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Abstract
Visualizing graphs and networks in non-Euclidean space can have benefits such as natural focus+context in hyperbolic space
and the familiarity of interactions in spherical space. Despite work on these topics going back to the mid 1990s, there is no
survey, or a part of a survey for this area of research. In this paper we review and categorize over 60 relevant papers and
analyze them by geometry, (e.g., spherical, hyperbolic, torus), by contribution (e.g., technique, evaluation, proof, application),
and by graph class (e.g., tree, planar, complex).

1. Introduction

When one begins to visualize a graph or network using a node-
link diagram, one typically imagines placing the nodes and rout-
ing the edges in 2 dimensional Euclidean space; the space of the
computer screen or a sheet of paper. However, representations in
different geometries have distinct visualization benefits, such as
natural focus+context [LRP95, MB95], or the possibility to ob-
tain a more faithful representation with respect to quality met-
rics [KPK∗10, SSGR18].

Several series of papers on non-Euclidean graph visualization
appeared near the turn of the last century and recently this sub-
ject is of interest again to visualization researchers. While there
are many surveys on graph visualization in general, few con-
sider visualization in non-Euclidean spaces and there are none that
cover all of spherical, hyperbolic and toroidal graph visualizations.
There are several graph visualization surveys for specific types of
graph data, such as dynamic networks [BBDW17], multi-layer net-
works [MGM∗19], and multi-variate networks [NMSL19]. There
are also more general surveys on graph visualization with topics
on group structures [VBW17], and scientific visualization [WT17].
Von Landesberger et al. [VLKS∗11] survey visualizations of large
networks, in which they point out that hyperbolic layouts scale well
to large trees, though the survey itself does not overlap in content
with ours.

We model our methodology on similar surveys. Kale et al. review
dynamic multivariate networks [KSP23] and use a similar multi-
dimensional tagging system to our methodology. A related survey
categorizes works in geospatial network visualization [SYPB21].
While geospatial networks are (implicitly or explicitly) embedded
on a sphere, these positions are typically given and have a very
specific geographic interpretation. We include graph visualization
techniques that put arbitrary graphs on the sphere (not necessarily
geographic), as well as in other geometric spaces. Chen [CHE22]
describes a systematic exploration of the design space for wrap-

pable visualizations, which includes spherical and toroidal graph
visualizations, but not hyperbolic visualizations.

1.1. Motivation

Graph visualization beyond the standard 2 or 3 dimensional Eu-
clidean space has been a topic of interest dating back to the
1990s. Spherical [GSF97, WT06], hyperbolic [Mun97, LRP95],
and toroidal [CDMB20] geometries have been considered. Some
user-studies have also shown benefits to using these geome-
tries [DCL∗17, CDBM21]. Applications of non-Euclidean ge-
ometry in network visualization include the sphere [LC10,
KMLM15,BKP∗12], the hyperbolic plane [Mun00,Gla19], and the
torus [MIB∗14, CZIM18]. There are also several tools that include
some non-Euclidean graph components [LRP95, BM12, LD12].
More recently, non-Euclidean representations of graphs and other
data have become a topic of interest for neural networks [PVM∗21]
and dimensionality reduction [GGY22]. In this survey we review
the state of the art in graph visualization in non-Euclidean spaces.

1.2. Contribution

In this paper we review relevant papers in graph visualization in
non-Euclidean spaces and then analyze the state of the art by geom-
etry, (spherical, hyperbolic, torus), by contribution (technique, eval-
uation, proof, application), and by graph class (e.g., trees, small-
world graphs, large networks).

While reviewing papers, we aimed to identify gaps in the lit-
erature and current open problems that may be of interest to re-
searchers. These problems are mentioned as relevant throughout the
paper and are summarized in Section 8. We additionally hope this
survey serves as a reference for interested researchers, by provid-
ing the basics of non-Euclidean geometry, a bit of historical back-
ground, and a review of the current research.
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Table 1: Example works in a given geometry (row) and type of contribution (column).

2. Methodology

Here we briefly summarize our paper selection criteria and our pa-
per classification approach.

2.1. Selection Criteria

We focus our attention on node-link diagram representations
in non-Euclidean (or Riemannian) spaces. We initially gener-
ated a candidate set of papers via a DBLP API query, which
includes the proceedings of IEEE VIS, IEEE PacificVis, Euro-
Vis, CHI, and the Symposium on Graph Drawing, along with
the journals TVCG and CGF. Our exact search query was
“graph|network+visual|draw|layout+hyperbol|spher|riemman|torus|non-
Euclidean", and returned an initial corpus of 43 papers. We
supplemented this with prior knowledge of the field, which yielded
13 additional papers that did not come up in the DBLP query.
While reviewing these papers, we paid close attention to the related
work cited in them, and added the relevant citations. This yielded
an additional 8 papers. Another 2 relevant papers were added from
suggestions by the reviewers of this survey, bringing the total of
non-Euclidean graph papers reviewed to 66.

2.2. Classification

We consider three dimensions in our analysis of the related work,
described below along with our technique for collecting papers.

What is the geometry? We make note of the specific geometry
studied for the graph visualization in the paper. We identify three
non-standard geometries that are used for graph visualization:

• Spherical geometry is the surface of a 3-dimensional sphere,
used to depict graphs with geographic or geographic-like infor-
mation.

• Hyperbolic geometry is analogous to the sphere with ‘opposite’
curvature. Most notable for its exponentially expanding space
allowing for ‘perfect’ drawings of trees and hierarchies.

• Toroidal geometry is the surface of a 3-dimensional ring or
‘doughnut’. Admits drawings of some non-planar graphs without
crossings and can be embedded in the plane with no distortion.

What is the contribution? Our second dimension of analysis
indicates the type of contribution a paper makes. We identify four
type of contributions:

• Technique denotes papers whose main contribution is layout al-
gorithm and drawing style.



© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

Miller et al / non-Euclidean Graph Vis 3 of 19

• Evaluation are papers which include some algorithmic or
human-subjects evaluation of a technique’s effectiveness.

• Proof style papers are theoretical papers that present results
about embedding graphs in non-Euclidean space.

• Application papers provide a specific application in non-
Euclidean geometry, such as showing how a given dataset can
be analyzed.

What types of graphs? The third dimension of our analysis is
the type (or class) of graphs a paper considers in its scope. These
include strict definitions such as trees and planar graphs, as well as
more fuzzy definitions such as complex networks.

In summary, we review work on graph visualization in non-
Euclidean spaces and provide a taxonomy and analysis. We believe
this survey is timely, with recent interest on the subject in the vi-
sualization and human-computer interaction communities, and will
provide interesting directions for future research where much has
yet to be done.

3. Terminology and Background

We briefly introduce terminology used throughout the paper, then
give a background on non-Euclidean geometry.

3.1. Terminology

Topological graph theory studies embedding of graphs on sur-
faces [GT01]. Graphs have been used to model real world prob-
lems, dating back to as early as 1736 and Leonhard Euler [Eul41].
The terminology has changed and many variations exist (e.g.,
node/vertex, edge/link/arc), but here we aim for consistency.

A graph (network) is a finite set of objects V (called vertices)
together with a set of relationships on those objects E ⊆ V ×V
(called edges). Edges may be directed or undirected, and poten-
tially weighted. Graphs arise in many application areas, making
their visualization of particular research interest. While some fields
make a distinction between graphs and networks, we treat them in-
terchangeably in this survey.

A common visualization idiom for graphs is the node-link di-
agram, with vertices drawn as nodes (simple shapes) and edges
drawn as links (curves between the corresponding vertices). Node-
link diagrams are constructed from an embedding (layout) of the
graph, an assignment of positions to the vertices and a routing of
edges. The resulting picture is called a drawing of the graph. In
a typical straight-line drawing, the routing of the edges is totally
determined by the placement of the incident vertices, as the line
segment between them.

There are many classes of graphs that are subject of particular
interest. Trees are graphs that contain no cycles. If a root of the tree
is specified, this encodes a hierarchy, where each non-root vertex
has exactly one parent it descends from. Planar graphs are graphs
which can be drawn as a node-link diagram without any two links
intersecting. Complex networks are graphs that arise naturally in
real-world networks, defined by phenomena such as small average
path length and high clustering coefficient.

Many dimension reduction (DR) techniques can be applied to

obtain a graph embedding. These techniques take as input a dis-
tance matrix, D, on a set of high dimensional Euclidean coordi-
nates where Di, j is the distance between objects i and j. Defining
distance with the graph theoretic (i.e. shortest path) distance al-
lows one to apply these DR techniques to graph embedding. A par-
ticular technique used in graph embedding is multi-dimensional
scaling (MDS) (stress minimization), which tries to match the pair-
wise embedding distances to the original input distances. Examples
of applying DR methods to graph layout include stress majoriza-
tion [GKN04], PivotMDS [BP06], and t-SNET [KRM∗17].

In the plane, one can draw a straight line segment between two
points and measure its length – this is known as the Euclidean dis-
tance or L2 norm. This intuitive concept can be generalized to arbi-
trary surfaces with the geodesic: the length of the shortest curve be-
tween two points. In non-Euclidean geometries (such as 2D sphere
and 2D hyperbolic space), this is a circular arc defined by a closed-
form function. In Euclidean and hyperbolic space, there is a unique
‘straight line’ between any two points. For the sphere there may
be many possible straight lines if the points are antipodal, but the
length is the same for each. On the torus, however, there are several
possible lines so it is required to measure the length of each of them
to compute the geodesic length.

Non-Eulcidean geometries cannot be perfectly embedded into
the 2 dimensional plane. The study of cartography is a field ded-
icated to this problem [Sny87] as it has long been known for the
sphere. A projection is a linear map that preserves some combina-
tion of angles, areas, geodesics, or distances but a projection (from
spherical or hyperbolic space) that preserves all these aspects si-
multaneously is not possible.

3.2. Background on non-Euclidean and Riemmanian
Geometry

Geometry is among the oldest and most studied areas of mathe-
matics, with roots in ancient times. Around 300 BC, Euclid wrote
his Elements which employed the notion of an axiomatic system:
a mathematical system in which all statements should be proved
from a small number of indisputably true axioms (postulates). Eu-
clid gave five axioms which make up what we now call Euclidean
geometry.

1. Any two points describe a (unique) line.
2. Any line segment can be extended to a line.
3. A circle is described by a center and radius.
4. All right angles are equivalent.
5. “That, if a straight line falling on two straight lines make the

interior angles on the same side less than two right angles, the
two straight lines, if produced indefinitely, meet on that side on
which the angles are less than two right angles."

The fifth postulate (which states that any two non-parallel lines
will intersect exactly once) is noticeably more involved than the
previous four. Mathematicians tried for centuries to prove the fifth
postulate using the first four, but invariably failed. Despite its per-
ceived clunky-ness, the fifth postulate seemed necessary to prove
even simple theorems such as the Pythagorean theorem about right
angle triangles.
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Figure 1: Illustration of non-Euclidean geometries and Playfair’s
axiom (middle two lines). Image credit https://commons.
wikimedia.org/w/index.php?curid=94781281

3.2.1. Hyperbolic geometry

As it would turn out, the Euclidean notion of parallel lines is
not necessary for a consistent geometric system. It was indepen-
dently discovered by mathematicians Nikolai Lobachevsky and
János Bolyai around 1830, that by allowing arbitrarily many par-
allel lines to exist, a distinct geometry arises. This non-Euclidean
geometry came to be known as hyperbolic geometry.

The fifth postulate is equivalent to the following statement,
known as Playfair’s axiom: “Given a line, L, and a point, p, not
on L, exactly one line parallel to L can be drawn through p"; see
Fig 1 for an illustration. Then, hyperbolic space is obtained by re-
placing the fifth postulate by the statement: “Given a line, L, and a
point, p, not on L, infinitely many lines parallel to L can be drawn
through p."

Most properties of Euclidean geometry hold in hyperbolic geom-
etry; for instance, any two lines can intersect at most once. Things
differ when parallel lines or more than two lines are involved. Hy-
perbolic triangles have many properties distinct from traditional
trigonometry, notably that the sum of their internal angles is strictly
less than 180; See Figure 1.

Another notable difference is the absence of relative scale. In
Euclidean geometry, affine transformations are linear maps of the
plane to itself that can be nicely represented as a function with real
valued matrix A and vector b, f (x) = Ax+ b. This includes trans-
lations, reflections, rotations, and scaling (resizing). Once we have
a drawing, we can shrink it to a tablet screen or expand it to a bill-
board and shapes (i.e. angles) are unaltered. In hyperbolic space
however, there is a relationship between distance and angles. Trans-
lations, reflections, and rotations can all preserve angles, but scaling
will not.

3.2.2. Spherical (elliptical) geometry

Although the geometry of the surface of a sphere had been stud-
ied for many centuries (e.g., work by Theodosius around 200
B.C. [Ros12]), it was considered a separate system with its own
rules. Even today, the sphere is often thought of as a surface em-
bedded in 3 dimensions of Euclidean space, but its geometry can
be studied intrinsically only using the 2 dimensions of its surface.

It wasn’t until 1859 that the classical understanding of spherical
geometry was unified with the new ideas produced from the study
of non-Euclidean geometry [Cay59]. Cayley introduced elliptic ge-
ometry, a sphere with antipodal points identified to satisfy the result

(present in both Euclidean and hyperbolic) that lines can intersect at
most once (note that on a full sphere, lines always intersect twice).
Then elliptic geometry is obtained by the following modification of
Playfair’s axiom: “Given a line, L, and a point, p, not on L, no lines
parallel to L can be drawn through p." Or in other words, all lines
must intersect.

Although elliptic geometry removes the trouble of antipodal
points not satisfying the first axiom, we generally refer to spheri-
cal geometry (also called doubly elliptic geometry) throughout this
paper, as it is more widely used for visualization.

While the first, second, and fourth of Euclid’s postulates hold in
spherical geometry, the third must be slightly modified – a circle of
arbitrary radius cannot exist. Since the sphere is finite, a circle can
only have radius at most equal to the radius of the sphere it exists
on.

Many of the unique properties of hyperbolic geometry have the
opposite implication for spherical geometry. For instance, the sum
of internal angles of a spherical triangle is strictly greater than 180
as seen in Fig. 2. Spherical space also has an absolute scale though
since the surface is finite there is a strict upper limit on how much
things can be stretched.

Figure 2: Comparison of visualization of a triangle in Euclidean
plane, hyperbolic plane, and sphere [DCL∗17]. Note how the hy-
perbolic triangle has smaller angles while the spherical triangle
has larger.

3.2.3. Riemannian and Toroidal geometry

Riemannian geometry is the study of manifolds (spaces which lo-
cally resemble Euclidean space) together with a Riemannian metric
(an inner product on the tangent space at each point). This includes
the Euclidean and non-Euclidean geometries with the standard dot
product, along with many other surfaces. Of these, only the torus
has been used for graph visualization and is worth exploring.

A torus is a product of two circles that is topologically closed,
which produces the typically doughnut-shape. The torus can be de-
scribed as the surface of an axis of revolution of a circle in 3 di-
mensional space. It is an example of a surface with genus 1, where
genus is the maximum number of closed, circular cuts that can be
made and the surface remain connected. Note that the spaces dis-
cussed before all have genus 0.

A property of interest in graph drawing is the crossing number of
the graph [Sch12], which is the minimum number of crossings re-
quired to draw a graph on a 2 dimensional surface of genus 0. A sur-
face with higher genus admits smaller crossing numbers [Hea90].
Notably, the two cannonical non-planar graphs (K5 and K3,3) can
be realized without crossings on the torus.

https://commons.wikimedia.org/w/index.php?curid=94781281
https://commons.wikimedia.org/w/index.php?curid=94781281
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Figure 3: Creating a torus from a piece of paper. Note how first two
opposite ends of the rectangle are connected, then the top/bottom
of the cylinder is connected to create the torus. This type of torus
is generally called a flat torus. The light and dark grey indicate the
inside and outside of the paper respectively.

Although the surface of a torus is often depicted in 3 dimen-
sions with curvature, a flat torus actually has curvature of 0 (the
Euclidean metric), just like the Euclidean plane. Similar to how
one can bend a sheet of paper into a cylinder in 3 dimensions with
no distortion, the torus could be created from a sheet of paper with
no distortions if we had a 4th dimension to work with. While no
3 dimensional embedding without distortion is possible, a nearly
perfect embedding of the flat torus is obtained in 2 dimensions by
a rectangle with the left/right and top/bottom edges identified as
displayed in Fig. 3.

4. Geometry of Visualization

Our first dimension of analysis is geometry. We give a brief
overview of the chronology of how each geometry has been used
in graph visualization.

4.1. Sphere

Spherical geometry has been used in visualization since antiquity.
Much of the visualization work on the sphere has been inspired
from the Earth’s globe, with orthographic projections and map
metaphors being common.

Gross et al. [GSF97] describe an approach for graph layout on
the sphere. This is a force-directed method which places nodes ini-
tially with an initialization scheme that attempts to keep nodes close
to the surface of the sphere. Edges are not routed along geodesics,
but as straight-line segments in 3D Euclidean space.

Sangole and Knopf [SK03] apply a self-organizing map (SOM)
that creates closed spherical surfaces from the input data, trans-
forming the discrete input into a continuous distribution on the
sphere. For a globe-like feel, they doubly encode the density of
the input data with a rainbow color map and the height of the point
on the globe. Low density areas are blue and the lowest points to
resemble oceans, while high density areas are red and high, resem-
bling mountains.

Figure 4: Hyperbolic Tree of Life for browser based hyperbolic
visualization. Source code and demo found from [Gla19]

Wu and Takatsuka [WT06] adapt a SOM to the sphere for multi-
variate network visualization. This requires adapting the grid used
in a SOM to a triangulation of the sphere. They also implement a
visual interface to view the embedding with either an orthographic
or cylindracal projection. The spherical SOM has also been used in
the field of networking [TKY11], to visualize file sharing activities
on a computer network with the help of an orthographic projection.

Traditional force-directed algorithms were generalized to the
sphere [KW05] and the tree visualization scheme SphereTree was
created in [BM12]. MDS has also been generalized to the sphere
with a few different approaches. Osinska et al. [OB08] perform
3D Euclidean MDS and normalize the vectors to lie on a unit
sphere. Another approach is to perform Euclidean MDS in 3D,
but constrain the optimization so that the points never leave the
surface of a sphere during the algorithm [DLM09, PYGK20]. Fi-
nally, [MHK23, EKK05] describe methods to perform MDS using
latitude and longitude coordinates, constraining the computations
and movements to the surface of the sphere.

Spherical layouts have been investigated in an immersive setting
such as virtual reality [KMLM16, YJD∗18], discussed further in
section 5.4. The Map of Science is an application of spherical net-
work visualization [BKP∗12]; See Table 1 Spherical-Application.
Other examples include the “Places and Spaces" [Bö12] and
“Worldprocessor" [Gü07] exhibitions.

4.2. Hyperbolic

Hyperbolic space first received attention in the visualization com-
munity due to its exponentially expanding structure, and eye catch-
ing representations, in particular the M.C. Escher works inspired
from the Poincaré disk [EV89], a model of hyperbolic space which
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maps lines to circular arcs in Euclidean space and admits many aes-
thetically pleasing tessellations. Hyperbolic embeddings are also
of interest in the field of machine learning, as a desirable latent
space for embeddings of neural networks [PVM∗21] or embedding
of general data [GGY22]. Here we cover works which deal primar-
ily with hyperbolic geometry in graph visualization.

One of the earliest approaches of graph drawing in the hyper-
bolic plane is by Lamping et al [LRP95], dubbed the hyperbolic
browser; see Fig. 5(a). They embed trees in hyperbolic space using
a linear time algorithm and construct the embedding top-down from
parent to children, evenly spacing children on the half-plane oppo-
site the parent all at unit length. This is always possible thanks to
the exponentially expanding hyperbolic geometry. To represent this
embedding, they use the Poincaré disk which maps the entirety of
hyperbolic space into a Euclidean disk. Since the entire tree is vis-
ible (up to pixel resolution) this provides a powerful focus+context
effect, allowing one to see the parent node and its children in high
detail, but also get a sense of how deep or wide each of the subtrees
are. Clicking on a node places it in the center of the projection, via
a smooth transition in the drawing. This approach was generalized
to arbitrary graphs by [HHDK00] by first computing a spanning
tree and filling in the removed edges after layout (or keeping them
hidden).

Several application papers made use of the Lamping et
al. [LRP95] technique. Phylogenetic trees [BS00], word
trees [BW02], the tree of life [Gla19] all made natural candi-
dates, as large trees with interest to domain experts. The hyperbolic
browsing system also made its way into several systems and tools,
such as the Hierarchy Visualization System (HVS) [APN07], the
Java InfoVis Toolkit [Bel], and TreeBolic [Bou].

More recently, Lamping et al.’s [LRP95] hyperbolic browser has
been re-implemented using d3.js [Gla18,Gla] for web-based visual-
ization of large hierarchies such as the tree of life [Gla19] as shown
in Fig. 4.

General graphs can be drawn in hyperbolic space as well, Miller
et al. [MKH22] provide several different techniques to do so, build-
ing on earlier approaches from [KW05, Wal04, PYGK20].

While most work considers the 2-dimensional hyperbolic plane,
Munzner uses 3D hyperbolic space to visualize trees [Mun97,
Mun98, MB95], one of the examples shown in Fig. 5(b). Just like
2 dimensional hyperbolic space can be projected into the 2 dimen-
sional plane, 3 dimensional hyperbolic space can be projected into
the 3 dimensional Euclidean space. While the Poincaré projection
is preferred in two dimensions due to its simple construction and
conformal properties, it maps geodesics to curved arcs which are
more difficult for a reader to follow in 3 dimensions. For this rea-
son, Munzner chose to use the Beltrami-Klein projection in spite
of the larger distortion, as it maps geodesics to Euclidean lines.
The ball itself can be rotated when viewed from outside, or en-
tered by zooming to get a closer look. The node in the center
of the ball can be changed by navigating the tree. This technique
was later extended to general graphs by first computing a spanning
tree [Mun00], laying out with the above technique, and filling in
the cycles afterwards. Munzner’s work has been re-implemented in
two subsequent systems: Walrus [Hyu00] and h3py [ZK16].

(a) Hyperbolic Browser from [LRP95]

(b) H3 from [Mun98]

Figure 5: Hyperbolic tree visualizations either took the 2 dimen-
sional (a) or 3 dimensional (b) approach.

In the early 2000s, hyperbolic space received attention as a po-
tential target space for self-organizing maps (SOMs) with the hy-
perbolic SOM (HSOM) [WR02]. Although restricted to a grid, the
HSOM algorithm is only linear in complexity, requires only input
distances, and can be used as a visualization. This algorithm was
integrated into a visualization tool [WOWR03] where the SOM lat-
tice was drawn on a Poincaré disk and the data points drawn as 3
dimensional objects coming up out of the plane.

4.3. Torus

Torus-based graph visualizations are relatively recent in compari-
son to the other non-Euclidean geometries above. Early on, torus
embeddings of graphs was primarily of theoretical interest. Since
the torus has genus 1, it admits crossing-free drawings of many
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Figure 6: Torus graph embedding depiction from [KNS01]. This
tiling approach is often taken for small graphs on the torus.

non-planar graphs. An example of a non-planar graph (K5) drawn
without crossings is shown in Fig. 7 [Hea90].

Kocay et al. [KNS01] first describe an algorithm to embed any
2-connected toroidal graph on the torus, where a toroidal graph is
one that can be embedded without crossings on the torus. They do
this by generalizing Read’s algorithm [Rea86] for Euclidean planar
graphs, and go on to show that this will always produce a crossing
free drawing on the torus. These drawings are depicted as rectan-
gles, with the surrounding area duplicated to show the ‘wrapping
around’ of the torus; see Fig. 6.

This rectangular embedding of the flat torus has been used to
create planar drawings of non-planar graphs, by duplicating ver-
tices and edges like the sides of the square in Fig. 6. Biedl [Bie22]
shows that any toroidal graph has a visibility representation on a
rectangular flat torus, where a visibility representation is an em-
bedding in which vertices are mapped to horizontal line segments
and edges are mapped to vertical “lines of sight".

More recently, a series of papers has introduced a practical tech-
nique for graph layout and interactive visualization of graphs on
the torus. Starting with [CDMB20], Chen et al. identify 3 research
questions that they aim to address:

• RQ1: develop layout algorithms that take advantage of the extra
flexibility of graph layout on the torus;

• RQ2: determine how we can best visualize the layout of a node-
link diagram on the surface of a torus on a piece of paper or 2D
computer monitor; and

• RQ3: determine what, if any, perceptual benefits graph layout on
a torus has over standard layout on a 2D plane.

This initial paper begins to address these challenges by proposing a
stress-based algorithm for torus layout, providing some interaction
styles, and a small but thorough user study to evaluate the different
interactions and how they compare to traditional drawings. A fol-
low up paper [CDBM21] improved the previous optimization, and
took a closer look at cluster based tasks on the torus, performing
a user study and found some advantages over traditional drawings
(e.g., when identifying clusters).

Most recently, Chen et al. [CNK∗23] use eye tracking data to

further understand how readers use the toroidal graph drawings to
make inferences. They use the tracking data to identify patterns
and compare different representations of the torus. They found that
duplicating the torus at each of the 8 neighboring grid squares was
the most effective, but poorly utilizes space. This leaves a space-
efficient full-context torus visualization as future work.

Open Problem: Space-efficient full-context torus visualization

4.4. Other

Focus+context effects can also be achieved with lens ef-
fects [TGK∗17,TGK∗14]. In particular, at first glance the Poincaré
disk appears to resemble a fisheye lens, which in some cases is
preferable to a flat drawing [Fur86]. However, a lens effect gen-
erally modifies a given Euclidean embedding, while hyperbolic or
spherical geometries are a global change. Abello et al. combine hi-
erarchical clustering with a fish-eye lens to create a focus+context
graph lens [AKY04]. Gansner et al. provide a topological graph
lens, based on a hierarchy of coarsened graphs [GKN05]. Wang et
al. [WWZ∗19] propose a structure-aware fish-eye lens that brings
focus to focal area or areas, while maintaining some constraints
such as drawing shape and preventing node overlap. A compari-
son with Du et al.’s spherical technique [DCL∗17] and a generic
hyperbolic technique is given, indicating that this structure aware
lens may outperform non-Euclidean techniques for path-following
tasks.

5. Contribution

Our second dimension of analysis is contribution. We discuss pa-
pers based on what we believe is their primary contribution. The
four broad categories are techniques, evaluation, theory, and appli-
cation. It is common for any visualization research paper to have
some mix of a few of these, and so several papers fall into two or
more categories.

5.1. Technique

The classical straight-line graph layout problem is to assign 2 di-
mensional Euclidean coordinates to the vertices of the graph so
that the resulting drawing captures well the underlying graph prop-
erties (e.g. preserving distances, minimizing crossings, preserv-
ing symmetries, etc.). This assignment is known as an drawing.
Nodes are drawn as circles centered at the desired position, and
edges are straight-line segments connecting the corresponding end-
points. There are many different approaches for producing Eu-
clidean graph drawings; the survey by Gibson et al. includes a good
selection [GFV13].

The straight-line graph drawing (also called graph layout) prob-
lem naturally generalizes to Riemannian spaces, by instead finding
a drawing in the desired space with the straight line requirement
becoming geodesic curves. We identify four distinct approaches to
solving this problem algorithmically.

5.1.1. Projection-Reprojection

The first approach is to have the algorithm take as input a Eu-
clidean drawing of the graph, and project the positions into the
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Figure 7: The canonical non-planar graph K5 can be drawn without crossings on the torus, as shown in this example from [CDMB20].

desired space. This is particularly intuitive in spherical space,
where geographic map projections from the sphere to the Eu-
clidean plane been studied since classical times. This is one of
the approaches presented by Perry et al. [PYGK20], referred to
as the “Projection–Reprojection" method. Here, any Euclidean vi-
sualization (e.g. node-link diagram) can be drawn on the sphere,
by treating the input as a sheet of paper, and ‘folding’ it around
the curved sphere surface; see Fig. 8. A similar technique for the
sphere is presented in [DCL∗17] and another is adapted to hyper-
bolic space in [MKH22]. Any conceivable node-link based graph
visualization idiom can be adapted to a non-Euclidean space using
this technique, including map-style drawing [GHK10] or Bubble-
Sets [CPC09], as it only requires a set of coordinates and lines to
draw between them. Additionally, this method requires only linear
time (given a pre-computed input) and is straightforward to imple-
ment. However, this method does not use any unique aspect of the
target geometry (such as the ‘wrap-around’ of the sphere, or ex-
ponential expansion of hyperbolic space), as shown in [PYGK20].
This method works for any space which admits a projection to Eu-
clidean (since a projection is linear, it has an inverse), but we are
unaware of any work which attempts such a method for the torus.

Open Problem: Torus visualization based on the projection-
reprojection approach.

5.1.2. Tangent planes

The second technique is to exploit the fact that Riemannian geome-
tries are locally flat, and perform a force-directed style layout algo-
rithm in the tangent spaces about the vertices, explained in detail
below. This is the approach in [KW05] and generalizes layout al-
gorithms driven by forces. When computing the forces on a vertex,
first compute the tangent plane about that point (a plane which, in
3 dimensions, intersects the surface at exactly one point). Project
the other vertices into that plane, and compute forces and update
the central vertex position as normal. Finally, project the central
vertex back into the target space. Repeatedly apply until the quality
of the drawing is sufficient. The tangent plane technique has been
reapplied in [DCL∗17,MKH22]. While this approach makes use of
some unique properties of the geometry, this method is computa-
tionally quite expensive and does not achieve as high of quality as
the later approaches [MKH22]. While the formulation is for a gen-
eral Riemannian geometry, we are unaware of any implementation
for the torus.

Open Problem: Torus visualization based on the tangent planes
approach.

5.1.3. Constrained optimization

The third technique requires us to view our target space as the 2
dimensional surface of a 3 dimensional object. Then, this surface
is defined by a set of 3 dimensional Euclidean coordinates that sat-
isfy some property or equation (e.g. a unit sphere is all points with
magnitude exactly one). One can perform a force-based graph lay-
out technique in 3 dimensions, requiring that any movement of the
vertices still satisfies the properties of the desired space.

This particular technique has been applied only to the sphere,
first described by [DLM09] for dimension reduction and adapted
to graph layout by [PYGK20]. This is also the approach taken
by [SKOM12], who show this is related to information diffusion
models, such as independent cascade. Rodighiero [Rod20] de-
scribes this constraint as ‘gravity’ attracting the nodes to a spheri-
cal surface. The Fruchterman-Reingold algorithm was also adapted
in this fashion [GF22]. Although this is easy to describe at a high
level, the technical details are quite difficult. One must ensure the
step size is sufficiently small, errors will quickly accumulate in the
3 dimensional representation, and the underlying mathematics is
quite complicated.

This approach could be extended to hyperbolic space and the
torus, but has not been done so. For instance, just like the equation
x2 + y2 + z2 = 1 describes a sphere in 3 dimensions with compo-
nents x,y,z the equation x2 + y2 − z2 = 1 describes a hyperbolic
surface.

Open Problem: Torus and hyperbolic visualization based on
constrained optimization.

5.1.4. Native formulation

Something common to the previous three methods is that they all
require the use of the friendly properties of Euclidean space. It is
desirable to solve the problem entirely within the target geome-
try, for fewer computations, simplicity, and in order to fully benefit
from the advantages of the particular geometry (e.g., more space in
hyperbolic geometry).

The tree drawing algorithms discussed for hyperbolic geome-
try [MB95, LRP95, SSGR18] are native formulations but they are
limited to trees or spanning trees of graphs. Similarly, there are al-
gorithms to generate crossing free drawings of toroidal graphs on
the torus [KNS01], but again these are limited to toroidal graphs.

For general graphs, a native formulation typically requires gen-
eralizing some Euclidean graph layout approach. The most popular
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Figure 8: Example from [PYGK20], illustrating the Projection-Reprojection drawing method for the sphere. By treating the input Euclidean
drawing as a sheet of paper, the spherical drawing can be obtained by ‘wrapping’ the input around the ball.

Figure 9: Several graphs shown drawn by Euclidean MDS and
SMDS [MHK23] to show the large difference the choice of drawing
space makes.

choice for this has been stress minimization, also known as Multi-
dimensional Scaling (MDS) [Kru64]. Stress-based approaches aim
to match the graph theoretic distance between all pairs of vertices
to the geodesic distance between the corresponding pairs of nodes
in the drawing.

This was first done in the sphere for dimension reduction
by [EKK05], then adapted to graph drawing with an improved
optimization by [MHK23]. The basic idea is straightforward: re-
place the L2 norm computation in Euclidean MDS with the spher-
ical geodesic distance function. Since positions on the sphere are
completely defined by a pair of angles, and this function is dif-
ferentiable, one can find a minimum without the cumulative error
found in the constrained optimization approaches. A table taken
from [MHK23] is shown in Figure 9.

Classical MDS has been explored in hyperbolic space, by re-
placing the conversion to similarities with an appropriate hyper-
bolic scaling function [CE17,SSGR18]. Using a similar idea to the
spherical MDS, metric and non-metric MDS have been generalized
to hyperbolic space by incorporating hyperbolic geodesic distance
into the cost function [WOWR03, Wal04, WR02, ZS21, MKH22].

While [CDMB20] use a stress minimization scheme to com-
pute their toroidal layouts, the torus is missing a closed-form dis-
tance function. Chen et al. overcome this by checking which of the
straight-line distances is closest to the ideal for each pair of ver-
tices, but a toroidal layout that uses closed form functions is an
interesting direction for future work.

Open Problem: Toroidal graph layout that uses a closed-form
function.

5.2. Evaluation

Here we focus on papers whose primary contribution is an eval-
uation of non-Euclidean graph layouts, and also, more generally,
typical ways in which such layouts are evaluated.

5.2.1. Quality Measures

The evaluation in most technique and application papers is done by
mean of quantitative metrics: metrics that evaluate a layout or draw-
ing with a single number. Time in seconds to produce the drawing
is popular, but there are many metrics which measure how “good"
a drawing is i.e. how readable or how faithful. These are known as
aesthetic and faithfullness metrics respectively, detailed in subse-
quent subsections.

Such quality metrics were originally defined and studied in the
Euclidean setting.

Aesthetic metrics: Properties such as number of crossings,
crossing angle, angular resolution, vertex resolution, symmetry,
and average edge length are all desirable to optimize for readabil-
ity, with number of crossings being particularly impactful [Pur02].
These concepts can extend to non-Euclidean geometries, but there
is not much work in this area. Eppstein shows that the vertex and
angular resolution is bounded in hyperbolic space, meaning one
cannot achieve a good resolution in general [Epp21]. In other words
for hyperbolic drawings drawn at a realistic scale (cannot be ap-
proximated by the Euclidean plane), there exits planar graphs that
admit only planar drawings with exponentially small angular reso-
lution. Even restricted classes such as grid graphs only admit draw-
ings with polynomially small angular resolution. The torus admits
smaller crossing numbers in theory [KNS01], and this has been
shown to be achievable for some real world graphs [CDBM21].
However, much remains to be explored in this area. For example,
hyperbolic spaces can have symmetries not possible in Euclidean
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space , but there is no proposed method to quantitatively measure
hyperbolic symmetry.

Open Problem: Formulation of new aesthetic criteria for layouts
based on affordances of non-Euclidean geometry.

Faithfulness metrics: Faithfulness metrics instead measure
how well the drawing captures the information present in the
data [NEH13]. These include metrics such as stress [GKN04],
neighborhood preservation [KRM∗17], and distortion [KPK∗10].

In the graph drawing literature, the normalized stress of a layout
is a standard quality measure [GHN13,KRM∗17,ZCH∗21], defined
as:

∑
i< j

(||Xi −X j||−di, j)
2

(di, j)2 (1)

where Xi is the embedded position of vertex i, and di, j is the desired
distance between vertex i and vertex j.

This is perfectly acceptable in Euclidean space where a lay-
out is not meaningfully changed when the layout is resized. For
non-Euclidean graph layouts there is a possible issue of dilation
or resizing. Formally, a dilation is a function on a metric space
M, f : M −→ M that satisfies d( f (x), f (y)) = rd(x,y) for x,y ∈ M,
r > 0 ∈ R and d(x,y) being the distance between x and y.

In non-Euclidean spaces the size of a layout can have drastic
effects since they have an absolute scale [MHK23]. For this reason,
distortion [SSGR18,MKH22] should be used as a quality metric in
place of the normalized stress, defined as(

V
2

)−1

∑
i< j

| ||Xi −X j||−di, j|
di, j

(2)

Distortion is less sensitive to the dilation of the drawing, but
note that selecting the correct size is still important to finding a
good drawing. Stress has also been generalized to the torus in
[CDMB20], by replacing the distance computation ||Xi −X j|| with
one that finds the minimum distance in all 9 possible wrappings i.e.

∑
i< j

d−2
i, j ( min

1≤q≤9
||Xi −Xq

j ||−di, j)
2 (3)

where q designates which cell to wrap towards if you tile the torus
as squares; see Fig. 6 for an example of such a tiling. Distortion can
be generalized to the torus, but no work so far makes use of it for
toroidal drawings.

Open Problem: Use of distortion as an evaluation metric for
graph drawing in non-Euclidean geometries.

Other quality metrics such as neighborhood preservation have
yet to be studied in non-Euclidean spaces.

Open Problem: Adapting traditional metrics such as neighbor-
hood preservation to graphs embedded in non-Euclidean geome-
tries.

5.2.2. User studies

While less common, an important form of evaluation for non-
Euclidean graph visualization is the user study. A survey of the
literature on human-centered experiments in graph visualization

Figure 10: Plots from [DCL∗17], time (right) and error (left)
of participant results. The top row are results for low modular-
ity graphs (weak clustering) and the bottom for high modularity
graphs (strong clustering). The colors indicate the display geome-
try: blue for Euclidean, green for hyperbolic, orange for spherical.

shows little work in non-Euclidean spaces [YAD∗18]. Several pa-
pers incorporate some form of user study as part of the evalua-
tion/justification for a technique or application [CDMB20, SG12]
but there are fewer papers dedicated to user evaluation.

Du et al. [DCL∗17] compare Euclidean, spherical, and hyper-
bolic graph drawings by performing a user study. They first present
their iSphere system for large graph visualization, which takes any
Euclidean, straight line drawing, and performs an inverse Stereo-
graphic (conformal) projection on it to map it to the sphere. They
present participants with layouts of stochastic block model ran-
dom graphs, and ask them questions about some nodes or groups
of nodes. The experiment design was within-subjects, each partic-
ipant saw examples of Euclidean, spherical, and hyperbolic dis-
plays, supporting zooming and panning. The layout was driven
by MDS for all 3 displays: standard for Euclidean, inverse stere-
ographic projection for sphere, and [KW05] for hyperbolic. All the
tasks are about node degrees in the drawings. In particular, they ask
for: (1) the neighbor of highest degree for a highlighted node; (2)
the common neighbor of highest degree for two highlighted nodes;
and (3) the highest degree node along a highlighted path. The sizes
of graphs were also controlled: |V | ranged from {128, 512, 2048}
and |E| from {1024, 4096, 16384}. The number of clusters gener-
ated was 3 for each graph. For each size of graph, they used two
different modularities, low and high (a graph statistic which ex-
presses how dense the clusters in a graph are). They conclude with
statistical analysis on their collected participant data. The results
seemed to indicate that the sphere and Euclidean visualizations had
comparable time and accuracy, while hyperbolic performed worse
(see Fig. 10).

Meanwhile, for the torus a thorough user study was conducted
in [CDBM21]. This study was primarily aimed at asking whether
toroidal visualizations were more beneficial for cluster identifica-
tion. The graph sizes used in the study ranged from |V | ∈ (68,134)
with |E| ∈ (710, 2590). Similar to [DCL∗17], they divide their
graphs into small and large classes, and into low and high modu-
larity. Graphs are randomly generated from stochastic block model
type generators.
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The authors registered several hypotheses on the open science
forum, such as that the torus-based visualization would be benefi-
cial over Euclidean drawings in identifying the number of clusters
(in time and error) when the graph modularity is low (i.e. when
clusters are not very dense). They performed a within-subjects
study so that all participants see all variations; namely both the
torus and Euclidean layouts with small/large, low/high modularity,
and 2 tasks. The two tasks were: (1) What is the number of clusters;
and (2) Do the two highlighted nodes belong to the same cluster?

The statistical analysis of the participant data provides several in-
sights. They found statistically significant results that torus-based
layouts increased participant accuracy over Euclidean layout in
some cases; we include a figure showing the mean time and ac-
curacy from their study in Fig. 11.

Recently, Chen et al. [CDY∗22] compare the typical flat node-
link diagram to a torus visualization, along with different types of
sphere projections. Finding from this study include that interactive
panning improves accuracy for all sphere projections, and that for
the torus, equal-earth projection and orthographic projection out-
perform a flat node-link diagram in cluster identification tasks.

5.3. Proof/theory

Planar graphs are of particular interest in spherical graph visualiza-
tion. Aleardi et al. [ADF18] develop an algorithm that embeds a
planar graph on the sphere without crossings. The algorithm is ef-
ficient, but can generate very short edges, resulting in occasionally
undesirable layouts with highly varying edge lengths. The authors
present several use cases, including as an initialization for a Eu-
clidean layout.

Kryven et al. introduce a measure of visual complexity, spheri-
cal cover number of a drawing, which is the minimum number of
spheres needed to cover all edges of a 3 dimensional graph drawing
(sim. circles for 2 dimensions) [KRW19].

Kang and Lin [KL21] show that planar Cayley graphs (graphs
that describe a finite group and operations on that group, and is
also planar) admit symmetrical spherical drawings. These drawings
reside in S2, are rotationally symmetric, and have uniform edge
lengths. They provide a construction for each drawing and enumer-
ate all planar Cayley graphs.

A generalization of the straight line drawing for the Euclidean
plane is the geodesic drawing for the sphere, where all edges must
be geodesics of the endpoints. This type of drawing has been stud-
ied by [BMW20].

Mohar first showed how one can draw general graphs in the hy-
perbolic plane [Moh99]. Note also that there are theoretical lim-
its on the effectiveness of hyperbolic drawings for general graphs.
Some graphs can be embedded trivially with a low, constant embed-
ding error (e.g., as cycles and square lattices) but have non-trivial
embedding error in the hyperbolic plane [Epp21,VS16], where em-
bedding error refers to some a measure of distortion of the data.
However, other graphs such as trees and hyperbolic tilings can be
embedded better in hyperbolic space than in Euclidean space. For
example, while Euclidean geometry only admits 3 regular tessel-
lations (triangles, squares, hexagons), the hyperbolic plane admits
infinitely many.

Although drawing of arbitrary graphs have theoretical limita-
tions, there are still many graph structures that cannot be well cap-
tured in Euclidean space but can be well captured in hyperbolic
space. Ouyang et al. [OCCZ12] construct arbitrary hyperbolic tes-
selations, and provide an algorithm to color and distort edges in
aesthetically pleasing and interesting patterns.

It has been shown that some graphs can be embedded with lower
error in hyperbolic space than in Euclidean space [BFKL18]. Zhou
and Sharpee [ZS21] show that hyperbolic MDS (H-MDS) can be
used to detect the underlying geometry of a dataset, when compar-
ing its embedding error to Euclidean metric MDS. They go further
to show that the underlying space of genomes is hyperbolic. Kri-
oukov et al’s [KPK∗10] work indicates that hyperbolic geometry
may underlie complex networks and hierarchical networks, such as
phylogenetic trees and the internet.

Hyperbolic geometry is of interest in networking and routing,
in the form of greedy embeddings. It has been shown that any
connected, finite graph admits a greedy embedding in hyperbolic
space, which is not generally true in Euclidean geometry [Kle07].
Greedy embeddings of graphs allow for greedy routing, which is
particularly useful when a node may not know the global topology,
but only its own position and that of its neighbors such as in social
networks and the internet [EG11, EG08].

Cabello et al. [CMS15] study toroidal embeddings: given a dis-
connected graph G∪G

′
, does there exist a toroidal embedding of

the graph with optimal crossings such that no edge of G intersects
an edge of G

′
. Some results are presented, but the problem appears

to remain open. Norine [Nor09] shows that any 4-Pfaffian graph (a
graph that can be expressed as a linear combination of 4 Pfaffian
graph orientation matrices) can be drawn on the torus such that that
every perfect matching intersects itself an even number of times.

Open Problem: Given a disconnected graph G∪G
′
, does there

exist a toroidal embedding of the graph with optimal crossings such
that no edge of G intersects an edge of G

′
?

5.4. Application

Applications of network visualization on the sphere are primarily
of the form of a map metaphor, or for geographic data.

Shelley et al. [SG12] present a software titled GerbilSphere,
which places a user in the center of a sphere with a network drawn
on the sphere surface. The target is dynamic, large-scale networks
so the tasks are primarily high level movement of groups. The pa-
per includes a small user study to test the effectiveness, reporting
that navigation is more efficient with GerbilSphere than traditional
network visualization.

Chen provides several examples of toroidal and spherical draw-
ings of real-world graphs in Chapter 2 of [CHE22].

Lambert et al. [LBA10] use a 3D edge bundling technique based
on edge routing to support visualization of geographical networks
as shown in Fig. 12 where they visualize international air traffic
network. The width of the bundles is based on the number of edges
within it, and the data is overlayed on the globe since the data has
geographic coordinates.
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Figure 11: Box plots of results from [CDBM21], showing that Torus based visualization was often more accurate than NoTorus (Euclidean)
visualization of graphs for cluster counting task.

Figure 12: Using 3D edge routing around the globe to visualize
international air interconnections network from [LBA10].

Figure 13: A cluster graph drawn on the sphere, shown in the
equal-earth projection from [CDY∗22].

Efforts to visualize the difficult to conceptualize processes in
non-Euclidean geometry has had some interest. Francis and Sul-
livan [FS04] create a visualization algorithm and rendering to visu-
alize a sphere eversion (turning it inside-out). Further, hyperbolic
tessellations have been the subject of study for education and aes-
thetics [OCCZ12]. An open-source hyperbolic visualization tool,
RogueViz [CK17], includes different projections and educational
tools, although its restriction to tessellations of the hyperbolic plane
makes it less than ideal for general graphs.

Non-Euclidean geometry is of particular interest in virtual
reality. This has been explored for the sphere by Kwon et
al. [KMLM15, KMLM16], who present a technique for edge rout-
ing on the sphere with VR in mind, running the edges outside of
the sphere. A user is placed inside the sphere with a head-mounted
display, and is free to look around to gain understanding of the net-
work data. In [KDB23], a user is placed in the center of a spherical
drawing dubbed an ‘egocentric’ view. This also allows areas to be
‘retracted’ and brought closer to the user.

A class of graph known as a ‘torus graph’ is common in net-
working and HPC, in fact some years ago high-dimensional torus
networks were used in four of the top ten supercomputers and eight
of the top ten on the Graph500 list [MIB∗14]. These are graphs
which describe the topology of the torus in n dimensions. They are
created by starting with an n-dimensional rectangular lattice, then
connecting the outside vertices in the same dimension; left to right
and top to bottom for a two dimensional torus graph. There has
been interest in visualizing these types of networks, and we have
classified these works as application papers since they are a method
of visualizing data from a torus.

TorusVis [CDJM14] is a visualization design study attempting
to visualize the topology of torus networks from super computing
clusters. They use a circular layout for the graph visualization part
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of their dashboard, with an ordering algorithm based on Hilbert
curves. They use edge bundling to decrease clutter within the circle.
This circular layout was later improved and extended into a tech-
nique and analytics tool [CZIM18]. Also [MIB∗14] look specifi-
cally at the IBM Blue Gene machine’s torus network using four
connected views depicting the network at different levels of detail.
The approach is demonstrated by analyzing network traffic for a
simulation running on the IBM Blue architecture. Small multiples
with links between them are used by [TSW14] to visualize torus
networks.

6. Types of Graphs

Our final dimension for analysis is the types of graphs under con-
sideration, as the choice of graphs for visualization in different ge-
ometries can affect the visualization methods and goals.

6.1. Trees and Planar graphs

Hyperbolic tree browsers had a large effect on the research
landscape of tree and hierarchy visualization. Schneiderman et
al. [SDSW12] perform a thorough investigation of early tree visu-
alization techniques, including hyperbolic trees as well as treemaps
and cone trees. They show that at the time of writing, the Lamp-
ing et al. [LRP95] paper for the hyperbolic browser was one of the
most cited tree visualization papers.

Hyperbolic tree visualizations are typically in 2D or 3D.
Most 2D approaches employ node-link diagrams drawn in the
Poincaré disk [LRP95, HHDK00, BS00]. Meanwhile, most 3D ap-
proaches [MB95, Mun97, Mun98, Mun00, Hyu00, ZK16] make use
of the Beltrami-Klein projection.

Treevis.net provides several examples of hyperbolic and
sphere-based tree visualizations [Sch11]. For example, Sphere-
Tree [BM12] puts a treemap onto the surface of a sphere, encoding
vertices as nested rectangles. The sphere appears hollow, allow-
ing a reader to see the ‘backside’ of the surface. The hyperbolic
wheel [LD12] scheme places a sunburst chart in the Poincaré disk,
so that areas of vertices further from the center decrease exponen-
tially.

Planar and non-planar graphs remain planar and non-planar re-
spectively in spherical and hyperbolic geometries. Spherical planar
embeddings of graphs are studied by both [BMW20] who aim to
eliminate geodesic crossings and [KL21] who exhaustively show
a small class of graphs (Planar Cayley graphs) have symmetri-
cal planar spherical embeddings. Planarity can be generalized to
higher-genus surfaces. A graph which can be drawn without cross-
ings on the torus is called a toroidal graph. Algorithms to construct
crossing-free embeddings of toroidal graphs are known [KNS01],
but there are no known efforts to use these algorithms for visual-
ization.

Open Problem: Graph drawing techniques leveraging algo-
rithms to construct crossing-free embeddings of toroidal graphs.

6.2. Complex networks

Krioukov et al. [KPK∗10] show that complex networks have an
underlying hyperbolic geometry. What this means is that the graph

theoretic distance between vertices in a complex network is roughly
equivalent to the hyperbolic geodesic distance of a hyperbolic em-
bedding of that graph. One of the ways they show this is by defin-
ing a random graph model, a hyperbolic random graph, which
uniformly distributes points in the hyperbolic plane and connects
points with an edge if they are within some radius. They show this
random graph model exhibits complex network properties where
many other random graph models (e.g. Euclidean geometric ran-
dom graphs) do not.

This result lead to a series of papers in hyperbolic graph
drawing. The main question is how to generate a hyperbolic
graph embedding which realizes the properties above. Bläsius et
al. [BFKL18] propose a maximum likelihood estimation formula-
tion for hyperbolic graph embedding, and show computationally
that they achieve lower distortion than the force-directed approach
of [KW05]. Meanwhile, Sala et al. [SSGR18] develop a hyperbolic
classical MDS approach that achieves lower distortion than Eu-
clidean embeddings on example datasets. For metric MDS, Miller
et al. [MKH22] apply and stochastic gradient descent optimization
to also achieve lower distortion that Euclidean embeddings. Blä-
sius et al. [BFK21] recently adapted a force-directed approach with
two types of forces: popularity force, which operates on the radial
component (i.e. its distance from the origin) and similarity force,
which operates on the angle of a node. By treating these forces in-
dependently, they achieve comparable distortion error to competing
methods.

6.3. Highly clustered graphs

A cluster in a graph is a dense subgraph within a larger, typically
sparse graph. In other words, a cluster is a collection of vertices in
which the number of edges between two vertices in the collection
is much greater than the number of edges going out of the collec-
tion [Sch07]. Graph density can refer to the ratio of edges to ver-
tices [Law01] or to the ratio defined by the number of edges in the
graph and the maximum possible number of edges (in the complete
graph) [DD17]. Cluster detection and visualization is of interest,
especially in real-world data. The stochastic block model (SBM) is
a graph generator that that aims to create clustered graphs [Abb17].

The focus+context effect from non-Euclidean spaces is suitable
to visualize the dense regions of highly clustered data, by only
showing the focal regions in high detail. Du et al. [DCL∗17] use
SBM graphs in their study to show that spherical visualization is at
least as effective at supporting adjacency tasks as Euclidean. Chen
et al. [CDY∗22] also use highly clustered graphs and show that both
spherical and toroidal drawings are more effective than flat draw-
ings at a cluster identification task. An example spherical drawing
is shown in Figure 13.

Most of the algorithms discussed in Section 5.1 adapt distance-
based Euclidean techniques such as MDS to Riemannian geome-
tries. However, such distance-based techniques often fail to capture
clusters present in the graph [KRM∗17]. Algorithms that explic-
itly aim to optimize cluster separation in a non-Euclidean drawing
is an avenue for future work. The popular t-SNE [VdMH08] DR
technique is one such algorithm used for high dimensional data,
and has been generalized to the hyperbolic plane [GGY22] and the
sphere [WW16] but has not been applied to graph drawing.

Treevis.net
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Open Problem: Graph drawing technique generalizing t-SNE
based algorithm to non-Euclidean geometries.

7. Discussion

In this survey we attempt to summarize and analyze work on visu-
alizing graphs in non-Euclidean spaces. We have tagged all papers
under consideration and categorized them in a json file with paper
titles, authors, DOIs, and other attributes, which we provide as sup-
plemental material. Plots and tables referred to in this section are
based on this data.

Geometry Papers
spherical 18

hyperbolic 19
torus 13

Table 2: Count of papers in survey that fall into each geometry.

Looking at the total number of papers over time, grouped by
geometry, we see that the three categories have roughly an equal
number of papers currently. Most of the papers in hyperbolic ge-
ometry are from before 2010, when spherical papers become more
popular. Torus papers have been more frequent in recent years and
seem to be catching up.

The count of papers by geometry can be found in Table 2. As
to be expected, the number of spherical and hyperbolic papers is
roughly equal, while there fewer torus papers. We investigate how
this trend evolved over time in Fig. 14 (a). From 1995-2009, hyper-
bolic publications were more numerous with their applications to
tree visualization, and received another round of papers in the early
2010s for their relationship to complex networks. Spherical visual-
ization papers became more prevalent in the 2010s as well, perhaps
due to the development of map-based network drawings and the re-
lease of open source web tools like d3.geo and THREE.js. We see a
similar spike in torus papers, when visualization of torus networks
for HPC systems became of interest.

Contribution Papers
technique 16
evaluation 6

proof 13
application 17

Table 3: Number of Papers based on contribution.

A count of papers instead by contribution is found in Table 3.
Technique, theory, and application papers are roughly equally com-
mon. Notably, there are far fewer evaluation papers than one might
expect for a field of research originating 30 years ago.

We can observe the intersection of two of the dimensions of our
categorization; geometry and contribution. A table that counts the
occurrences of these intersections is found in Table 4. A more strik-
ing visual is the matrix visualization Fig. 15. We can clearly see
where there is potential for future research. Toroidal techniques
and evaluations for all geometries have much room to explore (the
white spaces in the table).
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Figure 14: Number of publications in each geometry over time (cu-
mulative). (a) depicts a simple line chart with total number of pub-
lications increasing cumulatively each year. (b) depicts the same
data as a stacked area chart, with the height of the chart being the
total number of publications of all categories and the colors within
the distribution of spherical, hyperbolic, and toroidal geometries.

technique evaluation proof application
spherical 6 4 3 5

hyperbolic 5 1 6 6
torus 2 4 4 4

Table 4: Papers in each geometry based on contribution.

8. Conclusions and Future work

While there exists a large body of interesting research in this subject
area, there is still much to be done. We give an overview of potential
future work.

We are unaware of any human-subject studies evaluating graph
embedding techniques in spherical and hyperbolic space. For
example, is there qualitative difference between the Projection-
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Figure 15: A matrix based visualization of Table 4. Darker squares
indicate more papers published in that category, while lighter
squares indicate fewer papers.

Reprojection methods (which are very fast, but do not take advan-
tage of the underlying geometry) and the more computationally ex-
pensive native formulations?

Open Problem: Further computational and human-subjects
evaluation of the effect of distortion on non-Euclidean graph draw-
ings.

A large advantage of the sphere as pointed out by [GF22,
MHK23] is that there is no defined ‘center’ or ‘periphery’. Any
node can be placed in the center of the drawing, something not
possible in Euclidean space. Can this be used to prevent anchoring
or similar biases?

Open Problem: Evaluate effect of anchoring bias on spherical
drawings against Euclidean drawings.

There are many potentially interesting questions in quantitative
measures for non-Euclidean geometries. Are there bounds for other
aesthetic criteria such as crossing angle like there are for angular
resolution in hyperbolic space [Epp21]? Do similar bounds exist
for the sphere and torus? Can we characterize the graphs that ‘live
naturally’ (i.e. have low distortion) in hyperbolic/spherical/toroidal
space? Do other faithfulness metrics like Neighborhood Preserva-
tion need modifying to make sense in non-Euclidean space?

Open Problem: Characterization of graphs which have low dis-
tortion in spherical/hyperbolic space.

Open Problem: Adapting traditional metrics such as neighbor-
hood preservation to graphs embedded in non-Euclidean geome-
tries.

Like the spherical and hyperbolic space, the torus has an absolute
scale. However, the effect of dilation/resizing of a drawing on the
torus has not yet been studied.

Open Problem: Evaluate how the size of input effects graph
drawing on torus.

We do not know how people read, understand, and utilize non-
Euclidean embeddings. More human-subject studies can provide

guidelines for the design of other techniques and applications.
While the study by Du et al. [DCL∗17] indicates that the sphere
may be just as effective as Euclidean space (while hyperbolic is
not as effective), this was only shown on a limited set of tasks and
using a limited type of graphs. Further studies are needed to ver-
ify this result. As we can see in Fig. 15, the evaluation column is
light for all three geometries, but hyperbolic is in particular need of
verification.

Rodighiero [Rod20] posits that the choice of projection of the
sphere effects the reader perception of the network data and argue
that a projection that preserves the continuity of the network is de-
sirable. Can we: (1) show that this is true; and (2) select projections
more intelligently? This question has been addressed in regards to
cluster identification tasks in [CDY∗22], finding that equal-earth
and orthographic projections indeed outperform flat drawing for
this task.

Open Problem: How does the choice of spherical, hyperbolic,
or toroidal projection affect task performance?

Many generalizations of graphs, such as multi-layered graphs,
dynamic graphs and hypergraphs, have not been explored in Rie-
mannian geometry. Techniques that effectively visualize these
types of graphs in new spaces could reveal new insights and seem
to be a worthwhile direction for future work.

Open Problem: Multi-layer/dynamic/hypergraph visualization
in non-Euclidean spaces.

Although there have been some attempts to utilize non-
Euclidean geometry in the virtual reality [KMLM15, KMLM16],
this field seems ripe for exploration of immersive visualization. Of
course, data can be put on a globe, but the focus+context effect of
hyperbolic space is exaggerated in 3D.

Open Problem: Virtual reality techniques and evaluation for
non-Euclidean geometries.

We have reviewed over 60 papers in the non-Euclidean and Rie-
mannian graph visualization area, as well as summarized and cat-
egorized the literature. This subject has been of interest to the vi-
sualization community in the last three decades and we hope that
visualization researchers might use this survey to get an overview
of what is known and what remains to be explored..
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