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Figure 1: Level sets of a neural distance field trained with our method on a lightbulb model from Thingy10k [ZJ16]. Given an input point
cloud with no knowledge of the ground truth distance function, we are able to fit a neural distance field that is close to the real signed distance
function while being guaranteed to be 1-Lipschitz.

Abstract
Neural implicit surfaces are a promising tool for geometry processing that represent a solid object as the zero level set of a
neural network. Usually trained to approximate a signed distance function of the considered object, these methods exhibit great
visual fidelity and quality near the surface, yet their properties tend to degrade with distance, making geometrical queries hard
to perform without the help of complex range analysis techniques. Based on recent advancements in Lipschitz neural networks,
we introduce a new method for approximating the signed distance function of a given object. As our neural function is made 1-
Lipschitz by construction, it cannot overestimate the distance, which guarantees robustness even far from the surface. Moreover,
the 1-Lipschitz constraint allows us to use a different loss function, called the hinge-Kantorovitch-Rubinstein loss, which pushes
the gradient as close to unit-norm as possible, thus reducing computation costs in iterative queries. As this loss function only
needs a rough estimate of occupancy to be optimized, this means that the true distance function need not to be known. We are
therefore able to compute neural implicit representations of even bad quality geometry such as noisy point clouds or triangle
soups. We demonstrate that our methods is able to approximate the distance function of any closed or open surfaces or curves
in the plane or in space, while still allowing sphere tracing or closest point projections to be performed robustly.

1. Introduction

Implicit surfaces [BB97] are a powerful tool for geometric model-
ing and computer graphics, with direct applications in constructive
solid geometry, rendering or surface reconstruction. Unlike explicit
representations like point clouds, surface meshes or voxel grids,
which rely on a discretization of space, an implicit representation
involves defining an object as the zero level set of a continuous
function. In the last few years, this idea have received a lot of atten-

tion with the introduction of neural implicit surfaces, which encode
the function as the parameters of a neural network, allowing such
representations to be computed for arbitrary input shapes.

Infinitely many implicit functions can correspond to the same ge-
ometry, yet not all of them are created equal: properties of the func-
tion sometimes need to also be preserved far from the zero level
set. A useful implicit representation to consider in these contexts
is a signed distance function (SDF), which outputs the distance to
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the boundary of its underlying object, counted negatively for points
that are inside. A SDF has a unit-norm gradient almost everywhere,
making it a 1-Lipschitz function. Having a 1-Lipschitz implicit rep-
resentation is a necessary condition for applications like ray march-
ing [Har95], numerical simulation [SS03, SC20] or geometrical
queries like surface projection to be performed easily. When com-
puting an approximated SDF, it is indeed crucial to never overesti-
mate the true distance otherwise correctness of the queries cannot
be guaranteed. In practice, this means that the function’s Lipschitz
constant should never exceed 1. However, this Lipschitz property
is often overlooked by neural implicit methods, which rather focus
on surface fidelity and detail preservation, making them unusable
in these contexts without relying on careful range analysis [SJ22].

In this work, we propose a method to approximate the signed
distance function of an object by using neural network architec-
tures that are 1-Lipschitz by construction [AHD∗23], thus guaran-
teeing correctness of geometrical queries even during training. The
Lipschitz constraint of these neural architectures allow us to utilize
a different loss function, called the hinge-Kantorovitch-Rubinstein
(hKR) loss [SMG∗21]. This loss has two important effects. Firstly,
we prove that any minimizer over all possible Lipschitz functions is
close to the SDF of the considered object, which makes our trained
neural network a very good approximation of the true distance, as
illustrated in Figure 1. Secondly, using the hKR loss makes us ap-
proach the problem of learning a signed distance field not from
the usual supervised regression point of view but from a semi-
supervised classification point of view: instead of fitting a neural
network’s output to precomputed distances over a dataset of points,
we instead try to maximize the distance between points from in-
side the shape and points from outside while remaining 1-Lipschitz.
This means in particular that the only information required for
training is knowing in which category (inside or outside of the input
shape) a point is, an information that can be robustly extracted even
for point clouds or triangle soups [BDS∗18]. As a consequence, we
are able to approximate the SDF of an object without access to the
ground truth distance, enabling training for a wide range of inputs
including triangle soups and point clouds, even noisy, sparse or in-
complete.

To summarize, our contributions are as follows:

• We apply the known method of minimizing the hKR loss on
some 1-Lipschitz neural network to the problem of approximat-
ing the signed distance field of an object.

• We demonstrate that such an approach solves the usual robust-
ness issues of similar methods, as it outputs a function that is a
good approximation of the true signed distance function while
being guaranteed to never overestimate it.

• As the hKR loss does not need ground truth distances but only
occupancy labels, we show that we are able to compute signed or
unsigned distance fields of noisy, incomplete or sparse represen-
tations of objects of any topology, including open surfaces and
curves.

• We apply our method to a variety of geometry processing tasks,
like surface sampling, medial axis estimation, constructive solid
geometry and ray marching.

2. Background and Related Work

2.1. Signed Distance Function

In all of this work, we will denote by Ω some solid object Rn, where
n = 2 or 3. The signed distance function (SDF) of Ω is the function
SΩ defined over Rn as:

SΩ(x) =
(
1Rn\Ω(x)−1Ω(x)

)
min
p∈∂Ω

||x− p||

where ∂Ω is the boundary of Ω and the distance considered in
the Euclidean distance.

Signed distance functions have mainly been studied in com-
puter graphics for the ease with which they enable certain opera-
tions like boolean composition [Ric73], smooth blending [Bli82],
surface offset [FP06] or deformation [SP86] while still allowing
an explicit representation, like a surface mesh, to be extracted for
instance using the marching cubes algorithm [LC87, dLJ∗15]. In
essence, the SDF value at point x gives two pieces of information:
its sign directly tells if the query point is inside or outside the object,
while its magnitude gives the radius of the largest sphere centered
at x that does not intersect the boundary of the object. This obser-
vation is the starting point of the sphere tracing algorithm [Har95]
which enables direct rendering of SDFs. Additionally, the gradient
of the SDF is aligned with the normal vector field of the object
on its boundary and gives the direction to the closest point on the
boundary. Evaluating the function and its gradient at a point there-
fore gives a simple strategy for projecting onto the zero level set
(Figure 2, left).

2.2. Lipschitz Implicit Representations

Although the SDF of an object is easy to compute in closed form
for simple shapes (see for instance [Quia] for a list), the same can-
not be said of objects found in the wild. Representing those objects
via a general implicit surface or even an approximated SDF can
still achieve high visual fidelity but comes at a cost. In such con-
texts, there is indeed no direct strategy for closest point queries or
ray intersections: one has to rely to iterative methods, where a key

| f |< |SΩ|| f |> |SΩ|SΩ

Figure 2: The value of the SDF SΩ at point x is the radius of the
larger sphere centered at x that does not intersect Ω (left). For an
approximated SDF f , if f overestimates the distance (middle), then
the query is wrong and no guarantees can be drawn. If f always un-
derestimates the distance (right), iterating the query still converges
to the correct result.
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quantity to control is the Lipschitz constant L of the implicit func-
tion. Recall that a function f is L-Lipschitz if it satisfies:

∀a,b ∈ Rn, || f (b)− f (a)||⩽ L ||b−a||.

If f is differentiable, its Lipschitz constant L is an upper bound
on the norm of its gradient. Since the signed distance function has
a unit-norm gradient, an implicit function with L > 1 may overes-
timate the true distance. As a consequence, the sphere centered at x
of radius f (x) may intersect the surface and yield a false negative
(Figure 2, middle). No guarantee can be drawn onto the correctness
of the query in this case. On the other hand, having L < 1 implies
that the function always underestimates the distance. Iterating the
empty sphere query in this case will converge to the correct result
at a cost of a greater computation time (Figure 2, right).

An extensive bibliography exists on algorithms for performing
robust geometric queries on approximate SDFs. Previous works can
be organized into two categories. Methods from the first one rely on
interval arithmetic and careful range analysis to detect overshooting
and false negatives [Duf92, SJ22,AZ23], thus guaranteeing robust-
ness at the cost of more complexity. Methods from the second cat-
egory instead estimate the Lipschitz constant of the implicit func-
tion and apply a local or global rescaling [KB89,GGPP20] to query
f/L instead. However, computing the exact Lipschitz function for
neural networks is a NP-hard problem [JD20] and finding a good
approximation of it remains tricky [VS18].

2.3. Neural Implicit Surfaces

Approximating a distance function has historically been achieved
using basis functions like blobs or blended balls [Bli82,WMW86].
In the last few years, an ongoing trend has proposed to encode it
into the parameters θ of a multilayer perceptron (MLP) fθ. This
idea of a neural field has sparked many applications in computer
graphics and learning, which are not restricted to distance fields.
We refer to Xie et al. [XTS∗22] for a survey.

Perhaps the most simple neural implicit representation is to rep-
resent the shape as a binary occupancy field, predicting 1 for points
inside the shape and 0 otherwise [CZ19]. This can be seen as a bi-
nary classification problem and treated as such [MON∗19]. While
enabling total surface reconstruction, such neural fields give no in-
formation far from the surface and are therefore hard to query geo-
metrically.

The DeepSDF [PFS∗19] algorithm is the first proposition of a
neural SDF. It is setup as a single large neural network optimized
over a collection of objects, where a given object is represented via
a latent vector fed as an input along the query point. This popular
setup allows shape interpolation [LWJ∗22], classification as well
as shape segmentation [PGMK23]. In contrast, training one net-
work per object has also been performed [DNJ21] for shape com-
pression purposes. Learning an unsigned distance field has also
been attempted either directly [CmP20] or using a sign-agnostic
loss [AL20a], thus extending the application of neural distance
fields to open surfaces and curves. All of these methods are su-
pervised, meaning that they are optimized to make the network’s

max ||∇ f || = 0.998max ||∇ f || = 1.43max ||∇ f || = 13.2

(a) Classical MLP (b) MLP with eikonal (c) Lipschitz neural
regularization network

Figure 3: Plot of a the gradient norm of neural distance fields on
a simple 2D dolphin silhouette. While minimizing the eikonal loss
stabilizes the gradient norm, only a Lipschitz network guarantees a
unit bound.

predictions match some pre-computed signed distances. Unfortu-
nately, the minimization of this loss alone does not guarantee that
the network will correctly extrapolate the distance for points not in
the dataset, especially if it is not dense enough. In particular, the
resulting function may present a gradient whose norm may vary
extensively and thus a large Lipschitz constant. This phenomenon
is illustrated on a simple 2D dataset on Figure 3 (a).

In order to bring the Lipschitz constant closer to 1, many works
rely on regularization losses applied to the gradient of the network.
The most widespread of such regularization is the eikonal loss,
which computes how much the norm of the gradient differs from
1. Initially introduced to improve the stability of the Wasserstein
Generative Adversarial Networks [GAA∗17], it was then naturally
adapted to neural distance fields [GYH∗20, YGKL21]. An alterna-
tive to the eikonal loss is the total variation loss [CD23], which
minimizes variations of the gradient norm and improves the quality
of the neural implicit function far from the zero level set. Alignment
losses, that penalize the difference between the gradient and some
normal vector field, improving visual fidelity over the zero level
set, have also been considered [AL20b, SMB∗20], often alongside
some eikonal term.

Yet, while these regularizing losses have a clear impact on
the gradient of the considered implicit function, their minimiza-
tion is performed in practice using first-order optimizers like
Adam [KB14], which means that their global minimizer is never
reached. Even though specific neural architectures have been de-
signed to better behave during optimization, like SIREN [SMB∗20]
that uses sine activations, nothing prevents a regularized network to
have a Lipschitz constant larger than 1 even after training for a long
period of time, as shown in Figure 3 (b).

Few neural implicit methods tackle the case where the true
signed distance to the object is not known or cannot be computed.
In this harder context, Lipman [Lip21] defines the PHASE loss, al-
lowing to learn an occupancy field using only a representation of
the boundary of the object. The signed distance function is then
retrieved using a log transformation. Finally, while their applica-
tion is classification and outlier detection, the method of Béthune
et al. [BNB∗23] learns a SDF from an occupancy field by also mini-
mizing the hinge-Kantorovitch-Rubinstein loss. Although very sim-
ilar, our method is simpler as their Newton-Raphson update of the
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distribution is unnecessary in our case, as well as faster since we
use a more computationally efficient neural architecture.

2.4. Lipschitz Neural Networks

At its core, a neural network is nothing more than a function fθ
where the parameters (or weights) θ ∈ RK are arranged in a pre-
determined pattern. Specifying such an architecture defines a func-
tional space:

F = { fθ |θ ∈ RK}

over which learning algorithms optimize the weights to find the
function f ∗θ that minimizes some user-defined loss criterion. Know-
ing exactly the extent of the functional space F for a fixed ar-
chitecture is an open problem in deep learning, but recent works
have managed to define some F as a subset of L-Lipschitz func-
tions [SMG∗21].

The investigation of Lipschitz architecture in deep learning is
primarily motivated by the robustness of such networks against ad-
versarial attacks and overfitting. Early attempts focused on regu-
larizing the weight matrices by controlling their largest singular
value [YM17]. To prevent the gradient from vanishing, other efforts
focused on having singular values all close to one, namely regular-
izing weight matrices to be orthogonal [CBG∗17, TK20] and the
network to be gradient preserving. Since this hindered expressive-
ness overall when using usual component-wise activation functions
like the sigmoid or ReLU, Anil et al. [ALG19] propose a sort as
a non-linearity. Lispchitz network have since been shown to have
comparable results with classical neural networks on a variety of
tasks [BBS∗22].

More recently, other constructions of Lipschitz neural layers de-
creasing the computational cost of previous approaches have been
proposed. Instead of relying on iterative projections of weight ma-
trices to orthogonal ones, Prach and Lampert [PL22] introduce an
almost orthogonal layer where singular values of the matrices are
updated directly during training. Other Lipschitz layers have then
been defined, such as the Convex Potential Layer [MDAA22] or
the Semi-definite Programming Lipschitz Layer (SLL) [AHD∗23].
Neural architectures used in this work are based on the latter.

3. Robust Learning of a Signed Distance Function

As current neural implicit representations cannot provide guaran-
tees on geometrical queries from the implicit function nor theoret-
ical bounds on its Lipschitz constant, we propose to directly inte-
grate the constraint of being 1-Lipschitz directly into the neural ar-
chitecture. As shown experimentally in Figure 3 (c), this will result
in an implicit function that cannot overestimate the true distance by
construction, even during training.

Our method takes as an input any curve or surface ∂Ω from Rn,
represented either by a point cloud with normals or a triangle soup.
The first step is to define some 1-Lipschitz neural architecture, for
which we use the SLL architecture of Araujo et al. [AHD∗23] (Sec-
tion 3.1). As having a Lipschitz constant strictly smaller than 1
can induce greater computation times for geometrical queries to
converge, it is desired to not only be 1-Lipschitz but to have gra-
dient as close as possible to unit norm everywhere. In our case,

this is achieved by the hinge-Kantorovitch-Rubinstein (hKR) loss
whose indirect effect is to maximize the gradient’s norm (Sec-
tion 3.2). Minimizing the hKR loss requires to partition a dataset
of points around the object as points inside and outside. In the case
of closed surfaces or curves, we use the generalized winding num-
ber [BDS∗18] to robustly compute this partition (Section 3.3). Fi-
nally, the case of open surfaces and curves, for which we want to
compute an unsigned distance function, will be discussed in Sec-
tion 3.4. The different steps of our method are illustrated on Fig-
ure 4 on a corrupted point cloud of the Botijo model.

3.1. 1-Lipschitz Neural Architecture

Classically, a neural network fθ has its parameters θ arranged in a
series of layers f 1, ..., f l so that the final function is the composition
of all layers in order. As the Lipschitz constant of a composition is
upper bounded by the product of all Lipschitz constants, designing
a 1-Lipschitz architectures boils down to defining some 1-Lipschitz
layers to be chained together. To this end, Araujo et al. [AHD∗23]
propose the Semi-definite Programming Lipschitz Layer (SLL). Us-
ing a square matrix W ∈ Rk×k, a bias vector b ∈ Rk and an addi-
tional vector q ∈ Rk as parameters, it is defined as:

x 7→ x−2WT−1
σ(W T x+b) (1)

where T is a diagonal matrix of size Rk×k:

Tii =
k

∑
j=1

∣∣∣(W TW )i j exp(q j −qi)
∣∣∣

and σ(x) = max(0,x) is the rectified linear unit (ReLU) func-
tion. In comparison to the classical multilayer perceptron layer
x 7→ σ(W T x+ b), the SLL layer only adds a small amount of pa-
rameters in the form of the vector q and a O(k2) operations, which
makes it more efficient than previous Lipschitz architectures.

The SLL function is a residual layer, meaning that its computa-
tion is added to its input. As a consequence, the layer can only be
defined for matching input and output dimensions. In our case, the
input of the network is a point in Rn with n = 2 or 3 and its output
is a single real number. The input of the network is therefore first
padded with zeros to match the size k of the SLL layers. To retrieve
a single number as output, the network ends with an affine layer
defined as:

x 7→ wT x
||w||2

+b

where w ∈ Rk and b ∈ R. Dividing by the euclidean norm of w in
the computation ensures that the operation is 1-Lipschitz.

3.2. The hinge-Kantorovitch-Rubinstein Loss Function

Given a dataset (X ,Y ) of points with associated signed distance
ground truth, a straightforward approach to learn a neural signed
distance field guaranteed to always underestimate the true distance
would be to minimize a fitting loss over a 1-Lipschitz architecture
as defined above. While it solves the problem of robustness of neu-
ral signed distance fields, this approach fails short of our goal for
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Figure 4: Overview of our method on a corrupted Botijo dataset. Given an input geometry in the form of an oriented point cloud or a triangle
soup, we uniformly sample points in a domain containing the desired geometry. Defining negative samples as points of the geometry and
positive samples everywhere else yields an unsigned distance field when minimizing the hKR loss. On the other hand, partitioning samples
as inside or outside the shape leads to an approximation of the signed distance function of the object.

two reasons. Firstly, this means that the input geometry must be
well known for the initial dataset to be computed with exact signed
distances, making it unsuitable for only raw point clouds or triangle
soups as inputs. Secondly, the function will indeed be 1-Lipschitz
but can greatly underestimate the true distance. Ideally, we would
like to also maximize its gradient norm so that fewer iterations are
needed in geometrical queries.

These two limitations can be overcome with the hinge-
Kantorovitch-Rubinstein (hKR) loss. Introduced by Serrurier et
al. [SMG∗21], the hKR is a binary classification loss that can be
optimized over some L-Lipschitz architecture. Let D ⊂ Rn be a
compact domain over which binary labels y(x) ∈ {−1,1} are de-
fined at each points. Let λ > 0 and m > 0 be hyperparameters. Let
ρ(x) be some probability distribution function over D, which can
be thought of as an importance weight. The hKR loss of a neural
function fθ is the sum of two terms:

LhKR = LKR +λLm
hinge (2)

defined as:

LKR( fθ,y) =
∫

D
−y(x) fθ(x)ρ(x)dx (3)

Lm
hinge( fθ,y) =

∫
D

max(0,m− y(x) fθ(x)) ρ(x)dx. (4)

The first term (Equation (3)), minimized over all possible 1-
Lipschitz functions, is known in the literature as the dual for-
mulation of the Wasserstein-1 distance [ACB17], as given by the
Kantorovitch-Rubinstein duality theorem [V∗09, Theorem 5.10].
While its connections to optimal transport are out of scope of
this work, it can be interpreted as maximizing values of fθ for
points where y = 1 and minimizing them when y = −1. It there-
fore encourages the function to maximize its rate of change, and
thus its Lipschitz constant. However, as observed by Serrurier et
al. [SMG∗21], simply optimizing LKR leads to bad results as the

zero level set of the network does not capture the boundary between
positive and negative y. This is where the second term comes into
play: the hinge loss of Equation (4) penalizes points for which the
sign of fθ and y are different, that is to say points that are "misclas-
sified" by fθ. The parameter m > 0, called margin, defines an error
threshold under which this misclassification is ignored. Low values
of m lead to more precise results at the interface but also unstability
in the optimization.

In the case of the neural distance field of an object Ω, we can ap-
ply the hKR loss by considering y as an occupancy label, being −1
for points inside of Ω and +1 otherwise. In this context, under mild
assumptions over ρ, minimizers of the hKR loss are good approx-
imations of the signed distance function of Ω. This is summarized
as the following theorem:

Theorem 1 Let D,Ω be compact subsets of Rn such that Ω ⊂ D.
Let y be binary labels defined over D as:

y(x) = 1D\Ω(x)−1Ω(x).

Let m > 0 and assume that ρ(x) = 0 whenever |SΩ(x)| ⩽ m and
ρ(x)> 0 otherwise.
Let f ∗ be a minimizer of LKR( f ,y) under constraint that
Lm

hinge( f ,y) = 0, where the minimum is taken over all possible 1-
Lipschitz functions. Then:

∀x ∈ D,

{
|SΩ(x)|> m =⇒ f ∗(x) = SΩ(x)
|SΩ(x)|⩽ m =⇒ | f ∗(x)−SΩ(x)|⩽ 2m

.

This theorem is very similar to the result of Béthune et
al. [BNB∗23, Theorem 1], which shows a similar result in a context
where ρ(x) is zero whenever 0 ⩽ SΩ(x) ⩽ 2m. This translated ver-
sion is relevant to their application of outlier detection; in our case
however, we focus on the "symmetric" version. A fully detailed
proof is available in Appendix A.

© 2024 The Authors.
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The key idea of the proof is to split the domain D into two parts:
the region where ρ= 0, which corresponds to a "shell" set of width
2m centered on ∂Ω, and its complementary. This allows to exploit
the fact that Lm

hinge( f ∗,y) = 0 and deduce the approximation by at
most 2m in this region. Outside of this region, one can show that
f ∗ has the same sign as SΩ, and its Lipschitz property means that
it is bounded by |SΩ|. Since f ∗ minimizes the LKR, one can show
that this bound is in fact tight, hence the equality.

Minimizing LhKR over 1-Lipschitz functions therefore approx-
imates the signed distance function of the considered object. The
critical quantity to control here is the margin parameter m, which
can be thought as the minimal quantity to be imposed between
points of different labels. As such, smaller margins allow the min-
imizer to better approximate the SDF SΩ. However, in the con-
text of 1-Lipschitz neural networks, the fat-shattering dimension
of the resulting function class has been shown to increase as
( 1

m )n [BBS∗22], which means that optimizing for smaller margins
requires significantly more parameters in the network and leads to
less stable results in practice (see for instance Figure 6).

The constraint on ρ, that is the exclusion of a shell of width 2m
centered around the interface, means that the training dataset should
ideally not contain any sample at distance smaller than m from ∂Ω.
In practice, we do not explicitly prevent this from happening. As
noticed by Béthune et al. [BNB∗23], this introduces an additional
error of the order of m. Finally, as far as the other parameter λ is
concerned, the hinge loss being a hard constraint in the theorem
implies that λ should be large enough in practical optimization.

Note that the minimization of the hKR loss is semi-supervised:
it is only necessary to know if a given point has been sampled from
D\Ω or from D to learn a SDF and the ground truth SΩ does not
need to be known. This effectively turns the classical regression
task of fitting a neural distance field into a classification task be-
tween inside and outside points. With this strategy, all we are left
to do is to generate some dataset of points with associated binary y
labels to train a Lipschitz network, which boils down to determin-
ing if a given point x ∈ Rn belongs to Ω or not.

3.3. Inside/Outside Partitionning

Let us first consider the case where the input ∂Ω represents a closed
curve in the plane or a closed surface. If the input geometry is
clean enough, like for instance a manifold surface mesh, determin-
ing its inside from its outside is a task that can be solved in a ro-
bust way [SSS74]. When the geometry presents holes, defects, or is
simply made of points, a notion of "insideness" can still be recov-
ered by computing the generalized winding number [JKS13]. Intu-
itively, the winding number wΩ of a surface ∂Ω at point x is the sum
of signed solid angles between x and surface patches on ∂Ω. For
a closed smooth manifold, the values amounts at how many times
the surface "winds around" x, yielding an integer value. When com-
puted on imperfect geometries, wΩ becomes a continuous function
(see Figure 5). Through careful thresholding, it is still possible to
determine points that are inside or outside the shape with high con-
fidence.

Going back to our problem of learning a signed distance func-
tion from surface data ∂Ω, we first sample points X uniformly in-

Figure 5: Generalized winding number field computed for the Gar-
goyle model on the original manifold mesh (top) and a point cloud
of 50K points(bottom). Thresholding this field allows to partition a
dataset of points into inside and outside of the shape, from which
a neural signed distance field can be optimized by minimizing the
hKR loss (right column).

Input point cloud m = 10−1 m = 2×10−2

m = 10−2 m = 10−3 m = 10−4

Figure 6: Neural distance field of an open curve in 2D. Minimizing
LhKR on this dataset yields a distance field to the curve up to the
margin parameter m. Large m create large but consistent underes-
timation of the true distance while smaller m lead to instabilities
in training and final result. A value of m around 10−2 is a good
trade-off in practice.

© 2024 The Authors.
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Ground Truth ReLU MLP [DNJ21] SIREN [SMB∗20] SALD [AL20b] Ours, min L f it Ours, min LhKR

Figure 7: Comparison of various neural distance field methods on a hand dataset. Top row: reconstructed zero level set using the marching
cube algorithm [LC87]. Bottom row: norm of the gradient along a cut. While their reconstruction of the zero level set is comparable, previous
methods all present a gradient norm that either exceeds one or vanishes far from the surface.

side a loose bounding box D of Ω, and compute their generalized
winding number using the method of Barill et al. [BDS∗18]. Then,
two distributions Xin and Xout are extracted from X by choosing
N points from X with winding number smaller than τi and greater
than τo respectively, where τo < τi are threshold parameters. This
ensures that the network will be trained using the same amount of
interior and exterior points. In practice, N varies from 104 to 106

points, depending on the amount of details needed to be captured.
Points from Xout are assigned a label y = 1 and points from Xin a
label y = −1, before being fed in a Lipschitz neural network that
minimizes the hKR loss (Equation (2)). As shown on the right of
Figure 5, this process effectively allows to recover a signed distance
function of the original shape.

3.4. Distance field of shapes without interior

If the input object Ω has no interior, like the case of a curve or an
open surface, we can still learn a distance function to Ω by min-
imizing the hKR loss without relying on the generalized winding
number. We simply sample Xin as being points on the surface or
curve, either by taking directly the point cloud as input or sampling
on triangles. Xout is then a uniform distribution over the domain
D. Up to the margin parameter m in the loss, this still results in
an approximation of the distance function of the considered mani-
fold. But since level sets of the neural function can only be closed
surfaces, the optimization results in an object having a "thickness".
This property is directly controlled by the margin parameter m in
the loss, as shown in Figure 6: a larger margin leads to reconstruc-
tion of the data with a non-negligible thickness, whereas a margin
too small leads to instabilities on the final result. Figure 12 further
demonstrates the SDF reconstruction ability of our method in three
dimensions in the context of open surfaces or curves. Note that this
setup is also suitable for closed surfaces in order to learn an un-
signed distance field, as it is the case in Figure 4.

4. Results and Applications

4.1. Implementation details

We implement our method in python using the Pytorch library for
neural network training. All our experiments were performed on a
Ubuntu 22 workstation using a Nvidia 4070Ti GPU. For the gen-
eralized winding number, we use the original implementation of
Barill et al. [BDS∗18] as provided in libigl [JP∗18].

We use a neural network architecture of 20 SLL layers of size
k = 128. In total, this amounts for 330K floating point parameters
for a total size of approximately 1.4MB. For reference, the hand
mesh used in Figure 7 is described by 150K floating point numbers
for vertices and 300K integers for faces, for a total size of 2.2MB
when compressed.

All inputs are normalized in a bounding box [− 1
2 ; 1

2 ]
n before any

processing. We set D = [−1,1]n as our sampling domain. With the
exception of Figure 6, all our experiments were performed with
m = 10−2 and λ = 100.

4.2. Gradient Robustness

As a first experiment, we demonstrate the robustness of our ap-
proach in comparison with neural distance field methods from the
state of the art. These methods are trained on a dataset of points
(xi,SΩ(xi)) with SΩ being precomputed from the input mesh. They
minimize a least-square fitting loss:

L f it = ∑
i
[ fθ(xi)−SΩ(xi)]

2 (5)

to match the true distance function, as well as an eikonal loss:

Leikonal =
∫

D
(||∇ fθ(x)||−1)2 dx. (6)

that regularizes their Lipschitz constant. For a fair comparison, the
architecture reported by the original works are scaled to match our
number of parameters.

© 2024 The Authors.
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ReLU MLP [DNJ21] SIREN [SMB∗20]

SAL [AL20a] - SALD [AL20b] Ours

Figure 8: Reconstruction experiment on a handle mesh. We plot the
zero level set of each neural network with a colormap indicating
the distance from the ground truth’s surface. Our results around
the zero level set are comparable to other methods. Moreover, we
evaluate the difference fθ(x)− S(x) for 100K points sampled at
random and plot the results. As expected, this difference is always
negative for our method, indicating that we always underestimate
the true distance.

On Figure 7, we reconstruct the zero level set of the neural func-
tion using marching cubes and plot its gradient norm over some pla-
nar cut. We observe that the classical multilayer perceptron (MLP)
with ReLU activations and SIREN [SMB∗20], which is a MLP with
sine activations, are able to capture the surface and the topology
of the input, yet their gradient is unstable and often exceeds unit-
norm. SALD [AL20b] is a method that fits a neural implicit surface
without requiring knowledge of the sign of its distance function.
However, the trained network has a null gradient far from the sur-
face. As far as our method is concerned, we observe that when L f it
(Equation (5)) is minimized over a Lipschitz architecture, the zero
level set represents the input shape more accurately than with the
hKR loss. This behavior is expected since the network has access

Figure 9: Geometrical queries performed on the elephant model.
Queries are all valid without relying on range analysis.

to more information in the dataset, and also because of the slight
error introduced by the margin m (as discussed in Section 3.2).

4.3. Signed vs Unsigned Distance Field

As our method provides stable distance estimation far from the zero
level set, we are also able to extract high quality isosurfaces for dif-
ferent values of the function. This is illustrated on Figure 1 for the
signed case (using the generalized winding number) and on Fig-
ure 12 in the unsigned case, for a curve and an open surface with
holes. Additional results are available in supplemental material.

While fitting an unsigned distance also works perfectly fine for a
closed object, partitioning the points first with generalized winding
number enables our method to benefit from its robustness to faulty
and noisy input. As a result, some defects of the zero level set can
be repaired, as it is the case with the corrupted botijo model shown
in Figure 4.

4.4. Underestimation of the true distance field

To further justify our claim that our learned signed distance field
never overestimates the true distance, we train different neural dis-
tance fields on a handle model (Figure 8). We then extract the zero
level set of each method using marching cubes [LC87] and sample
100K points uniformly in a sphere of radius 30 centered at zero. We
plot the difference between the true distance S(x) to the zero level
set mesh and the predicted value of the neural network, in func-
tion of S(x). In this experiment, a perfect network would output
a straight line, but all methods present some deviation in practice.
However, we observe that only our method provide only negative
values, meaning that the network’s output is always smaller than
the true distance.

4.5. Geometrical Queries

Having a robust SDF far from the surface enables efficient and ro-
bust geometrical queries on any of its level sets. In this section,
we demonstrate experimentally that it is indeed possible to do on
our Lipschitz network trained with the hKR loss, without requiring
neither range analysis nor an estimation of the Lipschitz constant.

Given an exact SDF S and a point x in space, the closest

© 2024 The Authors.
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Figure 10: Constructive Solid Geometry. The union of two SDFs
can be computed using the min operator. Although not necessarily
a true SDF, the resulting function remains 1-Lipschitz.

point of x on the zero level set of S can be directly computed as
x −∇S(x)S(x). This expression falls short of the level set in the
case where ||∇ f || < 1 but can be iteratively evaluated until a con-
vergence criterion is met. We illustrate this process on Figure 9
(left), where points on a sphere of radius 2 are projected onto the
surface of the elephant dataset. As points tend to accumulate in
salient regions of the model, a more uniform sampling can be re-
covered with the Iso-points method [YWÖS21].

Another application of neural distance fields is to sample the me-
dial axis of an object. As the medial axis is defined as the set of
points where the closest point on the surface is not unique, it cor-
responds to discontinuities of the gradient of the SDF. In our case,
the Lipschitz network is fully differentiable and approximates the
discontinuity by dropping the gradient’s norm, as illustrated in Fig-
ure 3 (right). This gives us a sample-and-reject strategy to construct
the model’s skeleton by evaluating the norm of the gradient. A mesh
of the medial axis can then be extracted by the method of Clemot
and Digne [CD23], whose skeleton sampling results we reproduce
(Figure 9, middle) without any gradient regularization loss.

Finally, ray marching queries the implicit function along a ray to
determine the maximum step size that guarantees non-intersection.
Without our 1-Lipschitz network, we are able to take a step size of
1 and recover a correct image (Figure 9, right).

4.6. Constructive Solid Geometry

A key feature of implicit geometries is the ease with which we
can apply boolean operations on their function to represent inter-
sections, unions or differences of shapes [Ric73], thus building
more complex shapes for simple ones. We illustrate this property
on our neural distance field on Figure 10: given two SDFs f1 and
f2, we can compute the surface of their union as the 0-level set
of min( f1, f2). Similarly, their intersection coincides with the 0-
level set of max( f1, f2). These operations preserve the Lipschitz
constant so the guarantee of being 1-Lipschitz still holds for the
composition. However these point-wise minimum and maximum
are not necessarily SDFs themselves [Quib, MSLJ23].

4.7. Robustness to noise and sparsity of input

Finally, approaching the neural distance field problem with the
hKR loss means that we are still able to recover a good approxi-
mation of the SDF of an object in contexts where the ground truth
distance cannot be computed or is not available. We illustrate this

on the fertility dataset in Figure 11 on four different settings. The
first one is generated with Blensor [GKUP11] and emulates a noisy
Lidar acquisition of 7K points. The second one consists of 5K
points where 50 points and their closest 40 neighbors have been
removed from the point cloud, thus creating holes in the shape.
The third one pushes sparsity to its maximum with only 500 points
in total. Finally, the fourth one adds a Gaussian noise of standard
variation 0.03. In all four settings, the winding number still allows
us to sample 10K inside and outside points. Minimizing the hKR
loss then yields the correct topology on the zero level set, albeit
some expected geometrical error. This also means that our method
can be used as a noise reduction or an outlier elimination tech-
nique, a context where the hKR loss has already been used with
success [BNB∗23].

5. Discussion and conclusion

Neural distance fields are a promising technique for representing
arbitrary geometry without relying on a discretization of space.
While previous methods have demonstrated outstanding results in
surface reconstruction and visual fidelity, we demonstrated that
these neural functions could also be made 1-Lipschitz and support
geometrical queries without the need of range analysis. Having this
1-Lipschitz constraint also allowed to learn a distance field with-
out needing any distance information from the input shape, thus
enabling neural fields applications for a broader set of geometry
representations, even including bad quality point clouds or triangle
soups.

Yet, this built-in robustness did not come without drawbacks.
The hKR loss can only be successfully minimized up to a mar-
gin m > 0, which prevents a perfectly accurate surface reconstruc-
tion. Smaller margin allows for more marginally more fine-grained
details to be captured, but the resulting functions are usually bi-
ased towards low frequencies. Some recent neural methods solve
this problem by using positional encoding at the start of the net-
work [Lip21], like the Fourier features [TSM∗20]. A network us-
ing such an encoding could still be made 1-Lipschitz: as the Lip-
schitz constant K of the embedding can be known in closed form
(it depends on the frequencies of the harmonic functions), it suf-
fices to build a 1/K-Lipschitz network by scaling the output. Yet,
as the embedding does not preserve the gradient norm, so will the
hKR-trained final network, which could lead to significant under-
estimation of the true distance. Improving reconstruction quality
while being almost gradient preserving thus remains a challenge
for future works.

Overall, for a fixed number of parameters, there seems to be
a clear trade-off between quality of the zero level set and qual-
ity of the gradient far from it, an observation that has already
been made in classification contexts regarding 1-Lipschitz net-
works [BBS∗22]. For a network of bounded depth, the zero level
set is made of affine pieces whose maximum number grows as a
polynomial of the width [Tel16, Yar18, BHLM19, PKH23], which
would require a similar increase in numbers of parameters.

Finally, as Lipschitz networks are computationally heavier than
their classical counterpart, future works could also focus on im-
proving speed of convergence of the method, for example by re-
ducing the total number of points needed in the dataset. This could

© 2024 The Authors.
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Simulated lidar [GKUP11]

5000 points with holes

500 points

5000 points with gaussian noise

Figure 11: Neural SDF reconstruction of the fertility model in con-
texts where the ground truth is not available. Our method is able to
recover the correct topology of the input surface even in very hard
settings.

be achieved by importance sampling before training, or by elimi-
nating unnecessary points during training.

Appendix A: Proof of Theorem 1

Let f ∗ be a 1-Lipschitz minimizer of LKR, under the constraint that
Lhinge( f ∗,y) = 0. f ∗ is shown to exist by Serrurier et al. [SMG∗21,
Theorem 1]. Define:

∂Ω
m = {x ∈ D, |SΩ(x)|< m}

as the "shell" of width 2m centered around ∂Ω. Given the as-

Figure 12: Learning of an unsigned distance field in the case of
an open surface with holes (top) and a curve in 3D (bottom) repre-
sented as point clouds. We display level-set extracted via the march-
ing cube algorithm for two values of the distance function. The neu-
ral field correctly captures the geometry of the object.

sumption on ρ, it exactly corresponds to the points that are not in-
volved in the computation of the hinge loss. Then, the hinge loss
being 0 for f ∗ implies that:

m− y f ∗(x)< 0 for all x ∈ D\∂Ω
m.

In other words, for any point with distance larger than m from
the boundary ∂Ω, f ∗ has the same sign as y and | f ∗(x)|⩾ m. Note
that it would not be possible to have zero hinge loss if ρ was not
zero in ∂Ω

m.

Let us first focus on what happens inside ∂Ω
m. Since f ∗ is 1-

Lipschitz, we have | f ∗(x)|⩽ m for any x ∈ ∂Ω
m. Indeed, if it were

not the case, let x0 ∈ ∂Ω
m such that f ∗(x0)> m. Let:

z0 ∈ argmin
SΩ(z)=−m

||x0 − z||

be a projection of x0 onto the −m isosurface of SΩ. We have
f ∗(z0) ⩽ −m by continuity of f ∗. By definition of ∂Ω

m and the
Lipschitz property of f ∗, we have:

| f ∗(x0)− f ∗(z0)|⩽ ||x0 − z0||⩽ 2m

but also f ∗(x0)> m and f ∗(z0)⩽ m which means that:

| f ∗(x0)− f ∗(z0)|= f ∗(x0)− f ∗(z0)> 2m

which is a contradiction. The case f (x0) < −m can be treated
similarly by projecting onto the +m isosurface of SΩ and deriving
the same inequalities.

In summary, the following inequalities hold:

© 2024 The Authors.
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|SΩ(x)|> m =⇒ | f ∗(x)|> m
|SΩ(x)|⩽ m =⇒ | f ∗(x)|⩽ m

.

In particular, this means that inside ∂Ω
m, the error made by f ∗

is at most 2m.

Now, consider the exterior of the shell. By the Lipschitz property
of f ∗, it is clear that y f ∗(x) ⩽ ySΩ(x) for all x. Suppose that this
inequality is not tight for some x0 ∈ D\∂Ω

m. By continuity, this
means that there exists a ball Bε included in D\∂Ω

m around x0 for
which the inequality is also strict. Computing the KR loss over the
domain yields:

∫
D
−ρy f (x)dx >

∫
D
−ρySΩ(x).

However, since SΩ is a 1-Lipschitz function and Lm
hinge(SΩ,y) =

0, this inequality is in contradiction with the fact that f ∗ is a mini-
mizer of LKR. Combined with the fact that f ∗ has the same sign as
y (and therefore as SΩ), we can conclude that:

∀x, |SΩ(x)|> m =⇒ f ∗(x) = SΩ(x).

□
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