devising operators that enable incremental
transitions between consistent quantizations. These are applied in
a strategic sequence so as to greedily work towards an optimal
solution. Inspiration for this stems from related work addressing the
generation of surface quad meshes [CBK15].

The benefit is a significantly reduced and more predictable run
time, using only open source components, at a often marginal cost
in terms of quantization quality.

1.2. Method Overview

Our method’s larger context is the hexahedral mesh generation
pipeline as used in several recent works [BBC22, LB23, BC23]. It
can serve as a drop-in replacement for the quantization computation
step of this pipeline. Its input and output thus are as follows.

Input: A decomposition of a volumetric domain into cuboidal
blocks, possibly with T-junctions, for instance derived from a field-
guided parametrization as described by Liu et al. [LB23, §6.1]. This
decomposition can be interpreted as a non-conforming cell complex,
whose cells we will call blocks, its facets patches, its edges arcs and
its vertices nodes. Some patches, arcs, and nodes may be marked as
features, indicating that the intended hexahedral mesh is supposed to
be aligned with these. Each arc has an assigned (continuous) target
length, commonly derived from its parametric length.

Output: An assignment of integer lengths to the arcs, such that the
difference between these integer lengths and the target lengths is
low under some measure. This integer assignment can be interpreted
as the number of hexahedral layers (or sheets) later conceptually
passing through each arc as depicted in Fig. 2. The assignment is
globally consistent, meaning the number of sheets passing through
the opposite sides of a block are equal (i.e. any sheet going "into" the
block at one end comes "out" of it at its other end), and separating,
meaning all features (including singular edges and vertices) are
pairwise separated by at least one sheet passing between them. See
Fig. 3 for an illustration.

Procedure: First, we initialize the quantization by assigning zero
length to all arcs. This solution is trivially consistent, but of ex-
tremely low quality and, more importantly, not separating.

Our integer-sheet-pump (ISP) then repeatedly performs minimal
consistency-preserving modifications of this initial quantization.
These modifications, termed integer-sheet inflations/deflations, can
roughly be thought of as virtually inserting or collapsing sheets of
hexahedra in the (not yet existing) hexahedral mesh (cf. Fig. 1).
This is only a partial interpretation, though, as our integer-sheets
more generally correspond to linear combinations of hexahedral
sheets (cf. Fig. 5). Algebraically, an integer-sheet is a set of inte-
ger increments/decrements for the arc lengths, that when applied
preserves quantization consistency. We iteratively apply the most
favorable inflation/deflation based on how much closer this brings
the consistent integer arc lengths to their (continuous) target lengths.
This is repeated until no further favorable sheet operation can be
found.

Because this quantization, while consistent and now of high qual-
ity, might still be nonseparating, additional inflations follow, driven
by the goal of feature separation, until this is achieved.

Using the resulting valid (i.e. consistent and separating) quan-
tization, the above mentioned pipeline can proceed to generate a
corresponding hexahedral mesh.

Figure 3: Left: inconsistent quantization, due to non-matching left
and right patch sides. Center: non-separating quantization, the
feature node and feature arc (both teal colored) have a distance of
zero under the assigned integer lengths. This conceptually implies a
hole in the mesh or a collapse of the features (right).
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2. Related Work

A variety of approaches towards automatic hexahedral mesh gener-
ation have been explored, as discussed in a number of surveys
[PCS˚22, SRRGRN14, SJ08, Tau01, Bla00]. Methods based on
global parametrization, especially on so-called integer-grid maps,
are associated with particularly high flexibility and achievable qual-
ity, but also with challenges in robustness. Recent advances have
pushed also their robustness to higher levels [LB23, BC23]. We
focus on these parametrization-based methods in the following and
refer to the above surveys for a broader overview.

Integer-Grid Maps The general algorithmic pipeline for hexahe-
dral mesh generation based on integer-grid maps [NRP11] is based
on ideas from the simpler 2D case of quadrilateral mesh genera-
tion [KNP07, BZK09, BCE˚13]. An up-to-date overview is given in
recent works by Brückler et al. [BC23, BBC22].

This algorithmic pipeline is based on the following principle:
Compute a global seamless parametrization [NRP11, CSZZ19,
MC19, Lev21], typically guided by a smooth frame field [RSL16,
SVB17, LZC˚18, CC19, PBS20, ZVC˚20, LB23], and based on this
then make all the necessary discrete decisions to turn it into an
integer-grid map – which then implies a hexahedral mesh [LBK16].

The process of making the integer decisions is referred to as
quantization. After initial efficient but fragile rounding-based at-
tempts [NRP11, JHW˚14,LLX˚12], reliable solutions for this prob-
lem have recently been presented [BBC22, BC23].

Cell Decompositions The above reliable solutions are based on
structured cell decompositions of the volume (also called T-meshes).
They can be automatically constructed, for instance, by means of the
motorcycle complex [BGMC22], aligned with the given seamless
parametrization. Fig. 2 shows such a volumetric cell decomposition
of an example object. The way it is constructed, it serves as a con-
venient auxiliary structure on which the integer degrees of freedom
can be expressed and validity criteria can be formulated efficiently.
Our method operates on this basis as well.

Distantly related are other types of cell decompositions that have
been used in conjunction with hexahedral meshes, such as the base
complex [GDC15, Tak19], multi-block decompositions [LPP˚20],
and variations of the motorcycle complex [GLA23]. In the 2D
quadrilateral mesh setting, a decomposition structure called mo-
torcycle graph [EGKT08] has been used for quantization purposes.

Quantization In the 2D case, targeting quadrilateral mesh gen-
eration, a number of different strategies have been described
to reliably compute quantizations based on cell decompositions,
mostly T-meshes constructed according to the motorcycle graph
principle. Concretely, there are formulations as Integer Programs
[LCK21a, LCK21b], as Minimum Flow problems [HWB23], or as
series of Shortest Path problems [CBK15, LCBK19, CODH˚24].

In the 3D setting, targeting hexahedral mesh generation, the only
reliable solution so far is via an Integer Quadratic Program formula-
tion [BBC22, BC23]. The special case of meshes without internal
singularities (so-called polycube meshes) was addressed separately
[PRR˚22, CLS16]. As we demonstrate in Sec. 5, the IQP formula-

tion in the 3D case is rather slow when using a state-of-the-art open

source solver. It is faster with commercial solvers, but then shows
problematic worst-case behavior, leading to highly unpredictable
time requirements and making it hard to set stopping criteria to yield
at least near-optimal solutions. Our method offers a replacement for
this, requiring only a simple LP solver.

The related problem of interval assignment has been addressed in
a non-IQP manner using an incremental approach [Mit23] based on
a heuristic analysis of the algebraic constraint system. Feasibility of
the resulting integer assignment, however, cannot be guaranteed.

We make use of operations that, at the lowest level, can be in-
terpreted as inserting or removing sheets of hexahedra, albeit in
a virtual or implicit manner, before the hexahedral mesh even ex-
ists. On a conceptual level these have some relation to explicit
sheet operators that are used in mesh postprocessing methods
[SGW21, WGZC18, GPW˚17, SDW˚10, SSLS10, PBSB08].

3. Background

We adopt the notation of [BC23], viewing the given T-mesh de-
composition as cell complex T “ B Y P Y A Y N consisting of
blocks (3-cells) B “ tb1,b2, . . .u, patches (2-cells) P “ tp1, p2, . . .u,
arcs (1-cells) A “ ta1,a2, . . .u, and nodes (0-cells) N “ tn1,n2, . . .u.
There may be subsets of nodes N̂ ĂN, arcs ÂĂA and patches P̂ĂP
marked as features. As in previous work, we assume the singularity
structure encoded in T is supposed to be preserved (i.e. should
become the extraordinary edges in the hexahedral mesh), as is the
boundary. Hence all boundary patches and all singular arcs are con-
sidered features as well. Let us remark that a few other approaches
– in the 2D/surface setting – have also considered settings where
dynamic alteration by addition [PNA˚21] or removal [LCK21b] of
singularities as part of the quantization process is allowed.

Via a map ℓ : A Ñ R,ai ÞÑ ℓi a target length ℓ is assigned to
each arc. Via another map q : A Ñ Z,ai ÞÑ qi the sought quantized
integer lengths q are represented. As arcs can be indexed from 1 to
|A|, both mappings can be represented as |A|-dimensional vectors
ℓ “ pℓ1, ℓ2, ..., ℓ|A|q and q “ pq1,q2, ...,q|A|q.

The goal of quantization in general is to minimize the difference
between ℓ and q with respect to some distance function dpℓ,qq, while
keeping the quantization consistent and separating. In a consistent
quantization, the lengths of opposite patch sides are equal. This
intuitively corresponds to equally many quad strips (or hex sheets)
passing into and out of the patch. This is easily modelled via a
system of equality constraints Aq “ 0, with the consistency matrix
A containing entries from t´1,0,1u. Note that this per-patch length
equality implies consistency also on the level of blocks.

In a separating quantization, all features are properly separated
by at least one implied hex sheet passing between them, i.e. there is
a non-zero distance in terms of the assigned integer arc lengths q.
This can be modelled with inequality constraints Bq ě 1 [BBC22],
with the separation matrix B having entries from t´1,0,1u and 1
being a vector of ones. In essence, each such constraint sums the
assigned integer arc lengths q along arc-paths between features, and
thereby requires a non-zero distance in terms of quantized lengths.

Lastly, to prevent local inversions in the quantization, variables q
can either be given a lower bound of 0 (as was done in previous
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work on the 2D case [CBK15]) or, providing more freedom, three
inequality constraints per block can be introduced to enforce non-
negative block dimensions (as was done in previous work on the
3D case [BBC22]). In either case, this gives an additional Cq ě 0
with the non-negativity matrix C being either the identity matrix or
a matrix with 3|B| rows and entries from t0,1u.

This yields the general quantization problem

min dpq, ℓq (1a)

s.t. Aq “ 0 (consistency) (1b)

Bq ě 1 (separation) (1c)

Cq ě 0 (non-negativity). (1d)

In previous work [BBC22, LB23, BC23] eq. (1) is solved via a
sequence of IQPs, with the objective function set to the quadratic
expression dpq, ℓq “

ř

aiPA |qi ´ ℓi|
2. This is done as follows:

1) Set up A and C, initialize B empty (or with trivial constraints).
2) Solve (1) using a general-purpose solver for IQPs.
3) Search the arc graph for unseparated features. If any: append

corresponding separation constraints to B, goto step 2).

The separation matrix B is built lazily for efficiency, always adding
only the tightest violated constraints, because a very small subset
proves to often already be sufficient to achieve full separation.

4. Greedy Incremental Quantization

Our central goal is replacing step 2) in the above algorithm with
a tailored efficient alternative, not relying on IQPs. We design an
algorithm that initializes the quantization to satisfy (1b)+(1d), then
greedily works towards minimizing (1a) while preserving (1b)+(1d)
and establishing satisfaction of (1c) in the process.

4.1. Concept

Starting from an initial trivial quantization q0
“ 0 we obviously have

Aq0
“ 0 and Cq0

ě 0. We then wish to perform incremental additive
integer-valued updates ∆q preserving consistency, i.e. A∆q “ 0. We
reject potential updates that would violate Cpq`∆qq ě 0. Regarding
separation, however, we will need not only separation-preserving
updates ∆q, but also separation-establishing updates that enable
incremental reduction of the number of separation violations.

Ideally we would like to find an update ∆q that respects all these
requirements while directly leading to the globally optimal solution,
i.e. minimizing (1a). But this, of course, is just as hard as solving (1).
Hence we instead commit to a greedy search approach. Among
locally minimal updates q that are consistency- and nonnegativity-
preserving, we select one that improves the objective (1a) as much as
possible, or one that satisfies an additional constraint from (1c) while
deteriorating the objective as little as possible. Choosing such small
updates as the steps of our algorithm has two rationales: They can
be constructed efficiently, and they enable fine-grained navigation
towards the optimum.

These considerations lead to the high-level view of our algorithm
outlined in Alg. 1. After initialization of q, the outermost loop
alternatingly repeats the inner optimization loop and separation step
until global separation is achieved. The inner optimization loop

goes through all arcs and tries to find minimal updates bringing
arcs closer to their target length, starting with the arcs furthest away
from their target length. In this way the arcs that most negatively
impact the quadratic objective function are tackled first. OPTIMAL-
INTEGERSTEP determines the optimal multiplicity t P N for the
determined minimal consistent update ∆q: argmint |q ` t∆q ´ ℓ|2,
rounded to the closest constraint-feasible integer (due to convexity).
This is merely for efficiency; one could always use t “ 1. If the
found update improves the objective, we apply it and update all
affected arc priorities accordingly. Lastly, after convergence of an
optimization round we search for violated separation constraints
[BBC22], returning if there are none. Otherwise we apply a minimal
update that establishes separation for the lazily found violations and
then reoptimize.

Both the arc-based and separation-driven updates should fulfill
our previously stated requirements: local minimality, preservation
of consistency and non-negativity. In the following we will focus on
how to efficiently find exactly such updates.

Algorithm 1: INTEGER-SHEET-PUMP QUANTIZATION

Input: T-mesh with target lengths ℓ
Output: Final quantized integer arc lengths q
//Initialization//
q “ 0
set up A and C
B “ ∅
repeat

//Greedy optimization//
while still improving do

Q “ queue of arcs ai ordered by |qi ´ ℓi|

while Q not empty do
ai “ Q.pop()
∆q “ MINIMALARCUPDATE(ai) // App. C
t “ OPTIMALINTEGERSTEP(∆q,q, ℓ)
if |q ` t∆q ´ ℓ|2 ă |q ´ ℓ|2 then

q “ q ` t∆q
foreach nonzero row i of ∆q do

Q.update(ai)
//Lazy separation//
B1 “ LAZYSEPARATIONCONSTRAINTS(q) // [BBC22, Alg.1]
if B1 empty then

return q
B “ BYB1

q “ q ` MINIMALSEPARATINGUPDATEpq // App. C

4.2. Minimal Consistent Updates

Regarding the construction of locally minimal updates, we can take
inspiration from related work on the 2D quantization problem for
surface quad mesh generation [CBK15] – at least on a conceptual
level. In that work, the concept of generating vectors is used to
represent minimal quantization updates. In this context, generating
vectors are integer vectors ∆q representing the smallest consistent
building blocks that can form any consistent quantization by incre-
mental addition, when starting from q0

“ 0.

The main difficulty lies in determining such favorable generat-
ing vectors. Generating vectors ∆q fulfilling A∆q “ 0 turn out to
correspond directly to certain dual paths in the 2D/surface T-mesh.

© 2024 The Authors.
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Figure 4: Two examples of positive (green) and negative (red)
integer-strips ∆q constrained to pass through different root arcs
(blue) , illustrated as dual paths through the T-mesh and as cor-
responding (inserted or collapsed) quad strips. Note that not all
integer-strips can be simply interpreted as quad strips, see Fig. 5.

Figure 5: Top: quantizations. Bottom: corresponding quad meshes.
The transition shown on the left can be achieved through modifica-
tion of the quantization by the integer-strip shown top center. Note
that it has no corresponding interpretation as a quad strip insertion
in the mesh. Instead, it rather corresponds to a combination of mul-
tiple quad strip insertions and collapses, as shown on the right, and
thus is able to capture more complex transitions.

More specifically, these paths have to always traverse patches end-
to-end and have to be cycles or end at the boundary. The crossed
arcs have a value of 1 in ∆q, all others 0. Fig. 4 shows an example.
Due to their path nature, a simple Dijkstra-type algorithm can be
employed to find them. To this end, strictly positive weights are
assigned to each arc ai of the decomposition (and their dual arcs)
that gauge how much closer or further ∆qi “ 1 would bring that arc
towards its target ℓi. Using this, a minimum-weight path constrained
to pass through at least one root arc a˚ will pass through as few (in
a weighted sense) as possible other arcs. Hence, the corresponding
vector ∆q is a greedily chosen, locally minimal consistent update.

4.2.1. Sheet/Strip Metaphor

Intuitively, such a generating vector (or integer-strip) can be thought
of as inserting a single additional strip of quads in the quad mesh
that is structurally implied by the quantization. This is a limited
interpretation, though, as these virtual insertions do not translate
one-to-one to incremental updates of the implied quad mesh by
classical quad strip insertion (or collapse) operations. Integer-strip
insertions are more expressive than quad-strip insertions in the quad
mesh, in the sense that a single integer-strip insertion would require
multiple (and arbitrarily many) operations on the quad strips of a
quad mesh, as demonstrated in Fig. 5.

This strip metaphor can be lifted to the volumetric setting: pos-
itive updates ∆q correspond to the number of additional virtual

sheets crossing the arcs within the block decomposition, as shown in
Fig. 1 (center). We call those integer-sheets and hence our algorithm,
repeatedly inflating or deflating them, an integer-sheet-pump (ISP).

4.3. Formulation as a Linear Program

While the determination of integer-strips is equivalent to finding
paths in a graph, this concept does not extend to the volumetric
setting. Instead, determining an integer-sheet in the cell complex
is equivalent to finding a discrete dual surface within a polyhedral
mesh. This can be phrased as a linear program [Gra08].

Essentially, integer-sheets (and also integer-strips in 2D) rooted
at an arc a j are solutions to a linear program of the following form:

min
∆qě0

ÿ

aiPA

∆qiwi (2a)

s.t. A∆q “ 0 (2b)

∆q j ě 1 (2c)

with wi being the previously mentioned unfavorability weights of
arcs. These weights (detailed in eq. (4)) represent how unfavorable
it is for a strip/sheet to cross a given arc, and the objective function
therefore tries to minimize the total unfavorability of the strip/sheet.
j is the index of an arc a j which the strip/sheet is constrained to
pass through. Without (2c), ∆q “ 0 would be the trivially optimal
solution; the constraint effectively pumps up the otherwise flat sheet.
In the 2D case of integer-strips, A has a structure that allows the
LP to be easily solved via Dijsktra’s algorithm. Namely, A has at
most two nonzero entries per column – a result of each arc being
incident to at most two patches. In 3D arcs are generally incident to
an arbitrary number of patches and thus there are commonly more
than two entries per column, preventing this simple approach.

4.3.1. Integer Solutions

The above continuous LP always has a rational solution and one such
solution will reliably be retrieved by a standard simplex algorithm.
This follows from A,B,C as well as the constraint right-hand sides
only having integer entries [PS98]. This rational solution turns out to
even be an integer solution in the vast majority of cases. Intuitively,
this is due to the objective function trying to push all variables
down to their lower bounds – which is an integer 1 for the root arc –
while the consistency constraints propagate this value across patches.
Only due to rather intricate interplay of T-junctions, non-integer but
rational solutions occasionally occur.

Figure 6: 2D example of a T-mesh where constraining the blue
arc to value 1 will yield a consistent solution with half-integers.
Multiplication by 2 yields an integer-sheet in this case (right).

© 2024 The Authors.
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Figure 7: 3D example analogous to Fig. 6. For clarity only some
patches are shown, no blocks; imagine an extruded version of this
for a complete example. The third dimension allows nesting the U-
turn pattern, here illustrating that denominators 2, 4, 8 can result.

In 2D only one structural non-integer configuration exists
[CBK15], displayed in Fig. 6. In this case, going from the rational
LP solution to the respective integer-strip simply requires multipli-
cation by factor 2. In 3D, by contrast, non-integer rational solutions
with more varied denominators can occur. This is illustrated in Fig. 7.
By further nesting this structural pattern, examples with arbitrarily
high denominators could be constructed, although this is unlikely to
occur in practice. In any case, an integer solution can be obtained
through multiplication with the least common denominator.

Note, however, that such an integer solution obtained through
multiplication might not actually be locally minimal anymore. We
could resort to solving the LP as an actual ILP (with integer-valued
variables) in such cases. However, we determined that the lcd differs
from 1 quite rarely, and in these cases it is by far most often just 2;
see Fig. 8. It hence appears reasonable to accept this minor local
suboptimality for the sake of efficiency and simplicity within the
anyway approximative algorithm.

4.3.2. Weights

To determine integer-sheets ∆q whose inflation (q`∆q) is favorable,
the weights wi ą 0 per arc need to be chosen to reflect unfavorability
of arc inflation. To determine integer-sheets whose deflation (q `
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Figure 8: Distribution of least common denominators of all the
rational LP solutions computed over all models in our test dataset
(cf. Sec. 5). In 92% of the cases it is 1, i.e. no multiplication is
required to yield an integer-sheet.

Figure 9: The transition depicted on the left is desired, it brings the
integer lengths closer to the target values (grey). Via sequential in-
flation or deflation of integer-sheets, however, this transition cannot
be achieved in a monotonic manner. But a mixed-sign sheet, which
can be interpreted as a sum of multiple sheets, here one inflating
(green) and one deflating (red), enables the transition atomically.

p´∆qq) is favorable, they need to be chosen to reflect unfavorability
of arc deflation.

A weighting scheme that fulfills these requirements is the one
also used for the 2D Dijkstra formulation [CBK15]. For each arc
ai P A the weights are built from the signed difference εi of each
arc’s current quantized length from its target length:

εi “

#

ℓi ´ qi, if inflating
qi ´ ℓi, if deflating

(3)

Based on this, a 3-tier hierarchical weighting is employed:

wi “

$

’

&

’

%

1{pεi ` 1q, if 1 ď εi

|A|{pεi ` 1q, if 0 ď εi ă 1
|A|

2
p1 ´ εiq, if εi ă 0

(4)

Arcs in the highest tier would be shifted towards their target length
and consequently have very low unfavorability weights between 0
and 1{2. Arcs in the second tier would be shifted across their target
length, so an inflation would be either slightly favorable or slightly
unfavorable. These are assigned weights between |A| and |A|{2,
which by construction is strictly greater than the combined weights
in tier 1. The third tier concerns arcs that would be shifted even
further away from their target, and are assigned weights at |A|

2 and
above – larger than the last two tiers combined. This hierarchical
weighting ensures that arcs for which a shift in length would be
unfavorable will only be shifted if there is no way to shift instead
any number of other arcs for which the shift would be favorable.

4.3.3. Mixed-Sign Sheets

So far we have silently assumed the variables in our LP formula-
tion to be non-negative. This corresponds to either an integer-sheet
inflation or a deflation (when the negated result is added).

It is not hard to see that there are cases for which both simple sheet
inflations and deflations fail to escape local minima of the global
objective function dpq, ℓq “ |q ´ ℓ|2. One such case in a 2D setting
is shown in Fig. 9. Here, the global optimum is not attainable with a
greedy algorithm that only considers ∆q with non-negative (or non-
positive) entries and requires monotonic decrease of dpq, ℓq. This
is a limitation also affecting the above mentioned 2D quantization
algorithm [CBK15].

Instead of compromising the greedy nature of the approach to
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overcome this, we suggest here a way of modelling mixed-sign
updates ∆q “ ∆

`̀̀q ´ ∆
´́́q, i.e. mixed inflation and deflation, with the

same formalism via two non-negative vectors ∆
`̀̀q, ∆

´́́q. To this end
we extend LP (2) as follows:

min
∆̀̀̀ q,∆́́́ qě0

ÿ

aiPA

∆
`̀̀qiw

`̀̀

i ` ∆
´́́qiw

´́́

i (5a)

s.t. Ap∆
`̀̀q ´ ∆

´́́qq “ rA | ´As

„

∆
`̀̀q

∆
´́́q

ȷ

“ 0 (5b)
#

∆
`̀̀q j ě 1 ^ ∆

´́́q j “ 0 if inflating a j

∆
`̀̀q j “ 0 ^ ∆

´́́q j ě 1 if deflating a j
(5c)

where w`̀̀

i and w´́́

i are the inflation/deflation weights computed via
eqs. (3) and (4), and a j is an arc constrained to be either inflated or
deflated. With this the transition in Fig. 9 can be achieved in a single
greedy step.

4.3.4. Enforcing Separation and Non-Negativity

Of our constraints (eqs. (1b)–(1d)) only consistency has been taken
into account so far. Incorporating the other two is straightforward
through the relation q “ qpre `∆q where qpre is the current quantiza-
tion before applying the update. Using this substitution, separation
and non-negativity constraints can be added to the LP as:

B∆q ě 1 ´Bqpre (6a)

C∆q ě ´Cqpre (6b)

These constraints operate in two ways during our greedy opti-
mization. If the current quantization qpre is already separating (and
non-negative), then these constraints merely provide bounds for
the integer-sheet-pump driven by single arc inflations or deflations
(via (5c)). When demanding arc deflation, the LP may even become
infeasible, signalling that forced deflation of a certain arc would be
incompatible with separation or non-negativity. This mode is used
in MINIMALARCUPDATE from Alg. 1. On the other hand, if the
current quantization is currently non-separating – which may be the
case initially due to separation constraints being added lazily – no
arc-driven pumping via (5c) is needed; the sheet is self-inflating via
(6a). This mode is used in MINIMALSEPARATINGUPDATE from
Alg. 1. Both algorithms are listed in App. C for reference.

A challenge that presents itself here are the occasional non-integer,
rational solutions to the LP. If one avoids these by re-solving the LP
with integer constraints as an ILP, there is no problem. Otherwise, if
an integer-sheet is obtained via lcd-multiplication, additional care
needs to be taken. The rational quantization update by construction
would stay within all bounds but a multiple of it might not. Note,
however, that this can only be the case when negative values are
involved. Hence, for non-integer updates we encounter that become
infeasible through multiplication, we solve restricted LPs instead
(with ∆

´́́q “ 0 and negative values suppressed in B). This yields
a solution from a more constrained yet feasible space, which can
always be scaled as necessary to obtain an integer solution that
establishes separation. Details on this fallback are given in App. B.

4.4. Implementation Considerations

The complete LP formulation, including all described extensions,
is stated in App. A. In that formulation, there are two variables

per arc, two equality constraints per patch, and a varying number
of inequality constraints. We observe that often not all variables
are mutually dependent via constraints. This allows partitioning
the problem into multiple independent subproblems, which can be
solved more efficiently. To this end, we determine the clusters of
variables that are transitively dependent via constraints. For each
cluster then a separate LP with those constraints that involve the
respective variables is formed. On average this resulted in around 5
subproblems in our experiments.

Furthermore, we can trivially reduce the problem size of these
subproblems, by eliminating one variable and one constraint for
each equality constraint that involves only two variables, i.e. for
each pair of opposite patch sides consisting of only one arc each.
This situation occurs quite frequently in the T-meshes studied here:
only around 15% of consistency constraints involved more than two
variables in our experiments.

5. Results

We have implemented our method as a modification of the IQP based
software released by Brückler et al. [BBC22]. Our integer-sheet-
pump (ISP) implementation is available in the same code repository,
github.com/HendrikBrueckler/QGP3D. It employs CLP from the
COIN-OR project [LH03] as an open-source solver for linear pro-
grams. Experiments were conducted on a modern 32-core server
CPU. While multithreaded performance might be an interesting sub-
ject to investigate, our experiments solely focus on single-threaded
performance, allocating exactly one thread per experiment instance.

An experiment instance here is an input model equipped with
a seamless parametrization (based on which an aligned T-mesh
can be computed) and a scaling factor. Target lengths of arcs are
given by their length under the seamless parametrization, scaled by
aforementioned global factor. This factor effectively controls the
resolution of the resulting hexahedral mesh. As input we use the
same datasets as employed in [BC23], and per model the T-mesh
is computed via the motorcycle complex [BGMC22]. Each model
we use in combination with 8 different scaling factors, chosen per
model such that 0%, 1%, 5%, 10%, 17%, 25%, 50% or 100% of
arcs have a target length below 0.5, respectively, yielding a total of
1568 test instances. Spreading out the scaling factors like this, we
aim to cover the full range of potential application scenarios ranging
from the generation of maximally coarse block layouts to dense
hexahedral meshes, where the optimization problems might behave
quite differently.

We compare our ISP method to two implementations of the IQP
formulation [BBC22] based on different general purpose solvers as
back-ends. Our main point of comparison is using the open-source
solver BONMIN [BBC˚08]. Additionally, we report timings for
using the commercial solver GUROBI [Gur24].

5.1. Quantization Evaluation

Comparison methodology In this part of our evaluation we want
to focus on three key aspects to gauge our method’s performance
against IQP formulations based on general-purpose solvers. Those
are execution speed, predictability of run time and optimality of
results obtained within certain time frames.

© 2024 The Authors.
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Figure 10: Generic example of solver behavior over time. Branch-
and-bound IQP solvers as well as our ISP method are (after an
initial phase) anytime algorithms, i.e. can be interrupted to return
intermediate results (of increasing quality over time).

All three aspects are not as straightforward to compare between
implementations as one may expect. Often, general-purpose integer
solvers may find a good or even optimal solution after a moderate
amount of time and then spend a disproportionately larger amount
of time on closing the optimality gap – not necessarily by improving
the solution but by incrementally determining that no better solution
exists. In the worst case this involves exploring an exponential
amount of promising but eventually worse alternative solutions.
When comparing execution times, it is not immediately obvious
which time to use for comparison – the one where a (in some sense)
good solution was found, the one where the optimal solution was
found, or the final time when the solver terminates.

Hence, in the following we will compare not a single time and a
single objective value but rather entire time curves of the objective
values dpqptq, ℓq. An example of such a time curve is shown in
Fig. 10. Until a solution that is feasible with respect to eqs. (1b)–(1d)
is encountered, the objective value can be considered undefined or –
more practically – infinite. The second particular point of interest
is the final drop of the curve, i.e. the time of acquisition of the final
solution and its objective value, which we will refer to as tmin and
dmin, respectively. Lastly, the final termination time we will denote
by tend. These curves and their key indicators form the baseline for
the following evaluations.

Optimality over time For this evaluation we aim to find each
method’s “average time curve” of the objective value, over the
entire set of test instances. Because both the time and objective
scale may differ by orders of magnitude, we need to normalize
both axes. For the objective value we normalize via division by the
(quasi-)optimum, the final objective dmin of the commercial IQP
solver version (with only a generous time limit of 5h). Because
the result will be in the range r1,8q we take the inverse before
averaging the resulting curves. This inverse then represents a relative
optimality between 0 (infeasible) and 1 (quasi-optimal). For the time
axis, to make comparison between our method and others clearest,
we normalize via division by tmin of our method. The result of this
normalized averaging is displayed in Fig. 11. Evaluation of the plot
suggests that for the average problem instance our algorithm is most
likely to achieve near-optimal results at 98% optimality, and perform
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Figure 11: Comparison of relative optimality over time on a per-
model basis. Plots of all test instances were normalized along the
time axis, relative to tmin of our algorithm, then averaged. Our
method achieves its average final optimality of «98% in about a
hundredth of the time the open-source IQP solver needs to reach
similar optimality levels on average and in about a tenth of the
time the commercial IQP solver requires. Past these times both IQP
solvers achieve minor further improvement on average, albeit at
diminishing rates.

faster than both the commercial and open-source IQP methods by
one or two orders of magnitude, respectively.

To demonstrate the performance of our method when processing
a large dataset sequentially, we measured a second time series in
which all experiment instances are processed sequentially and both
time and relative optimality are accumulated over the course of the
experiment. In this case, running the IQP solvers without an early
termination criterion is impractical, as they would sometimes spend
huge amounts of time to marginally improve or to conclude optimal-
ity before advancing to the next test instance. For fair comparison,
we therefore test our method against the IQP approach with early ter-
mination. Concretely, in one experiment we allow termination once
the solver’s optimality gap drops below 30%, in a second experiment
we instead set an upper time limit, enabling early termination after
20 seconds of processing time per model. The resulting cumulative
optimality curve is plotted in Fig. 12. Remarkably, the gap-based
stopping criterion, despite allowing a rather high suboptimality of
30%, proves to be very ineffective at reducing the overall execution
time of the IQP solver. On the other hand the time-limited IQP solver
performs objectively worse than our approach in terms of both speed
and optimality. We conclude that our method in this scenario again
performs clearly better in terms of speed and comparably in terms
of optimality, while not requiring the tuning of meta-parameters like
early termination criteria to achieve this.

Predictability of tend Generally, a desirable property of an algo-
rithm is allowing to roughly estimate the necessary execution time to
produce useful output based on the complexity of the input. For the
quantization scenarios relevant here, a simple measure representing

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



H. Brückler, D. Bommes, M. Campen / Integer-Sheet-Pump Quantization for Hexahedral Meshing 9 of 13

101 102 103 104 105
0

0.2

0.4

0.6

0.8

1

Accumulated time [s]

A
cc

um
ul

at
ed

re
la

tiv
e

op
tim

al
ity

ISP (Ours)
Open-Source IQP solver
(Stop when gap <30%)

Open-Source IQP solver
(Stop when time >20s)

Figure 12: Comparison of relative optimality over time for sequen-
tial processing of the whole dataset. The y-axis represents the nor-
malized sum over model-wise relative optimalities. Our method
finishes processing all 1568 instances in just 30 minutes. Despite the
large allowable optimality gap of 30%, the total processing time of
the gap-limited IQP solver exceeds ours by two orders of magnitude,
showing the ineffectivity of this early stopping criterion. The time-
limited IQP solver performs about an order of magnitude faster
than its gap-limited counterpart but drops to 95% overall relative
optimality, thereby being surpassed by our algorithm in terms of
both speed and quality.

input complexity is the number of arcs in the input cell decompo-
sitions, because these are directly associated with the variables of
interest.

Fig. 13 shows the distribution of algorithm termination times
tend. For the IQP solvers a 10% optimality gap was allowed as early
termination condition. Overall, the qualitative differences in run
time are reflected here once more, with our method in the lowest
tier of termination times. More interestingly, though, we see wildly
diverging termination times for models above «300 arcs in case of
the open-source IQP solver or above «800 arcs for the commercial
solver, in some cases spanning a large range of run times even for
the same, but differently scaled input model. Due to the time limit
that was necessary for practicality, it is unclear how much further
this divergence actually goes for large inputs. For our algorithm, run
times seem to scale much more predictably with input size.

Optimality of dmin We reported above already the average accu-
racy of our method when compared to a (quasi-)optimal benchmark.
Fig. 14 shows a more detailed view of the distribution of final ob-
jective function values dmin. For the IQP approach we consider two
values per instance: the final objective value and the (possibly in-
termediate) objective value at 10ˆ the time tend required for our
algorithm to terminate.

Halting the IQP solver after 10ˆ the time required, results in
an equally good objective value for 71% of instances, in a better
value in about 12% of cases and a worse value in 17% of cases,
including 7% where no feasible solution had been found at all. Our
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Figure 13: Comparison of run time over input size, as represented by
the number of arc variables. Run time variance gives an estimate of
the predictability of algorithm run times. IQP solvers, due to large
gaps between typical and worst-case performance, are typically
lacking in this regard – as becomes evident also here, with variances
of up to four orders of magnitude for similarly complex inputs. Run
times of our algorithm on similar inputs rarely differ by more than
one order of magnitude and never by more than two.

final solution in turn was on par with the final solution of the IQP
approach in 84% of cases, worse in 16% of cases and better in 2%
of cases. Such latter cases, where our greedy algorithm outperforms
the IQP algorithm in terms of optimality, can occur for two reasons:
first, the time limit of 5h for the IQP solver, and second, the fact that
the lazily added separation constraints [BBC22] are over-zealous
(sufficient but not necessary); depending on the path of optimization,
different parts of the feasible space are excluded.

Significance of mixed-sign sheets Finally, let us also evaluate the
significance of our proposed extension to mixed-sign sheets. As
demonstrated in Fig. 9 we have identified cases, where considering
only uniform-sign updates leads to getting stuck in certain local
minima – even in 2D cases. The inset of Fig. 14 demonstrates the
performance of our algorithm with and without mixed-sign sheets
enabled. Enabling mixed-sign sheets yields significantly better final
objective values in about a quarter of cases, with best-case improve-
ments by factors of 2 and above. Let us remark that these mixed-sign
sheets are a general conceptual improvement also over the greedy
2D quantization algorithm [CBK15]; such mixed-sign updates are
not amenable to that algorithm’s Dijkstra-based approach.

5.2. Hexahedral Meshing

Hexahedral meshes implied by the computed quantizations were
produced using the ALGOHEX library [LB23]. Note that the T-mesh
is used only as an auxiliary structure to derive and represent suitable
integer spacings between critical entities (singularities, boundaries,
and features), the position of T-mesh walls does not carry over to the
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Figure 14: Comparison of other methods’ accuracy (in terms of achieved objective value) relative to our method, over the test instances. It
can be seen that even after granting the IQP solver 10ˆ the time per instance that our method takes, it has not found an even just feasible
quantization for about 7% of the instances, and the quantization found for the others is slightly worse than ours on average. Furthermore, our
method’s result is close to optimal or optimal in the vast majority of cases: The final solution returned by the IQP solver after nearly unlimited
time (a generous time cap of 5h) is better by 2.6% on average. Regarding the few outliers, see Fig. 15. The inset illustrates the benefit of
enabling mixed-sign sheets. Notice how in some cases it is crucial in order to escape bad local minima.

resulting hexahedral mesh. Instead the quantization on the T-mesh
is used only to determine exactly the integer degrees of freedom of
a global integer-grid map subsequently optimized for low distortion.
The resulting hexahedral sheets extracted from it do not necessarily
align with the precursor T-mesh walls, only the marked features and
singularities are matched by the mesh as intended.

As a consequence, differences in optimality of a T-mesh quanti-
zation do not directly translate into equivalently large differences in
hex mesh quality, but rather inaccuracies in achieving exactly the
desired target resolution of the hex mesh – especially when the dif-
ferences in quantization accuracy are relatively small, like with the
average 2% suboptimality of our method’s results. Fig. 16 demon-
strates to what extent typical differences between our method’s
quantization and the optimal quantization are reflected in the re-
sulting hex meshes – including a note on the relative speedup for
reference. As conjectured before, there are no noticeable differences,
not even if the quantization accuracy differs by 10% or 20%. Taking
a look at the so-called base complex of the generated hex meshes,
one can find small differences in the layout, mostly due to different
relative alignment of singularities in the mesh structure.

5.3. Limitations

There are however, in contrast to the cases discussed above, situa-
tions where the exact alignment of singularities in the mesh play
a role also for hexahedral element quality. Specifically if there are
singularities that in the T-mesh are barely misaligned and confined
by other critical entities surrounding them, it can be relevant that the
quantization realigns the singularities by very strategically placed 0s.
Otherwise there may be very flat or misshaped hexahedral sheets
in the output that need to squeeze between singularities and bound-
aries in geometrically unfavorable ways. Fig. 15 shows one of the
rare examples where our quantization process ends up in a rather

Figure 15: Left: result using the IQP solver. Right: result using our
ISP method. The main difference is an additional sheet (orange).
This causes a quantization objective higher by 57%. In essence, one
more layer of hexahedra squeezes into the sharp tip near the base
of the ramp, or in terms of the quantization: more very short arcs of
target length «0 were quantized to length 1.

suboptimal local minimum that essentially contains an additional
sheet – that cannot monotonically be removed using our operators.
As it is very flat near the base of the ramp (squeezing between the
boundary and a prescribed singularity), it has a strong impact on the
objective value. In part this is also due to the prescribed singularity
structure being quite badly located near the base of the ramp in this
input example from the dataset.
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Figure 16: A selection of hex meshes produced from optimal quantizations (blue) or from our ISP quantizations (green). Beside the plain hex
meshes a highlighting of the structure of the respective base complex (BC) is shown, which allows an easier visual inspection of singularity
alignment and element count. Times (relative to the commercial IQP solver) and suboptimality numbers refer to the quantization phase.

6. Conclusion

Taking inspiration from previous work on 2D quantization for quad
meshing, we have presented a novel greedy LP-based formulation,
that allowed us to propose a more general approach suitable for
3D quantization for hexahedral meshing. Focusing on aspects of
open-source availability, usability, and speed we have demonstrated
clear advantages of using our tailored approach for volumetric quan-
tization over the previous state of the art which relies on hard-to-
configure, expensive, or slow general-purpose IQP solvers.

Building on our formulation, it will be interesting to investigate
variants supporting also structural modification of the singularity
graph by singularity recombination or insertion. Such an approach
may benefit also cases like the one shown in Fig. 15. Also additional
types of integer-sheet operators are worth investigating for such
cases, to help escaping the occasional local minimum of low quality.

Another interesting avenue for future research is the design and
use of objective functions in the quantization phase that are more

directly tied to the resulting mesh and its quality rather than focusing
somewhat indirectly on a per-arc fitting of sizing.
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Appendix A: Complete LP Formulation

With all extensions described in Sec. 4.3 the final LP is:

min
∆̀̀̀ q,∆́́́ qě0

ÿ
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Defining ε
˘
i “ ˘pℓi ´ qiq, the weights w˘

i are given by
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This LP is invoked in multiple ways by Algs. 2 and 3.

Appendix B: Failsafe Feature Separation

In the LP (7) all equality constraints are homogeneous. If in addition
all inequality constraints had non-negative coefficients only, any
positive multiple of a solution would be a solution as well. This is of
relevance for the rare cases in which we need further quantization up-
dates in order to establish separation, but the LP yields a non-integer
solution that needs to be scaled up. By using a non-deflating mode in
this case, i.e. constraint (7g) is activated, all relevant coefficients of
eq. (7d) are non-negative. The separation constraints (7c), however,
depending on how they are formulated may contain some negative
coefficients in matrix B. Alg. 3 therefore, if necessary, switches to
a non-negative matrix B`̀̀ (defined below) to ensure separation can
always be achieved.

The separation constraints arise from a graph search on the T-
mesh [BBC22, Alg.1]. A path between two features that implies zero
quantized distance between these serves as a witness of feature non-
separation. Based on the discovered path, an additional constraint is
devised that enforces separation. Such a path, by
construction, always has one axis along which it
expands monotonically – here the axis of arc a2.
Along the other axes the path may wind back and
forth, as seen here for a1 and a3. Separation along
one axis is sufficient, i.e. the desired constraint is
q2 ą 0 _ q1 ´ q3 ‰ 0. This can be turned into a linear constraint
(for separation matrix B) in a conservative manner in different ways.
By default, we use q2 ` pq1 ´ q3q ą 0 [BBC22]. When building
matrix B`̀̀ we instead turn it into q2 ą 0, i.e. separation specifically
along the monotone axis is asked for, leading to only non-negative
coefficients.

Appendix C: Subroutine Pseudocode

Algorithm 2: MINIMALARCUPDATE

Input: T-mesh with target lengths ℓ and current quantization qpre;
matrices A, B, C; root arc a j

Output: Integer quantization update ∆q improving q j

∆q “ 0
if qpre, j ă ℓ j then

∆q “ solve eq. (7a), s.t. eqs. (7b)–(7d) and (7e)
else

if eqs. (7c) or (7d) incompatible with eq. (7f) then
return 0

∆q “ solve eq. (7a), s.t. eqs. (7b)–(7d) and (7f)
if ∆q not integer then

∆q “ lcdp∆qq ¨ ∆q
if ∆q violates eqs. (7c) or (7d) then

return 0
return ∆q

Algorithm 3: MINIMALSEPARATINGUPDATE

Input: T-mesh with target lengths ℓ and current quantization qpre;
matrices A, B, C; root arc a j

Output: Integer quantization update ∆q enforcing separation

//Default mode//
∆q “ solve eq. (7a), s.t. eqs. (7b)–(7d)
if ∆q is not integer then

∆q “ lcdp∆qq ¨ ∆q
if ∆q violates eqs. (7c) or (7d) then

//Non-deflating mode//
∆q “ solve eq. (7a), s.t. eqs. (7b)–(7d) and (7g)
if ∆q is not integer then

∆q “ lcdp∆qq ¨ ∆q
if ∆q violates eq. (7c) then

//Failsafe mode (App. B)//
B “ B`̀̀

∆q “ solve eq. (7a), s.t. eqs. (7b)–(7d) and (7g)
if ∆q is not integer then

∆q “ lcdp∆qq ¨ ∆q
return ∆q
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