
Eurographics Conference on Visualization (EuroVis) 2024
W. Aigner, D. Archambault, and R. Bujack
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 3

Exploring Classifiers with Differentiable Decision Boundary Maps

A. Machado1 , M. Behrisch1 , A. Telea1

1Department of Information and Computing Sciences, Utrecht University, Netherlands

Abstract
Explaining Machine Learning (ML) — and especially Deep Learning (DL) — classifiers’ decisions is a subject of interest
across fields due to the increasing ubiquity of such models in computing systems. As models get increasingly complex, relying
on sophisticated machinery to recognize data patterns, explaining their behavior becomes more difficult. Directly visualizing
classifier behavior is in general infeasible, as they create partitions of the data space, which is typically high dimensional. In
recent years, Decision Boundary Maps (DBMs) have been developed, taking advantage of projection and inverse projection
techniques. By being able to map 2D points back to the data space and subsequently run a classifier, DBMs represent a slice of
classifier outputs. However, we recognize that DBMs without additional explanatory views are limited in their applicability. In
this work, we propose augmenting the naive DBM generating process with views that provide more in-depth information about
classifier behavior, such as whether the training procedure is locally stable. We describe our proposed views — which we term
Differentiable Decision Boundary Maps — over a running example, explaining how our work enables drawing new and useful
conclusions from these dense maps. We further demonstrate the value of these conclusions by showing how useful they would be
in carrying out or preventing a dataset poisoning attack. We thus provide evidence of the ability of our proposed views to make
DBMs significantly more trustworthy and interpretable, increasing their utility as a model understanding tool.

CCS Concepts
• Human-centered computing → Visualization techniques; • Computing methodologies → Machine learning; • Mathematics
of computing → Dimensionality reduction;

1. Introduction

Communicating how a classifier behaves in all its complexity is a
challenging problem, and one that has received increasing attention
over recent years. A classifier f is a model trained with the objective
of accurately attributing categorical information to some input data.
While simple and explainable classifiers exist — e.g., Logistic Re-
gression, Decision Trees — a vast share of current research focuses
on techniques more suited to model (increasingly) complex data,
such as Deep Learning (DL). These techniques are knowingly hard
to dissect, which is directly at odds with the need to understand the
classifier’s behavior as a crucial way to implement improvements,
foster trust [vdEAA∗23], and debug failure modes.

This calls for several types of tools and methodologies to shine
light on this challenging object of study. While using numeric ag-
gregate metrics — such as accuracy, F-measure, area under ROC
curve — is a valid approach to evaluate a classifier, it provides little
in the sense of exploring the classifier’s behavior and how it changes
across different regions of the data space. Metrics typically allow
an investigator to have either a global view — each metric outputs
a single score for the classifier as a whole — or an unaggregated,
per data point, view. This introduces a disconnect in the pipeline:
classifiers are total functions, able to output classifications for any
point in the training data space. On the other hand, data points only

sparsely sample the data space, making any approach that relies
solely on them limited by design on the type of insights it can pro-
duce: it cannot say what happens in the (quite large) unsampled
portions of the data space.

Decision Boundary Maps (DBM [MRHT18, SHH20]) are a fam-
ily of techniques that partially lifts this limitation, allowing for
denser inspection of f ’s behavior across large portions of the data
space. A DBM — see Figure 1 — provides a dense map-like view of
a classifier’s behavior by mapping points p∈R2 back to the original
data space Rn — a process called inverse projection — and next
applying f on the inverse-projected data. The categorical output of
f determines the color associated with point p. All such techniques
generate images similar to the ones in Fig. 1 — a running example
we refer to throughout the text. These convey typically the “argmax”
output of the classifier (Fig. 1, left) or can be easily augmented
with confidence information, here encoded in the luminance chan-
nel (Fig. 1, right). We argue that these maps, without additional
information, are hardly interpretable: they show something about
the classifier, evidently, but are generated through a process that
might itself introduce artifacts in the visualization. In order to be
able to derive knowledge from DBMs, we see the need for extra
information such that they become more usable and therefore useful.
We point out a few shortcomings of vanilla DBMs:

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Associ-
ation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1111/cgf.15109

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-1129-4628
https://orcid.org/0000-0002-1102-103X
https://orcid.org/0000-0003-0750-0502
https://doi.org/10.1111/cgf.15109

2 of 12 A. Machado & M. Behrisch & A. Telea / Exploring Classifiers with Differentiable Decision Boundary Maps

• Even in regions where the DBM shows the classifier is highly
confident, it does not show whether f is classifying data too
far removed from any training data point, meaning it’s wrongly
confident of its output;
• Different regions in the DBM look qualitatively similar in appear-

ance — possibly even when confidence is encoded in the map
— but the classifier and inverse projection might behave quite
differently;
• 2D distances in a DBM do not accurately represent n-D distances

since the inverse projection is in general nonlinear;
• Neighborhood relations in 2D might not neatly correspond to

neighborhoods in the data space.

In summary, we argue that the DBM, although useful, masks
aspects of the high dimensional and nonlinear nature of both inverse
projection and classifier that are interesting for ML practitioners.
We propose augmenting DBMs with the goal of enabling them to
additionally answer the following questions:

Q1: In which regions of the DBM is the confidence of the classi-
fier f misleading?

Q2: Where is the model poorly supported?
Q3: Where is the DBM distorting data space distances?
Q4: Where is the training of f sensitive?
Q5: Why is f ’s confidence low/high in specific regions of space?

We demonstrate that most of these questions can be phrased in
terms of specific types of sensitivity analysis. In other words, we can
think about them as asking “what if this aspect were to be perturbed?”
It is not surprising then that the tool of choice for this problem is
the derivative. Differentiation gives us precisely that: the amount of
change in outcome effected by a small perturbation in input. The
majority of the interactive views proposed in section 3 are created
in this fashion, leading us to term them Differentiable Decision
Boundary Maps (∂DBM).

The main contributions of this paper are as follows:

• ∂DBMs, a novel set of interactive views aimed at improving the
usability of DBMS, relying on differentiable f and P−1.
• A batch-wise implementation of the adversarial example genera-

tion algorithm DeepFool (see section 3.2), allowing its concurrent
application to thousands of data points.
• An algorithm for deriving an approximate direct projection from

P−1 without any extra training, described in section 4.1.
• The demonstration of the potential of these new tools in an end-

to-end dataset poisoning use case.

We implement ∂DBMs in a Python tool and make our code
publicly available at https://git.science.uu.nl/vig/
adversarial-dbm-tool. We confirm that, in this paper, we
have reported all measures, conditions, and data exclusions, and
dataset/sample sizes, that may be applicable.

In the next sections, we elaborate on these questions and propose
answers, which we believe strongly expand the DBM approach
for model explanation. We cover background and related work in
section 2 and describe our Differentiable Decision Boundary Maps
(∂DBM) in section 3. We also show a possible use case for ∂DBMs
in section 4 and discuss avenues for future work in section 6.

0

5

5

3

8

9

4

4

7

1

2

6

Figure 1: Left: Plain DBM for a Neural Network classifier over the
MNIST dataset, generated with NNInv (from a t-SNE projection).
Each pixel p is colored according to f (p†). Each resulting zone is
annotated with its respective class. Right: the same DBM augmented
with classifier confidence encoded in luminance. This is our running
example for the rest of the text. In section 3 we show how our ∂DBMs
augment this shallow visualization with additional information.

2. Background and Related Work

We introduce a few notations used throughout this work. Let
D = {xi}i=1,...,m be a dataset of samples xi ∈ Rn. When avail-
able, a training sample’s label yi can be queried through the func-
tion Y : D → C, with |C| = K classes. We denote a classifier by
fθ : Rn→ C. A projection is a function Pθ : Rn→ Rq that maps a
high-dimensional point in Rn to a low-dimensional point (in this
work, we consider q = 2). An inverse projection P−1

θ
: Rq → Rn

performs the opposite mapping. Importantly, note that P−1 is not
strictly speaking the mathematical inverse of P as, in general, P is
not injective. We will use p,p0 to refer to pixels in a DBM, and
p† as shorthand for P−1(p). The parameters θ are omitted in our
discussion when acceptable. We represent derivatives, gradients, and
Jacobian matrices by abusing the ∂·

∂· notation as

J P−1=̇


(∇pP−1

1)T

(∇pP−1
2)T

...
(∇pP−1

n)T

=
∂P−1

∂p
=



∂P−1
1

∂p
∂P−1

2
∂p
...

∂P−1
n

∂p

=



∂P−1
1

∂p1

∂P−1
1

∂p2
∂P−1

2
∂p1

∂P−1
2

∂p2
...

...
∂P−1

n
∂p1

∂P−1
n

∂p2

 .

We will also refer to the Euclidean norm of a vector ‖x‖2 =
√

∑i x2
i

and the Frobenius norm of a matrix ‖A‖Fro =
√

∑i, j a2
i j .

2.1. Gradient-based Explanations for Classifiers

Developing algorithms and techniques to explain the behavior of
classifiers is an active area of research [AS22, RBB∗23, AASA21,
SMV∗19]. This applies especially to so-called Deep Learning tech-
niques which are notorious for their “black-box” aspect: the models
thus learned consist of sets of opaque numbers arranged in vec-
tors and matrices and combined through special operations. When
deploying such models, practitioners and stakeholders alike can ben-
efit from ways to probe it, shining light into their decision-making
process, as a way to mitigate risk and assess quality.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://git.science.uu.nl/vig/adversarial-dbm-tool
https://git.science.uu.nl/vig/adversarial-dbm-tool

A. Machado & M. Behrisch & A. Telea / Exploring Classifiers with Differentiable Decision Boundary Maps 3 of 12

Out of all the possible ways to develop such techniques, we devote
special attention to those using derivatives (e.g., gradients, Jacobian
matrices) to generate explanations for classifications.

In the context of Convolutional Neural Networks (CNNs), which
are models of choice when dealing with e.g. image data, many tech-
niques focus on providing explanations directly relatable to the data
space. Chattopadhyay et al.’s Grad-CAM++ [CSHB18] use gradi-
ents to derive visualizations of where the “gaze” of the classifier is
directed to which are then overlaid atop the classified image. Simi-
larly, Pan et al. [PLZ21] create maps of feature activations — i.e.,
which pixels of an image are important for a classification decision
— by integrating gradients along paths starting from adversarial ex-
amples. Such approaches aim to add explanations that relate directly
to the data points. In this work, we argue for the utility of explana-
tions ranging over a large portion of the data space. For this, we rely
on projections (P) and their inverses (P−1) to create 2-D decision
maps, as others have done before us [SHH20, OEHJT22]. Further,
we show gradient-based approaches to enrich these decision maps,
and demonstrate their increased usefulness.

2.2. Projections, Inverse Projections, and Decision Maps

Projection algorithms are formally functions

Pθ : Rn→ Rq (1)

where q� n is the dimension of the projected space, usually repre-
sented as a scatterplot with q = 2 or 3. In this work, since we focus
on Decision Boundary Maps, we use q = 2 throughout. Projection
algorithms aim to take a given dataset D and produce a projection
P(D) preserving important data patterns.

Tens of projection algorithms exist which differ in the characteris-
tics of the data D they aim to preserve in P(D), whether they work
locally or globally and linearly or not, and how they optimize their re-
lated cost functions. Well-known examples hereof are PCA [Jol02]
(global, linear optimization), t-SNE [vdMH08] (local, nonlinear op-
timization), and UMAP [MHM18] (similar to t-SNE, but using a dif-
ferent cost and optimization scheme). For additional details, we refer
to relevant surveys in the area [SVPM14, HFA17, NA18, EMK∗19].

Projections enable not only the visualization of high-dimensional
data D but also of several objects that operate on that data. Consider
a classifier f trained on some dataset D for which we also have
a projection P(D). One can then visualize the output of f in the
same projection plot by coloring each projected point P(xi)|xi ∈ D
according to f (xi). This yields a sparse 2D visualization of the
behavior of f at the samples xi. However, this gives no information
for points outside D. Differently put, we do not know what f is like
for the white space areas in P(D).

Different techniques of inverse projection have been proposed to
bridge this gap. An inverse projection P−1 is a function

P−1
θ

: Rq→ Rn (2)

designed to minimize a reconstruction error ‖P−1(P(x))− x‖ for
x ∈ D. Note that the term “inverse” is abused here: P−1 is typically
not an exact inverse function in the mathematical sense — since P
usually is not injective —, but an approximation thereof. Having
such a P−1, one can pick an as fine as desired regular grid of points

p in R2. Coloring each such pixel p by the value f (P−1(p)) yields
a so-called decision boundary map (DBM). Same-color compact
areas in a DBM indicate so-called decision zones where f yields
the same output (class); neighbor pixels of different colors indicate
decision boundaries, where f changes output. Additionally, color
brightness (or saturation) can encode the classifier’s confidence.

Several techniques of DBM generation exist. They mainly dif-
fer on exactly how P−1 is derived and used. iLAMP [ABD∗12]
inverts the LAMP [JCC∗11] projection technique by local inter-
polation using radial basis functions. In DeepView [SHH20], the
invertibility of UMAP [MHM18] means P−1 is enabled by design.
SDBM [OEHJT22] works similarly by deep learning P and P−1

by an autoencoder design. NNInv [ERH∗19] also uses deep learn-
ing, but a different architecture than SDBM, to learn P−1 for any
user-provided P. We use NNInv for DBM generation throughout
this work due to its genericity and differentiability.

The insights obtained from a DBM depend, obviously, on the
errors that P and P−1 potentially introduce. Several metrics exist
to measure projection errors both locally (for point neighborhoods)
and globally [VK06, Aup07, LA11, JCC∗11, MMT15]. A detailed
comparison of projection errors is provided in [EMK∗19]. For
inverse projections, one typically does not have ground truth data
for points outside the dataset D used to construct P−1. As such,
P−1 is typically assessed by the mean square or absolute error of
the reconstruction error. Errors of P can be used to filter out poorly
projected points to construct better P−1 mappings [REJT19].

A separate challenge involves the stability of direct (and inverse)
projections. Simply put, if small changes in a dataset yield large
changes in P and/or P−1, then both these mappings and the cor-
responding DBMs are prone to misinterpretation since the details
they show may be artifacts of some small-scale data noise. Stability
metrics have been proposed to analyze the behavior of projections
of time-dependent data [VGdS∗20], respectively the robustness vs
different noise types for a single deep-learning-based projection
technique [BTT22]. However, such analyses have not been used
to help the interpretation of DBMs. Oliveira et al. [OEJT23] have
studied the stability of SDBM by visualizing its changes subject to
different noise types (similar to [BTT22]). However, their approach
did not consider other P or P−1 techniques. More importantly, such
visualizations consider artificial data changes (noise). In our work,
we consider (and visualize) a more realistic scenario, namely how
sensitive a classifier is to mislabeled samples.

3. Differentiable Decision Boundary Maps

We claim that a deeper understanding of the data and classifier can
be obtained by augmenting existing DBMs with additional visual-
izations. We propose and argue for five such views, most of them
obtained by using gradient-based methods. The differentiability of
both classifier and inverse projection is crucial in our work, hence
we call our proposed views Differentiable Decision Boundary Maps.
These views can be directly overlaid atop a given DBM and also
combined with each other to answer Q1-Q5 from Sec. 1. We in-
cluded numerical scales, aside the color-mapped images, for views
where reasoning about the absolute values is important; for views
which support reasoning about relative values, we did omit such

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

4 of 12 A. Machado & M. Behrisch & A. Telea / Exploring Classifiers with Differentiable Decision Boundary Maps

scales. Our tool always provides tooltips to investigate the exact
values at any pixel in any view.

3.1. Classifier Confidence

low
confidence (0.0)

high
confidence (1.0)

Figure 2: Each pixel p shows the probability assigned to the best
class for p†. We see a classifier that seems uniformly confident of its
predictions throughout the represented space.

As already explained, a plain DBM can be overlaid with the clas-
sifier confidence — understood as either the probability assigned
to the predicted class or the entropy of the probability distribution
over classes — typically encoded into brightness or saturation. Fig-
ure 2 shows the confidence of the classifier whose DBM was already
shown in Fig. 1 using color coding. If we are to trust this figure, the
classifier appears extremely confident for the vast majority of the
points in all decision zones (yellow) except in the direct vicinity of
the decision boundaries (green bands). As we shall see, using our
additional views tells a different story.

3.2. Distance to Decision Boundary

Our first DBM enhancement is to show, for each pixel, the dis-
tance of the sample p† it represents to the actual classifier decision
boundaries in data space. This, combined with the confidence map
(Figure 2) aims to answer Q1. We compute this distance as

DistAdv(p) = min
∆x∈Rn

{
‖∆x‖2

∣∣ f (p†+∆x) 6= f (p†)
}
. (3)

Computing DistAdv exactly is complex. However, techniques for
Adversarial Example Generation can approximate it well. In our
work, we use DeepFool [MFF16] for this goal. Alternative ap-
proaches to compute this distance have been proposed in [EAS∗23]
and [REJT19]. However, these approaches use iterative numerical
approximation techniques to search for the closest decision bound-
ary point in the data space, which are sensitive to parameter setting
and very slow. DeepFool runs considerably faster and is a more
principled approach for the same goal. We also extend the original
DeepFool implementation to work on batches of data, concurrently
generating adversarial examples for thousands of data points at a
time. Overall, we can compute maps of 3002 pixels in less than a
second on a commodity PC (for more detailed performance data,
see supplemental material).

Figure 3a shows the distance to decision boundary computed by
Eqn. 3 for our running example with luminance encoding. Dark ar-
eas correspond to low distances; bright areas indicate points that are

far away from the decision boundaries. This map focuses attention
on points far away from the boundaries. Alternatively, to focus on
points close to the boundaries, which have a higher likelihood to be
misclassified upon small data changes or classifier hyperparameter
tuning, we can use an inverse luminance mapping (Fig. 3b). Pixels
close to boundaries are now bright. Comparing these images with
Fig. 1 or the separately-visualized confidence in Fig. 2, it becomes
clear that the distance from a pixel p to the closest boundary in
the DBM, i.e., closest DBM pixel of a different color than p, is
not reflective of the actual distance between the data point p† and
its closest decision boundary in data space. Our maps in Fig. 3a
show that the data-space distance varies within each DBM region
in complex ways. Moreover, while the confidence visualization
(Fig. 2) suggests that all pixels away from the decision boundaries
are qualitatively equal (high classifier-assigned confidence), our
distance-to-boundary visualization (Fig. 3a) exposes hidden qual-
itative differences. Some entire regions in the map appear to be
completely ‘brittle’ in the sense that they have quite low distances
to decision boundaries in data space (see circled region in Fig. 3b).

These observations immediately lead us to test what would hap-
pen if we introduced mislabeled data points in such fragile re-
gions. For this, we select 10 points pi in a given fragile — i.e.,
low DistAdv — region, assign wrong labels to them, and add their
inverse-projected p†i mislabeled samples to the original training set
of our classifier, which contains 5 thousand data points. We keep
the number of mislabeled points low to avoid introducing class
imbalance to the data. Figures 4(b,c) and (d,e) show two such ex-
periments, each using another fragile region. In both cases, we see
that it is easy to visibly modify the classifier’s decision zones and,
thus, behavior. Hence, visualizing such brittle regions is useful to
inform classifier designers of areas in data space where the classifier
is easily influenced.

(a) Highlighting safe regions (high
DistAdv)

(b) Highlighting brittle regions (low
DistAdv).

Figure 3: Visualizations of approximate distance to the closest deci-
sion boundary in data space. Highlights (bright areas) show points
that are (a) far away from, respectively (b) close to boundaries.
DistAdv values are scaled to [0,1] before visual encoding.

3.3. Distance to Training Data

Any classifier is subject to generalization problems [ZLQ∗23] —
the further a sample is from the training set, the higher is the likeli-
hood that that sample will be misclassified. This is fundamentally

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

A. Machado & M. Behrisch & A. Telea / Exploring Classifiers with Differentiable Decision Boundary Maps 5 of 12

distance to boundary

10 mislabeled samples added changes in the DBM

a)

b) c)

d) e)

Figure 4: Finding brittle regions with low DistAdv values (a). Adding
mislabeled data points in two such regions (b,d) has a strong effect
on the DBM. In case (b), the cyan region, class 9, expands so that it
fully separates the purple and gray top-right regions (c). In case (d),
the blue region of class 0 wraps around to form a single connected
decision zone with the new data points (e).

a question of support (Q2) that current DBMs do not depict. We
address this by visualizing the actual distance from the sample cor-
responding to each DBM pixel p and the closest point in the training
set Dt as

Disttrain(p) = min
x∈Dt
‖p†−x‖2. (4)

Figure 5a shows Disttrain for our running example encoded on
a blue-to-yellow colormap (blue=small, yellow=large, distances).
This view exposes regions of the DBM where, although the classifier
might have high confidence values (see Fig. 2), it is operating on
samples quite different from those on which it was trained. Espe-
cially salient is the dark blue area (Figure 5a, bottom right): the
values of Disttrain are consistently low for that region which corre-
sponds to class 1 (orange in Fig. 1 left). This is because all pixels
p in that region back-project close to the training set, meaning that
P−1 “captures” that region well. Class 1 represents the digit 1 in
MNIST, which is the simplest and least-varying shape in the dataset,
which in turn is easy to capture. There is further evidence to the
above observations. We see that the training samples do not cover
the entire region — there are no white dots to the extreme right
of the dark blue zone in Figure 5a. Still, this area is overall dark,
meaning that P−1 “reaches” close to the training data for the entire
region, even from points distant from P(Dt).

We can be further more specific and ask if a given data region has
enough support to be classified as a given class c ∈ C. We expect
good support if a given pixel p is classified as c and is close to some
training points of class c in the data space. To check this, for a pixel
p that has label (color) c, we compute the distance of the data point
corresponding to p to the closest training-set point of class c as

DistSameClass(p) = min
x∈Dt

{
‖p†−x‖

∣∣ Y (x) = f (p†)
}

(5)

Figure 5b shows DistSameClass for our running example. We see

a) b)
low
dist. (0.0)

high
dist. (8.1)

Figure 5: Distance to any training point Disttrain (a) and to training
points in the same class as p†, DistSameClass (b). White points show
the training set Dt .

that this distance is subtly different from Disttrain shown in Figure 5a.
Again, the bottom-right region is dark blue, indicating strong support
in that region for class 1. The delineation of the dark blue region
is now, however, very sharp, matching very well the shape of the
orange decision zone (class 1) in Figure 1 left. We also see a clearly
delineated yellow region bottom-left in Figure 5b. This tells that the
respective region, corresponding to the border of classes 2 and 6
(green and pink, Figure 1 left), is likely a too far-away extrapolation
of the class-2 training. Again, the plain confidence visualization
(Figure 1 right) does not show us such insights.

3.4. Projected Space Expansion

We next propose several views based on metrics computed by dif-
ferentiating specific components of the DBM generation process.
This requires introducing some additional notation. We assume we
are dealing with a classifier f that has some internal scoring that
is then transformed (say, by a softmax function) into a probability
distribution over classes.

As mentioned in Sec. 2, it is possible that P−1 itself introduces
artifacts in the DBM. We propose a way to visualize how much P−1

expands the 2D space locally to be able to invert P with low error
rate, therefore answering Q3. Espadoto et al. [EAS∗23] computed
this via an approximate pseudo total derivative called Gradient Maps.
In contrast, we use the exact derivative obtained through automatic
symbolic differentiation by

SpaceExpansion(p0) =

∥∥∥∥∥∂P−1

∂p

∣∣∣
p=p0

∥∥∥∥∥
Fro

, (6)

where we assume that P−1 is differentiable with respect to its input.
High values of this metric indicate regions where P−1 strongly
expands the 2D space — that is, close pixels in the DBM map to far-
away points in the data space. These are regions where small-scale
details in the DBM, e.g. the presence of decision boundaries, are
very uncertain or even misleading, since zones lying close to each
other in the 2D image are not neighbors in the data space.

Figure 6 shows this space expansion computed by Gradient Maps
(a), respectively our method (b). We note that our method is visibly
less blurry than Gradient Maps since the latter uses finite difference
approximations which introduce approximation errors that smooth
out finer detail, whereas we compute the exact norm of the Jacobian

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

6 of 12 A. Machado & M. Behrisch & A. Telea / Exploring Classifiers with Differentiable Decision Boundary Maps

a) b) c)

A

B

C

Figure 6: Space expansion of P−1 visualized by (a) Gradient Maps
[EAS∗23], respectively our method (b). Our technique shows more
sharp details than Gradient Maps.

in Eqn. 6. We next outline three regions with high space expansion
values (yellow areas inside black ellipses, image (a)). Looking at
the actual decision zones (image (c)), we see that region A occurs
deep inside the blue zone — hence, the expansion of P−1 here is not
causing interpretation problems. However, regions B and C occur
close to decision boundaries — hence, the exact positions of these
boundaries in the DBM can be misleading.

3.5. Sensitivity to Mislabeled Samples

As already mentioned, the nonlinear characteristics of both f and
P−1 mean that plain DBMs mask the complexity of the decision
function and of the data space. We also know that the process of
training a classifier can be influenced by several aspects, even under
fixed hyperparameters. For instance, the initial weights of a neural
network are random; the order in which data samples are processed
can affect gradient estimation; and the network itself may have
stochastic components such as Dropout layers [SHK∗14]. With this
in mind, a classifier designer may be interested in how sensitive
(Q4) each decision zone is to perturbations that can be introduced
by retraining. One way to measure this is to determine how easy it is
to create new decision zones for each possible class. The easier this
is, the more sensitive the training process is in that DBM region.

We measure this sensitivity by

ClassifSensitivity(p,c) =
∥∥∥∥∂h[c]

∂x

∣∣∣
x=p†

∥∥∥∥
2
, (7)

where h(x) is the pre-softmax activation layer of the classifier f and
by [c] we mean the score corresponding to class c. Figure 7 shows
this metric computed for all 10 classes of our running example.
For class 1, we see that the sensitivity is high only inside class 1’s
decision zone (see the actual decision zones in Figure 1 left). This
means that adding samples wrongly labeled as class 1 should have
little to no effect on the classifier. Conversely, the sensitivity for
class 4 shows high values throughout a vast portion of the map.
that is, telling class 4 apart from the others is problematic for this
classifier, as it can be easily convinced that other digits are class 4
by retraining with mislabeled data points.

We further show the predictive power of these maps with two
scenarios (Figure 8). We start with the same DBM (a). Next, we add
only 10 mislabeled samples in a region of high sensitivity (b) — the
total training set being of 5K samples. We see that the DBM visibly

0 1 2 3 4

5 6 7 8 9

Figure 7: Sensitivity metric for each class in the MNIST dataset.
Yellow (resp. blue) pixels map through P−1 to regions in n-D space
where the classifier’s activations change rapidly (resp. slowly).

changes (c). Conversely, we add 100 mislabeled samples to a low
sensitivity region (d). The DBM now barely changes (e).

initial DBM

adding mislabeled samples resulting DBM

a)

b) c)

d) e)

Figure 8: Initial DBM (a). Adding mislabeled samples to two re-
gions of high, resp. low sensitivities (b,d) leads to very different,
resp. almost unchanged, DBMs (c,e).

3.6. Class Variability in 2D Space

Not all changes in classifier activation patterns result in a different
classification output. That is, even if f outputs only one class for
a given region of a DBM (a decision zone), it might be the case
that f is internally “paying attention” to different aspects of the
input. We expect the activation pattern changes to be different from
class to class, pointing to different amounts of variability among the
elements of each class. This, in turn, can help in judging why f ’s
confidence varies (or not) in a given region of the DBM (Q5).

Intuitively, we wish to capture the rates of change in the activation
patterns h(p†) as we move along the DBM. Since we focus on
settings where f and P−1 are differentiable, we can compute this as

ClassVariability(p0) =

∥∥∥∥∥∂h◦P−1

∂p

∣∣∣
p=p0

∥∥∥∥∥
Fro

, (8)

∂h◦P−1

∂p
=

∂h
∂x

∣∣∣
x=P−1(p)

∂P−1

∂p
.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

A. Machado & M. Behrisch & A. Telea / Exploring Classifiers with Differentiable Decision Boundary Maps 7 of 12

Computing ClassVariability for every DBM pixel shows the amount
of change expected in the activation patterns in a region of the data
space corresponding to an infinitesimal movement in the 2D map.
This goes one step further than the Gradient Maps [EAS∗23]. Dif-
ferentiating through the classifier f as well as the inverse projection
P−1 allows for deeper insights into the inner workings of f .

Figure 9a shows ClassVariability for our running example. Bright
yellow regions tell that neighbor map pixels correspond to strong
changes of the classifier behavior. Not surprisingly, many such
changes happen along borders between different regions in the
DBM. However, our visualization shows that changes also happen
within those regions — a fact that the original DBM doesn’t convey.
These within-region changes are not large enough to cause a switch
in the classifier’s prediction — if they were, they would create new
decision zones. Still, they tell that the internal activations of the clas-
sifier are changing, pointing to class variability. We can see this by
sampling points in regions with high values of this metric (Fig. 9b)
and comparing their variability to points from low value-regions
(Fig. 9c). For the former case, we see more variability (images d-h)
than for the latter case (images i-m). The class variability shows
more activity than the classifier confidence visualization (Figure 2)
— the latter spikes to 1 practically everywhere except on the deci-
sion boundaries. This shows a uniform confidence in the face of
non-uniformly-similar samples (Fig. 9, d-h).

Summarizing the above observations, Table 1 shows how we can
combine the class variability and classifier confidence views to draw
several conclusion on a classifier’s behavior.

Table 1: Cross-referencing Class Variability with the Confidence
map and conclusions that can be drawn.

Class Variability
Low High

C
on

fid
en

ce

Low
Classifier could not
learn the main pattern
of this region properly.

Classifier could not
learn the patterns of this
region properly.

High
Data pattern is simple
enough to be grasped
by the classifier.

Data varies
considerably, but the
classifier can still learn
the proper class.

4. Case Study: Data Poisoning

We now describe a use case for our DBM augmentations — as-
sessing whether a data poisoning attack is being carried out when
updating a classifier. The need to update a classifier arises from time
to time and can be due to a multitude of factors [LLD∗19,DRAP15].
For instance, the data distribution might have changed — e.g., user
preferences tend to change over time —, or a new source of data
may need to be added into a system. In this process, the inclusion of
new samples opens up the possibility of an attacker crafting specific
training data aimed at harming the accuracy of the classifier being
updated. These malicious actions are called Data Poisoning attacks,
and have been studied extensively [CGD∗23, CGD∗22]. The partic-
ular type of attack we focus on falls under the category of so-called
causative attacks [BNJT10] — in short, attacks that are carried out

by tampering with training data —, which we next briefly describe
following Steinhardt et al. [SKL17]. The scenario consists of a
defender learning a model fθ and an attacker who wants the learned
fθ to incur a high test loss (which the defender tries to minimize).

• We establish a “clean” dataset Dc consisting of n data points.
• The attacker chooses a “poisoned” dataset Dp of εn data points,

where ε ∈ [0,1] is the attacker’s budget.
• The defender trains on the full dataset Dc ∪Dp, producing a

model f
θ̂

and incurring test loss Ltest(θ̂).

We next show that if the attacker chooses points close to decision
boundaries in the data space and tampers with their associated labels,
they can negatively impact the test loss, fulfilling their goal. Hence,
our ∂DBMs can be used as a guide for an attacker to successfully
craft poisoned data. Conversely, this also means that using our DBM
visualizations can potentially uncover this type of attack before it
takes place, enabling the defender to filter out the undesirable data.

4.1. Preparation: implicit projection

As already explained, to create our DBM visualizations, we need
to be able to run P−1 on the projection space. This can be trivially
accomplished by using NNInv, as we did for all examples already
shown so far. However, to place new data in the ∂DBM, we need to
project unseen data points via P. Not many projection algorithms
support this out-of-sample capability — for example, neither t-SNE
nor UMAP do. We could solve this by looking for parametric pro-
jection algorithms, such as PCA, Parametric t-SNE [vdM09], or
Auto-Encoder based methods. This would (unnecessarily) impose a
limit to the user of ∂DBMs, which goes against our goal of ∂DBMs
being as generic as possible.

Another solution would be to use an approximation to the projec-
tion, such as NNP [EHT20] — a neural approach that generalizes
any projection to unseen data. However, NNP has three disadvan-
tages: (1) it does not always perform well in generalizing the pro-
jection it is trained on; (2) using it means introducing yet another
component in our pipeline that must itself be trained and evalu-
ated; (3) there is no guarantee that the NNP-learned approximation
of P is compatible with the P−1 already present in the ∂DBM
pipeline. That is, the round-trip error ‖PNNP(P−1(p))−p‖2 and/or
‖P−1(PNNP(x))−x‖2 can be very high.

To address the above issues, without the need for a parametric P,
we propose a way to perform a direct projection P implicitly from a
P−1 that is differentiable with respect to its input (a requirement we
had earlier for some of our techniques). For each point xnew ∈ Rn

we wish to project, we solve the optimization problem

P̂(xnew) = argminz‖P
−1(z)−xnew‖2

2. (9)

This is easily done with standard optimizers such as Adam [KB15].
Since the optimization goal is non-convex because of P−1, we use
a few tricks to ensure convergence to a sensible projected point —
see Algorithm 1. We perform this optimization batch-wise, which
makes it is reasonably fast: on a commodity PC, projecting m = 100
points takes about 0.3 seconds; for reference, projecting the same
points with t-SNE takes equal time.

Algorithm 1 starts by generating κ candidate points for each in-
put data point x′i that should be projected. We can either generate

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

8 of 12 A. Machado & M. Behrisch & A. Telea / Exploring Classifiers with Differentiable Decision Boundary Maps

a)

b)

c)

d) e) f) g) h)

i) j) k) l) m)

Figure 9: Comparing equally-spaced points in the projected space, we notice that in regions where ClassVariability is high (b), the elements
obtained through P−1 change visibly — be it within a given decision zones or across them (d-h). Conversely, when the metric is low (c), we
are in a region where there is less variation in the data (i-m).

those uniformly at random in the projected space (lines 9-11), or
use a “warm start”. In the latter case, the candidate set for each x′i
is generated by first finding the data point n ∈ Dt most similar to
x′i (line 2), then generating κ points by adding Gaussian noise to n
(line 6, σ = 0.01 in our tests). The generation of κ candidate points
per input point to Algorithm 1 is a way to increase the chances of
finding a good minimum to the reconstruction error. These points
are generated in 2D, not in n-D, which avoids the curse of dimen-
sionality; still, κ should not be set too high since the complexity of
the algorithm depends linearly on it (κ = 10 produces good results
in our tests).

Once we have, for each input data point x′i , a set of candidate
projected points Zi ⊂ R2, Algorithm 1 proceeds by iteratively opti-
mizing the candidate points zk ∈ Zi (lines 13-19) so as to minimize
the reconstruction error through P−1. We limit the number of times
this optimization is done with the hyperparameter T , fixed to 50 in
our tests. Finally, we select the element of each candidate set that
achieved the smallest reconstruction error (line 20). These are the
implicitly projected versions of the input points.

Figure 10 shows our method in use. The left image shows the
t-SNE projection P of the MNIST dataset. From this projection, we
construct P−1 using NNInv, as mentioned earlier. The right image
shows the result of P̂ (learned from P−1) on unseen data points. As
the colors show, the unseen points are projected as expected, given
the projection P, within their respective point clusters.

Figure 10: Left: t-SNE projection of the MNIST dataset, colored
by ground truth labels. Right: implicit projection P̂ of unseen data
obtained through Alg. 1.

Algorithm 1 Implicit Direct Projection (P̂)

Require: P−1,Xnew = {x′i , . . .}, WarmStart ∈ {T,F}, # seeds κ ≥ 1, #
iterations T > 0.

Ensure: O = {oi, . . .}, the projected points from Xnew.
1: if WarmStart then
2: N←{argminx∈Dt

‖x′i −x‖2
2 | x′i ∈ Xnew}

3: n(q)
i ← P(ni) ∀ ni ∈ N . Precalculated since N⊆Dt .

4: for all x′i ∈ Xnew do
5: .Zi is the candidate set for point x′i
6: Zi←{n(q)

i + εk ∼N (0,σ2) | k ∈ {1, . . . ,κ}}
7: end for
8: else
9: for all x′i ∈ Xnew do

10: Zi← κ uniformly distributed points in [0,1]q

11: end for
12: end if
13: for j = 1, . . . ,T do
14: for all x′i ∈ Xnew do . implemented batch-wise parallel
15: for all zk ∈ Zi do
16: zk← OptimizerStep(zk,∇zk‖P−1(zk)−x′i‖2

2)

17: end for
18: end for
19: end for
20: oi← argminzk∈Zi

‖P−1(zk)−x′i‖2
2 ∀i . best candidates

21: return O

4.2. The attack setting

As a dataset, we use ciFAIR [BD20], a variant of the well-known
CIFAR dataset with duplicate images removed. We use a pretrained
ResNet [HZRS16] neural network as a feature extractor, mapping
each 32 x 32 RGB image to a feature vector in R4096. As classifier
instance, we next train simple 3-layer feed-forward neural networks
that take these 4096-dimensional vectors and aim to predict the
correct image class.

To carry out the attack in a way that allows for analysis, we first
train a model f clean using m = 5000 data points from the training
set (Dc). The test accuracy is measured on a held-out set Dtest. The
attacker then chooses εm new data points to form Dp. A new model
f att with the same architecture and hyperparameters as f clean is

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

A. Machado & M. Behrisch & A. Telea / Exploring Classifiers with Differentiable Decision Boundary Maps 9 of 12

trained on Dc∪Dp. The test accuracy of f att is measured on Dtest
to demonstrate the effect of the attack.

4.3. Carrying out the attack

We next discuss how we generate Dp and the effect that training on
the extended dataset has on test accuracy.

Generating poisoned data. In our simplified scenario, we gener-
ate the set of εm samples that have not been seen by any of our
models by back-projecting (P−1) points that are close to a decision
boundary (see section 3.2). We choose such data points because,
as explained earlier in Sec. 3, decision boundaries are the regions
where effecting changes on the classifier’s outputs should be easiest.
Figure 11(left) shows the t-SNE projection of the ciFAIR dataset
created using t-SNE and, also, the DBM of the trained classifier. The
right image shows the selected samples close to decision boundaries.

Figure 11: Left: the ciFAIR dataset projected with t-SNE. Right:
generated poisoned points Dp using ε = 0.05. These all lie close to
the decision boundaries of the classifier.

Figure 12: The DBMs for the ciFAIR dataset before (left) and after
(right) the data poisoning attack. We see that clear differences ap-
pear, in the form of new decision zones for class 0, but also in the
changes in the shapes of other classes’ zones. This reconfiguration
of the decision surfaces is directly reflected in the change in test
accuracies (Table 2).

To poison the dataset in a simple way, we add the label 0 to these
selected samples. A classifier that is able to predict these incorrect
labels should intuitively perform worse on the held-out Dtest, since
we train it with misleading data.

Table 2 shows the results of the attack for two different ε values.

We are able to dramatically lower per-class test accuracy by 3.7%
(for ε = 0.02) and 5.8% (ε = 0.05) by this simple attack. The overall
test accuracy drops by 1.3% (ε = 0.02) and 2.2% (ε = 0.05), taking
into account the different relative amounts of points from each class.

Interestingly, the accuracy for class 0 — used for our added
poisoned points — rose for ε = 0.05. We explain this by observing
that, indeed, some of the new points are similar to true members
of class 0, hence introducing a correct signal in training; also, the
training process itself is prone to perturbations, so the classifier may
have learned better from the original training samples of class 0
when performing this experiment.

We conclude that ∂DBMs are simple but effective tools that pro-
vide starting guidance to an attacker wishing to negatively impact
the test accuracy of a classifier by directly pointing them to regions
that reliably affect classification outcomes.

4.4. Defending using ∂DBMs

In turn, a defender can also use ∂DBMs to thwart a poisoning
attack. Say the defender has received a dataset Dmixed = Dold ∪
Dnew, potentially poisoned as described in Sec. 4.3. We assume the
defender has the needed information to decide whether poisoning
is suspected or not, e.g., can tell such attacks apart from concept
shifts in the data-generating distribution; this type of decision is
out of our scope. The attacker may have crafted points in Dnew in
the manner of Fig. 11, but the defender has no way of knowing
that. The defender can however inspect these new training points by
projecting them onto the ∂DBMs of the existing classifier. This can
be directly done using Alg. 1.

The defender can now use ∂DBM visualizations to explore
Dmixed. Figure 13(left) shows the dataset projected atop the DBM
of the classifier. For clarity, we only show here the Dnew points —
these can be easily isolated from Dmixed since we have Dold. In
our image, the new points appear close to the decision boundaries,
which raises suspicions. The right image explores further by show-
ing the distance to decision boundaries (Sec. 3.2). We now see that
all points are very close to the actual decision boundaries — even
some points which, in the left image, appeared to be further away
from the decision boundaries in the image. The defender can now
conclude that a dataset poisoning attack is underway; the attack can
next be thwarted by either filtering out the suspicious samples or
choosing not to update the classifier altogether.

5. Discussion

We discuss our method along several aspects, as follows.

Simplicity vs interpretability: ∂DBMs can be created automat-
ically, with zero parameter-setting efforts, for any differentiable
classification model, that is, with very little effort even for inexpe-
rienced users. Interpreting the set of views that ∂DBMs provide,
however, requires a certain amount of training and effort. We ar-
gue that such explanatory views are necessary for any DBM algo-
rithm. Indeed, such algorithms (1) use direct and inverse projections,
which are subject to errors; and (2) as recently shown by Wang et
al. [WMT23, WT24], all current DBM techniques only visualize
a surface-like subset of the full data space the classifier works on.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

10 of 12 A. Machado & M. Behrisch & A. Telea / Exploring Classifiers with Differentiable Decision Boundary Maps

Table 2: Variation in test accuracy measured on unseen data before poisoning (Dc) and after poisoning with different budgets (ε = 0.02,0.05).
We highlight the classes for which we were able to drive down test accuracy.

Test Accuracy per Class
0 1 2 3 4 5 6 7 8 9

Dc 83.1% 90.5% 90.0% 82.0% 86.2% 77.5% 89.9% 93.5% 94.7% 89.4%

Dc∪D(0.02)
p

79.4% 88.1% 86.8% 82.5% 83.8% 78.5% 91.0% 91.5% 95.2% 86.9%
(-3.7%) (-2.4%) (-3.2%) (+0.5%) (-2.4%) (+1.0%) (+1.1%) (-2.0%) (+0.5%) (-2.5%)

Dc∪D(0.05)
p

86.8% 85.7% 84.1% 80.7% 83.3% 77.5% 87.8% 91.0% 91.8% 86.4%
(+3.7%) (-4.8%) (-5.8%) (-1.4%) (-2.9%) (+0.0%) (-2.1%) (-2.5%) (-2.9%) (-3.0%)

Figure 13: A defender needs to project the new dataset using P̂.
The new data points Dnew are shown here for the same scenario as
above atop the distance to decision boundary view. On the left, we
embed it on the DBM (section 3.2) and on the right, we display it
independently.

Having the option to visualize ∂DBMs, either as separate views,
or overlaid atop a plain DBM, aids in answering specific questions
(Q1-5) which, as we have shown, cannot be answered by a plain
DBM. We argue that this is valuable even for inexperienced users.

DBM distortions: As explained earlier, all current DBM methods
have limitations, either in terms of which part of the data space
they show, or the distortions they introduce due to the (inverse)
projections they use. We do not aim to correct these distortions
(or limitations), as this would imply fundamentally changing the
DBM construction algorithm. Rather, our explanations work gener-
ically for any DBM technique which uses a differentiable inverse
projection. As such, we focus on highlighting the place, nature,
and extent of problems caused by DBM distortions, rather than
aiming to fix these. Similar approaches are well known for visu-
alizing (and not correcting) distortions caused by direct projec-
tions [HFA17, MCMT14, Aup07, LA11].

6. Conclusion

We have proposed ∂DBMs, a set of visualizations that, indepen-
dently or as a whole, enable a deeper analysis of Decision Boundary
Map (DBM) depictions of classification models. Our views are
mainly based on one simple concept — measuring the sensitivity of
different elements of the DBM pipeline (inverse projection, classi-
fier) with respect to their inputs, and visualizing how this changes
across the DBM. Our techniques can be generically applied to any

data dimensionality and to DBMs constructed using any direct pro-
jection technique. We show the additional information that can be
derived from our visualizations, linking them to concrete uses and
demonstrating their explanatory power for classification. We also
illustrate our ∂DBMs for the task of creating, but also defending
against, an end-to-end dataset poisoning attack. As a side contri-
bution related to this use-case, we also show how to construct an
implicit projection function based on a given inverse projection.

∂DBMs, however, also have some limitations. Our techniques
require the differentiability of the inverse projection used by the
DBM and the classification model itself. However, most ML models
(and importantly, deep neural networks), and most inverse projec-
tion techniques we know of, fall in this class. Visualizing the exact
distance to decision boundaries of a classifier (section 3.2) would be
computationally intensive, limiting the interactivity of the created
maps. Moreover, such exact maps could be very noisy due to the
complex hypersurface determined by a classifier, so approximating
that distance both increases speed and provides some regulariza-
tion to the maps. More importantly, ∂DBMs do not overcome an
important limitation of their predecessors — they heavily rely on
the quality of the generated (direct) projection of the data. Poor
projections will lead to poor maps. As such, one still requires ex-
ploration to choose a suitable projection technique. An alternative
to this that is worth studying is using techniques that provide some
regularization of the projected space, such as the recently-proposed
ShaRP [MTB23].

We see several immediate avenues for future work. ∂DBMs can
be extended by additional, more specialized, views that aim to
answer more complex, specific, questions. Adding the support for
interactive querying of the maps would allow ML engineers to
pose more complex queries on parts of the data and/or the map,
thereby narrowing down problems of existing classifiers. Finally,
using ∂DBMs in a controlled study to demonstrate their effective
added-value in an end-to-end ML engineering task is an important
step towards practical validation.

References

[AASA21] ANGELOV P., ARNOLD N., SOARES E., ATKINSON P.: Ex-
plainable artificial intelligence: an analytical review. WIREs Data Mining
Knowl Discov 11, e1424 (2021). 2

[ABD∗12] AMORIM E., BRAZIL E., DANIELS J., JOIA P., NONATO
L., SOUSA M.: iLAMP: Exploring high-dimensional spacing through
backward multidimensional projection. In Proc. IEEE VAST (2012). 3

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

A. Machado & M. Behrisch & A. Telea / Exploring Classifiers with Differentiable Decision Boundary Maps 11 of 12

[AS22] ALICIOGLU G., SUN B.: A survey of visual analytics for explain-
able artificial intelligence methods. Computers & Graphics 102 (2022),
502–520. 2

[Aup07] AUPETIT M.: Visualizing distortions and recovering topology
in continuous projection techniques. Neurocomputing 10, 7–9 (2007),
1304–1330. 3, 10

[BD20] BARZ B., DENZLER J.: Do We Train on Test Data? Purg-
ing CIFAR of Near-Duplicates. Journal of Imaging 6, 6 (June 2020),
41. URL: https://www.mdpi.com/2313-433X/6/6/41, doi:
10.3390/jimaging6060041. 8

[BNJT10] BARRENO M., NELSON B., JOSEPH A. D., TYGAR J. D.:
The security of machine learning. Machine Learning 81, 2 (Nov.
2010), 121–148. URL: http://link.springer.com/10.1007/
s10994-010-5188-5, doi:10.1007/s10994-010-5188-5.
7

[BTT22] BREDIUS C., TIAN Z., TELEA A.: Visual exploration of neural
network projection stability. In Proc. MLVis (2022). 3

[CGD∗22] CINÀ A. E., GROSSE K., DEMONTIS A., BIGGIO B.,
ROLI F., PELILLO M.: Machine learning security against data poi-
soning: Are we there yet? CoRR abs/2204.05986 (2022). URL:
https://doi.org/10.48550/arXiv.2204.05986, arXiv:
2204.05986, doi:10.48550/ARXIV.2204.05986. 7

[CGD∗23] CINÀ A. E., GROSSE K., DEMONTIS A., VASCON S.,
ZELLINGER W., MOSER B. A., OPREA A., BIGGIO B., PELILLO
M., ROLI F.: Wild patterns reloaded: A survey of machine learn-
ing security against training data poisoning. ACM Comput. Surv. 55,
13s (jul 2023). URL: https://doi.org/10.1145/3585385,
doi:10.1145/3585385. 7

[CSHB18] CHATTOPADHYAY A., SARKAR A., HOWLADER P., BALA-
SUBRAMANIAN V. N.: Grad-cam++: Generalized gradient-based visual
explanations for deep convolutional networks. In 2018 IEEE Winter Con-
ference on Applications of Computer Vision, WACV 2018, Lake Tahoe,
NV, USA, March 12-15, 2018 (2018), IEEE Computer Society, pp. 839–
847. URL: https://doi.org/10.1109/WACV.2018.00097,
doi:10.1109/WACV.2018.00097. 3

[DRAP15] DITZLER G., ROVERI M., ALIPPI C., POLIKAR R.: Learning
in nonstationary environments: A survey. IEEE Computational Intel-
ligence Magazine 10, 4 (2015), 12–25. doi:10.1109/MCI.2015.
2471196. 7

[EAS∗23] ESPADOTO M., APPLEBY G., SUH A., CASHMAN D., LI
M., SCHEIDEGGER C., ANDERSON E. W., CHANG R., TELEA A. C.:
UnProjection: Leveraging Inverse-Projections for Visual Analytics of
High-Dimensional Data. IEEE Transactions on Visualization and Com-
puter Graphics 29, 02 (Feb. 2023), 1559–1572. Publisher: IEEE Computer
Society. URL: https://www.computer.org/csdl/journal/
tg/2023/02/09606529/1ymF2Tydh3G, doi:10.1109/TVCG.
2021.3125576. 4, 5, 6, 7

[EHT20] ESPADOTO M., HIRATA N. S. T., TELEA A. C.: Deep
learning multidimensional projections. Inf. Vis. 19, 3 (2020), 247–
269. URL: https://doi.org/10.1177/1473871620909485,
doi:10.1177/1473871620909485. 7

[EMK∗19] ESPADOTO M., MARTINS R., KERREN A., HIRATA N.,
TELEA A.: Toward a quantitative survey of dimension reduction tech-
niques. IEEE TVCG 27, 3 (2019), 2153–2173. 3

[ERH∗19] ESPADOTO M., RODRIGUES F. C. M., HIRATA N. S. T., HI-
RATA JR. R., TELEA A. C.: Deep Learning Inverse Multidimensional
Projections. The Eurographics Association, 2019. Accepted: 2019-06-
02T18:19:20Z. URL: https://diglib.eg.org:443/xmlui/
handle/10.2312/eurova20191118, doi:10.2312/eurova.
20191118. 3

[HFA17] HEULOT N., FEKETE J.-D., AUPETIT M.: Visualizing dimen-
sionality reduction artifacts: An evaluation, 2017. arXiv:1705.05283v1
[cs.HC]. 3, 10

[HZRS16] HE K., ZHANG X., REN S., SUN J.: Deep residual

learning for image recognition. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016 (2016), IEEE Computer Society, pp. 770–778.
URL: https://doi.org/10.1109/CVPR.2016.90, doi:10.
1109/CVPR.2016.90. 8

[JCC∗11] JOIA P., COIMBRA D., CUMINATO J. A., PAULOVICH F. V.,
NONATO L. G.: Local affine multidimensional projection. IEEE TVCG
17, 12 (2011), 2563–2571. 3

[Jol02] JOLLIFFE I. T.: Principal Component Analysis. Springer, 2002. 3

[KB15] KINGMA D. P., BA J.: Adam: A method for stochastic op-
timization. In 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings (2015), Bengio Y., LeCun Y., (Eds.). URL:
http://arxiv.org/abs/1412.6980. 7

[LA11] LESPINATS S., AUPETIT M.: CheckViz: Sanity check and topo-
logical clues for linear and nonlinear mappings. Computer Graphics
Forum 30, 1 (2011), 113–125. 3, 10

[LLD∗19] LU J., LIU A., DONG F., GU F., GAMA J., ZHANG G.: Learn-
ing under concept drift: A review. IEEE Transactions on Knowledge and
Data Engineering 31, 12 (2019), 2346–2363. doi:10.1109/TKDE.
2018.2876857. 7

[MCMT14] MARTINS R., COIMBRA D., MINGHIM R., TELEA A. C.:
Visual analysis of dimensionality reduction quality for parameterized
projections. Computers & Graphics 41 (2014), 26–42. 10

[MFF16] MOOSAVI-DEZFOOLI S., FAWZI A., FROSSARD P.: Deepfool:
A simple and accurate method to fool deep neural networks. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016 (2016), IEEE Computer Society,
pp. 2574–2582. URL: https://doi.org/10.1109/CVPR.2016.
282, doi:10.1109/CVPR.2016.282. 4

[MHM18] MCINNES L., HEALY J., MELVILLE J.: Umap: Uniform
manifold approximation and projection for dimension reduction. arXiv
preprint arXiv:1802.03426 (2018). 3

[MMT15] MARTINS R., MINGHIM R., TELEA A. C.: Explaining neigh-
borhood preservation for multidimensional projections. In Proc. CGVC
(2015), Eurographics, pp. 121–128. 3

[MRHT18] M. RODRIGUES F. C., HIRATA R., TELEA A. C.: Image-
Based Visualization of Classifier Decision Boundaries. In 2018 31st SIB-
GRAPI Conference on Graphics, Patterns and Images (SIBGRAPI) (Oct.
2018), pp. 353–360. ISSN: 2377-5416. doi:10.1109/SIBGRAPI.
2018.00052. 1

[MTB23] MACHADO A., TELEA A., BEHRISCH M.: ShaRP: Shape-
Regularized Multidimensional Projections. In EuroVis Workshop on
Visual Analytics (EuroVA) (2023), Angelini M., El-Assady M., (Eds.),
The Eurographics Association. doi:10.2312/eurova.20231088.
10

[NA18] NONATO L., AUPETIT M.: Multidimensional projection for vi-
sual analytics: Linking techniques with distortions, tasks, and layout
enrichment. IEEE TVCG 25, 8 (2018), 2650–2673. 3

[OEHJT22] OLIVEIRA A. A., ESPADOTO M., HIRATA JR R., TELEA
A. C.: Sdbm: Supervised decision boundary maps for machine learning
classifiers. In VISIGRAPP (3: IVAPP) (2022), pp. 77–87. 3

[OEJT23] OLIVEIRA A., ESPADOTO M., JR R. H., TELEA A.: Stability
analysis of supervised decision boundary maps. SN Computer Science 4,
226 (2023). 3

[PLZ21] PAN D., LI X., ZHU D.: Explaining deep neural network models
with adversarial gradient integration. In Proceedings of the Thirtieth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual
Event / Montreal, Canada, 19-27 August 2021 (2021), Zhou Z., (Ed.),
ijcai.org, pp. 2876–2883. URL: https://doi.org/10.24963/
ijcai.2021/396, doi:10.24963/IJCAI.2021/396. 3

[RBB∗23] ROSA B. L., BLASILLI G., BOURQUI R., AUBER D., SAN-
TUCCI G., CAPOBIANCO R., BERTINI E., GIOT R., ANGELINI M.: State
of the Art of Visual Analytics for eXplainable Deep Learning. Comp
Graph Forum 42, 1 (2023), 319–355. 2

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://www.mdpi.com/2313-433X/6/6/41
https://doi.org/10.3390/jimaging6060041
https://doi.org/10.3390/jimaging6060041
http://link.springer.com/10.1007/s10994-010-5188-5
http://link.springer.com/10.1007/s10994-010-5188-5
https://doi.org/10.1007/s10994-010-5188-5
https://doi.org/10.48550/arXiv.2204.05986
http://arxiv.org/abs/2204.05986
http://arxiv.org/abs/2204.05986
https://doi.org/10.48550/ARXIV.2204.05986
https://doi.org/10.1145/3585385
https://doi.org/10.1145/3585385
https://doi.org/10.1109/WACV.2018.00097
https://doi.org/10.1109/WACV.2018.00097
https://doi.org/10.1109/MCI.2015.2471196
https://doi.org/10.1109/MCI.2015.2471196
https://www.computer.org/csdl/journal/tg/2023/02/09606529/1ymF2Tydh3G
https://www.computer.org/csdl/journal/tg/2023/02/09606529/1ymF2Tydh3G
https://doi.org/10.1109/TVCG.2021.3125576
https://doi.org/10.1109/TVCG.2021.3125576
https://doi.org/10.1177/1473871620909485
https://doi.org/10.1177/1473871620909485
https://diglib.eg.org:443/xmlui/handle/10.2312/eurova20191118
https://diglib.eg.org:443/xmlui/handle/10.2312/eurova20191118
https://doi.org/10.2312/eurova.20191118
https://doi.org/10.2312/eurova.20191118
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1109/SIBGRAPI.2018.00052
https://doi.org/10.1109/SIBGRAPI.2018.00052
https://doi.org/10.2312/eurova.20231088
https://doi.org/10.24963/ijcai.2021/396
https://doi.org/10.24963/ijcai.2021/396
https://doi.org/10.24963/IJCAI.2021/396

12 of 12 A. Machado & M. Behrisch & A. Telea / Exploring Classifiers with Differentiable Decision Boundary Maps

[REJT19] RODRIGUES F. C. M., ESPADOTO M., JR R. H., TELEA A.:
Constructing and visualizing high-quality classifier decision boundary
maps. Information 10, 9 (2019), 280–297. 3, 4

[SHH20] SCHULZ A., HINDER F., HAMMER B.: DeepView: Visualizing
Classification Boundaries of Deep Neural Networks as Scatter Plots Using
Discriminative Dimensionality Reduction. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence (July 2020),
pp. 2305–2311. arXiv:1909.09154 [cs, stat]. URL: http://arxiv.
org/abs/1909.09154, doi:10.24963/ijcai.2020/319. 1,
3

[SHK∗14] SRIVASTAVA N., HINTON G. E., KRIZHEVSKY A.,
SUTSKEVER I., SALAKHUTDINOV R.: Dropout: a simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 15, 1 (2014), 1929–
1958. URL: https://dl.acm.org/doi/10.5555/2627435.
2670313, doi:10.5555/2627435.2670313. 6

[SKL17] STEINHARDT J., KOH P. W. W., LIANG P. S.: Certi-
fied Defenses for Data Poisoning Attacks. In Advances in Neu-
ral Information Processing Systems (2017), Guyon I., Luxburg
U. V., Bengio S., Wallach H., Fergus R., Vishwanathan S., Gar-
nett R., (Eds.), vol. 30, Curran Associates, Inc. URL: https:
//proceedings.neurips.cc/paper_files/paper/2017/
file/9d7311ba459f9e45ed746755a32dcd11-Paper.pdf.
7

[SMV∗19] SAMEK W., MONTAVON G., VEDALDI A., HANSEN L. K.,
MÜLLER K.-R.: Explainable AI: Interpreting, Explaining and Visualizing
Deep Learning. Springer LNCS, 2019. 2

[SVPM14] SORZANO C., VARGAS J., PASCUAL-MONTANO A.: A sur-
vey of dimensionality reduction techniques, 2014. arXiv:1403.2877
[stat.ML]. 3

[vdEAA∗23] VAN DEN ELZEN S., ANDRIENKO G., ANDRIENKO N.,
FISHER B., MARTINS R., PELTONEN J., TELEA A., VERLEYSEN M.:
The flow of trust: A visualization framework for externalizing, exploring
and explaining trust in ml applications. IEEE CG & A 43, 2 (2023), 78–88.
1

[vdM09] VAN DER MAATEN L.: Learning a parametric embedding by
preserving local structure. In Proceedings of the Twelth International
Conference on Artificial Intelligence and Statistics (Hilton Clearwater
Beach Resort, Clearwater Beach, Florida USA, 16–18 Apr 2009), van
Dyk D., Welling M., (Eds.), vol. 5 of Proceedings of Machine Learning
Research, PMLR, pp. 384–391. URL: https://proceedings.mlr.
press/v5/maaten09a.html. 7

[vdMH08] VAN DER MAATEN L., HINTON G. E.: Visualizing high-
dimensional data using t-SNE. Journal of Machine Learning Research 9
(2008), 2579–2605. 3

[VGdS∗20] VERNIER E., GARCIA R., DA SILVA I., COMBA J., TELEA
A.: Quantitative evaluation of time-dependent multidimensional pro-
jection techniques. Computer Graphics Forum 39, 3 (2020), 241–252.
3

[VK06] VENNA J., KASKI S.: Visualizing gene interaction graphs with
local multidimensional scaling. In Proc. ESANN (2006), pp. 557–562. 3

[WMT23] WANG Y., MACHADO A., TELEA A.: Quantitative and quali-
tative comparison of decision map techniques for explaining classification
models. Algorithms 16, 9 (2023). 9

[WT24] WANG Y., TELEA A.: Fundamental limitations of inverse projec-
tions and decision maps. In Proc. IVAPP (2024). 9

[ZLQ∗23] ZHOU K., LIU Z., QIAO Y., XIANG T., LOY C. C.: Domain
generalization: A survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence 45, 4 (2023), 4396–4415. doi:10.1109/TPAMI.
2022.3195549. 4

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

http://arxiv.org/abs/1909.09154
http://arxiv.org/abs/1909.09154
https://doi.org/10.24963/ijcai.2020/319
https://dl.acm.org/doi/10.5555/2627435.2670313
https://dl.acm.org/doi/10.5555/2627435.2670313
https://doi.org/10.5555/2627435.2670313
https://proceedings.neurips.cc/paper_files/paper/2017/file/9d7311ba459f9e45ed746755a32dcd11-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9d7311ba459f9e45ed746755a32dcd11-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/9d7311ba459f9e45ed746755a32dcd11-Paper.pdf
https://proceedings.mlr.press/v5/maaten09a.html
https://proceedings.mlr.press/v5/maaten09a.html
https://doi.org/10.1109/TPAMI.2022.3195549
https://doi.org/10.1109/TPAMI.2022.3195549

