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Figure 1: The two-dimensional design space explored in our study delves into the communication of complex dynamic processes. The two dimensions
comprise the manifestation of a representation (physical or virtual) and the mode of operation (manual or automatic).

Abstract
We conducted a study to systematically investigate the communication of complex dynamic processes along a two-dimensional design
space, where the axes represent a representation’s manifestation (physical or virtual) and operation (manual or automatic). We exemplify
the design space on a model embodying cardiovascular pathologies, represented by a mechanism where a liquid is pumped into a
draining vessel, with complications illustrated through modifications to the model. The results of a mixed-methods lab study with 28
participants show that both physical manifestation and manual operation have a strong positive impact on the audience’s engagement.
The study does not show a measurable knowledge increase with respect to cardiovascular pathologies using manually operated physical
representations. However, subjectively, participants report a better understanding of the process—mainly through non-visual cues like
haptics, but also auditory cues. The study also indicates an increased task load when interacting with the process, which, however, seems
to play a minor role for the participants. Overall, the study shows a clear potential of physicalization for the communication of complex
dynamic processes, which only fully unfold if observers have to chance to interact with the process.

CCS Concepts
• Human-centered computing → Visualization application domains; Empirical studies in visualization;

1. Introduction

Visual representations, whether in virtual or physical form, are integral
tools in education, widely embraced for their effectiveness. In STEM

fields, the use of visual representations has been extensively studied
with concepts like pulleys in physics [GCC∗10,FH95,BS09], prompting
an exploration into the factors contributing to their widespread adoption.
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Among others, interaction with these representations is one of the most
documented elements as it enhances the audience’s understanding.

In the medical context, conveying (patho)physiological processes
poses unique challenges compared to more straightforward concepts
in physics, such as pulleys. For instance, communicating the process
behind a “healthy” cardiac cycle to laypeople involves explaining the
coordinated phases of systole and diastole, the role of heart valves and
chambers, and the efficient circulation of blood [WG22]. Communicat-
ing potential pathophysiologies, i.e., functional changes accompanying
a pathological condition, adds complexity as it involves comprehending
the impact of disruptions on heart function and overall health. Yet,
patient communication and education are crucial for informed decision-
making, active participation in healthcare, and an enhanced overall pa-
tient understanding of their conditions and treatment options [MGS∗21].

Within the realm of visual representations, physicalizations emerge as
a unique opportunity for bringing data into the physical space [DJM21].
This is primarily due to the distinct characteristics of physical
representations, such as the use of physical embodiment and natural
affordances to convey meaning and engage an audience [ZM08].
While physicalizations find widespread use in STEM [GCC∗10], their
application in explaining dynamic processes of higher complexity
remains relatively unexplored [Rau20].

Recent work in data physicalization targeted the creation of
engaging and low-cost anatomical models for edutainment and patient
education—without addressing pathophysiological or any other dy-
namical aspects [SB17,PWR21,SKRW22]. All prior examples employ
indirect interaction that acts similar to interface controls [BZW∗22].
Conversely, multisensory displays [HH16] use direct interaction,
directly stimulating a user’s sensory affordances [BZW∗22]. The
concept of direct interaction opens up additional channels—for
example, the use of kinaesthetics—to encode data into physical activity
performed by observers [HMC∗20]. Directly interactive models hold
promise as representations of pathophysiological processes, but they
remain largely unexplored and unassessed in this context.

Research in data physicalization has sought to quantify the value of
physical data representations [JDF13,SSB15]. This has often been done
using comparative methods, where physical data representations are
compared against similar screen-based ones. Until recently, evaluations
of both physical and virtual data representations focused primarily on
efficiency, measuring how quickly insights can be derived. This narrow
focus has inadvertently left unexplored—or even obscured—potential
advantages of data physicalization, especially for the medical domain
where audience engagement in the communication of complex
processes is crucial [MGS∗21]. Recently, new metrics with a focus
different from efficiency or comprehension have emerged offering to
support the evaluation of such concepts [WSK∗19].

To fill this gap in research, we investigate the potential of directly
interactive models that represent dynamic pathophysiological processes.
We also delve into assessing the implications and benefits of data physi-
calization beyond traditional efficiency metrics. To this end, we explore
the effects of manifestation and mode of operation of a representation
on the communication of pathophysiological processes on observer
understanding (Q1), subjective task load (Q2), and enjoyment (Q3).
We consider the manifestation—virtual or physical—and the mode
of operation—manual or automatic—as two individual factors in a
full factorial study with 28 participants. Figure 1 shows an overview

of the resulting design space. We employ a mixed methods study
design. First, we use quantitative methods to validate a-priori-postulated
hypotheses about understanding, task load, and emotional engagement.
Subsequently, we analyze the qualitative feedback of our study subjects.
Finally, using triangulation [OMN10] we gather the insights obtained
through both methods, to draw further conclusions on our findings.

The contribution of our work stems from the results of an exploration
of a two-dimensional design space for educational models for pathophys-
iological processes (Figure 1). We confirm that both physical manifes-
tation and manual operation increase engagement. Qualitative feedback
reveals that manual interaction with physical representations augments
non-visual stimuli, leading to subjective knowledge increase. With the
results of this study, we discuss the implications that arise from our
design space in educational pathophysiological process representations.

2. Related Work

Representations for Learning Numerous studies in educational
sciences have explored the use of physical and virtual representations, ex-
amining their impact on learning. Ferguson and Hegarty [FH95]compare
learning effects achieved with physical representations of a mechanical
system to diagrams abstracting the underlying concepts. They found that
participants who were provided physical models were able to solve appli-
cation tasks more accurately. Similarly, Boucheix and Schneider [BS09]
compared static and animated learning aides. They showed a positive
influence of animations compared to static data representations for dy-
namic systems. Yet, an influence of user control on comprehension was
not indicated. Finally, Gire et al. [GCC∗10] investigated the difference
between physical and virtual learning aides. A virtual simulation and
a physical model were employed in a comparative study to determine
whether either type of manifestation provided advantages. They found
certain aspects of learning were improved by physical interaction.

Han [Han13] used the example of gearbox transmission to evaluate
the influence of physicality on learning. Using a Lego model and a
computer simulation, they investigated if either form of manifestation
would help understand the concept better. While neither model provided
a significant advantage, they found that participants who had used a
car with a manual gearbox performed better in the experiment. This
could indicate a benefit of haptic feedback on the learning process. In a
recent literature review, Rau [Rau20] highlights gaps in the comparison
of learning with virtual and physical representations. They indicated po-
tential in researching the benefit of added haptic feedback to a physical
representation and suggested isolating mechanisms in models to investi-
gate this. Furthermore, they recommended accounting for cognitive load
effects in the research of physical representations, and the investigation
of the impact of physical engagement on learning outcomes.

Both physical and virtual representations have been employed in
the context of learning, and all aforementioned examples use a direct
representation of a mechanical concept. In contrast, our focus extends
to dynamic pathophysiological systems, offering a novel perspective on
complex structures and functional interplays within learning contexts.

Physicalization and Medical Education In recent years, research
in the fields of digital fabrication and data physicalization has
presented novel ways to transform traditional medical education. Ang
et al. [ASS∗19] describe a 3D-printed representation of the blood
flow in the human heart. Utilizing flow lines and glyphs, they allow
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observers to interactively manipulate the model, providing a detailed
exploration of specific anatomical regions. While the ever-growing field
of data physicalization has produced many examples of creative data
representations [DSMA∗21], only a few works focus on its application
to the education of the general public or lay audiences. Stoppel and
Bruckner [SB17] propose a method that uses transparent rotating discs
to create custom illustrations of medical volume data and playfully
explore—otherwise complex to explain—rendering settings. Similarly,
Raidou et al. [RGW20] and Pahr et al. [PWR21] present different ways
to create anatomical sculptures from transparent materials, which when
assembled in 3D support anatomical education. Using foldable paper-
crafts, Schindler et al. [SWR20,SKRW22] describe a workflow for the
creation of nested and multilayered paper models for anatomy education.

Norooz et al. [NMJ∗15] design a wearable approach to anatomy
education aimed at children. Layered, detachable organs show where
and how organs are located within the body. Study sessions together
with educators highlighted the potential of this method to provoke
curiosity. All aforementioned examples are designed around displaying
medical imaging data and are limited to indirect interactivity.

Direct Interaction with Data Physicalization Bae et al. [BZW∗22]
define two different types of interactions with data physicalizations: in-
direct and direct. Indirect interactions control a physicalization through
a user interface, while direct interactions directly stimulate the user’s
senses through its affordances. Bae et al. [BFY∗24] present an approach
to produce interactive network visualizations. A central principle to
their approach is that the physicalization also doubles as a tangible
interface that allows node selection on a digital twin of the network. IN-
TUIT [DMSJ23] shows a method to encode the roughness of arctic ice
into the tactile properties of a physical model. Perovic et al. [PRC∗23]
analyze such haptic interactions with data physicalizations, by using fluo-
rescent markers. After tactile interactions, UV photography of the target
physicalization reveals where the observer touched the sculpture. Bring-
ing this concept to a larger scale, Karyda et al. [KWK21] investigate the
impact of directly interactive physicalizations by making people engage
with table-sized personalized installations, tailored to people’s personali-
ties. They show examples of a treadmill, a foosball table, and a one-string
instrument. With “Move&Find“, Hurtienne et al. [HMC∗20] embody
the energy consumption of a Google search to a treadmill metaphor.

These examples present the integration of the observer as an active
part of physical data representations. However, all aforementioned
representations are designed to illustrate static datasets or facts and do
not touch upon dynamic processes.

Evaluating Physicality and Interactivity Evaluation is an inherent
component of all aforementioned works. In the field of data physical-
ization and multisensory data displays, common comparisons involve
virtual and physical representations [JDF13,SSB15,PMW∗18,ASS∗19].
Jansen et al. [JDF13] compare a physical 3D bar chart, virtual 2D,
and 3D representations, finding that while the physical artifact outper-
forms the 3D virtual version, the 2D visualization is most efficient.
Stusak et al. [SSB15] assess the memorability of physical vs. virtual bar
charts, revealing better immediate memorization for the virtual chart but
prolonged recall with the physical one. Ang et al. [ASS∗19] compare
a physicalized blood flow representation to a screen-based visualiza-
tion, noting participants’ faster interaction with the physical version.
However, they find no clear evidence of superiority. The evaluation
of "Move&Find" [HMC∗20] focuses on understanding, engagement,

and behavioral change, revealing that the multisensory representation
enhances data understanding, creativity, and engagement. Drogemuller
et al. [DCW∗21] study the understanding of physical network represen-
tations. They compare physical representations both with and without
tactile interaction, as well as virtual and haptic-only conditions. Their
findings indicate heightened engagement, as well as self-perceived effi-
ciency increase when people interact haptically with graph physicaliza-
tions. Pollalis et al. [PMW∗18] evaluate the usefulness of 3D printed arti-
fact replicas compared with virtual ones on a screen and an AR device in
an archaeology education setting. They use a mixed methods approach,
measuring task times, enjoyment, perceived task workload, spatial pres-
ence, and learning outcomes both qualitatively and quantitatively. Their
study highlights shortcomings of 3D printed artifacts due to inaccurate
reproduction during the printing process. Taher et al. [TJW∗17] and
Sturdee et al. [SKA23] study interactions with an interactive physical bar
chart in single [TJW∗17] and co-located user [SKA23] scenarios respec-
tively. Their findings show the great potential of interactive data physi-
calizations to encourage exploration. The co-located study also indicates
positive social engagement when groups interact with a physical display
together. Sereno et al. [SGBI22] compare different tangible interaction
methods for the selection of data points in 3D space. Their findings indi-
cate that AR devices have a lesser impact on subjective workload com-
pared to screen-based methods. However, while users reported the inter-
actions in AR to be more direct, this did not influence their performance.

Our study is the first to consider the manifestation of a representation
and the way an observer interacts with it as independent factors. In
doing so we avoid the confounding of beneficial effects of either factor.
Furthermore, we individually assess how these factors influence not
only learning but also task load and engagement.

3. Methodological Approach

Design Space In this work, we investigate the effects of the operation
mode and manifestation as separate factors within physicalizations
of dynamic processes, such as those present in pathophysiology. To
this end, our design space is built upon two dimensions: the mode
of operation, describing the way the representation is operated, and
manifestation, describing the medium in which the representation
exists. An observer operates the representation in a manual way or the
representation is automated. The manifestation of the representation
can be either physical or virtual. Our two-dimensional design space
for process physicalizations is schematically represented in Figure 1.

Representation-based learning, as well as data physicalization, has
previously investigated physical manifestation as a central concept.
In the physical manual quadrant of our design space we consider only
data physicalizations with direct interactivity [BZW∗22]. Examples,
among the related works discussed in Section 2, are INTUIT [DMSJ23]
or “Move&Find“ [HMC∗20]. In the virtual manual quadrant, direct
interaction is relegated to the input and output devices of, e.g., a PC. We
choose not to add additional indirect interaction modalities to our virtual
representations. Examples of indirect interactions from the related
works of Section 2 are Boucheix and Schneider’s [BS09] controlled
animations, or the visualizations used by Jansen et al. [JDF13] in
comparison to their physical bar chart. In the automated quadrants, we
remove the interaction with the representations completely. An example
of a virtual automatic representation is Hurtienne et al.’s [HMC∗20]
animated cyclist, or other animated representations [BS09]. Oppositely,
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Perovich et al.’s [PWB21] floating lanterns representing environmental
pollution are a physical automatic physicalization.

Research Questions and Hypotheses While prior work has not
shown that physical representations are more efficient for information
retrieval [JDF13, SSB15, HMC∗20], this has not been yet evaluated
for representations of dynamic processes. Increased physical load
interacting with physical representations has been observed in the
past [HMC∗20]. Finally, physical representations have been shown to
be more engaging [HMC∗20] than virtual ones. We, therefore, pose
three separate research questions regarding understanding (Q1),
task load (Q2), and enjoyment (Q3) of pathophysiological process
representations—specifically, w.r.t. how they are impacted by different
modes of operation and manifestation:

H1: Physical and manually operated representations are more effective
in conveying processes than virtual and automated ones.

H2: Physical and manually operated representations entail a higher
subjective task load than virtual and automated ones.

H3: Physical and manually operated representations are more enjoyable
than virtual and automated ones.

Metaphors [ZM08] and visual abstractions [VCI20] in the context of
data communication serve to simplify intricate physiological processes,
helping both professionals and the general public grasp complex
concepts. To enhance comprehension for a lay audience, we introduce
an abstract metaphor that elucidates a complex process within the
human body: cardiac function. We discuss our metaphor choice and
the respective representation design arising from it in Sections 3.1–2.
Deriving from the design space, we create four representations, one
for each quadrant. These are physical manual (PM), physical automated
(PA), virtual manual (VM), and virtual automated (VA).

Subsequently, to investigate our previously formulated hypotheses
with regard to the conceptualized metaphor and its corresponding
representation design, we employ both quantitative and qualitative
methods. We initially look at how the mode of operation and
manifestation influence an observer’s understanding of a process
representation (H1). We also measure individual task load (H2) and
enjoyment, in terms of emotional engagement (H3), in interacting with
said representations. Subjective preference will be used as an additional
measure for enjoyment (H3). Written statements collected during the
study will serve as the basis for our qualitative evaluation.

3.1. Modeling Basic Cardiac Function with a Metaphor

A primary goal for (physical) data representation is the communication
of insights to laypeople with limited domain knowledge. In the context
of data visualization and data physicalization alike, both metaphors
and visual abstractions serve as essential tools for conveying complex
information to diverse audiences. Metaphors in data physicalization
function as powerful cognitive tools, enabling observers to relate to
the representation of intricate processes and complex data sets by
leveraging familiar concepts [ZM08]. Visual abstractions, on the other
side, filter out unnecessary details in data representations allowing users
to focus on crucial elements [VCI20].

We introduce an abstract metaphor to elucidate the complexities
of the physiological processes of cardiac function. Cardiovascular
diseases are the leading cause of global mortality, while many of the

underlying risks can be addressed through behavioral changes [RMJ20].
Campaigns [SFJ∗22] and installations [McA16] communicating
cardiovascular function and associated risks are widely employed to
raise awareness in the general population. Still, data physicalization
approaches looking in this direction are scarce [ASS∗19] but are
anticipated to facilitate a tangible and accessible comprehension of
cardiovascular processes by transforming complex data into interactive
and visually intuitive representations. To ensure broad applicability,
our model is designed for both virtual and physical representation,
accommodating automated and manual operation. This versatility
enhances the accessibility of medical information for laypeople, aligning
with our goal of simplifying complex concepts in health education.

The Pump Metaphor In the circulatory system, the function of the
heart is to pump blood through the circulatory system. During the
diastole, the cardiac muscle relaxes and the chambers fill with blood. In
the systolic phase, the muscle contracts, expelling the blood to the lungs
and the peripheral vessels. Besides the actual meaning that the heart
transports fluids, this also provides us with an intuitive metaphor for
its function. Pumps are a familiar concept, inherently understandable to
people. Beyond the aforementioned metaphorical value of the subject,
Offenhuber’s perspective [Off20] gives additional directions. The pump
metaphor is very close to the actual function of the heart, defining the
function in an ontological sense. Laypeople may also not be familiar
with the specific variables that medical professionals use when they
speak about bodily functions, like blood oxygenation, blood pressure,
or heart-stroke volume. We argue that a relational perspective is better
suited for non-experts. Deconstructing the heart function with the pump
metaphor allows for a deeper understanding of the regulation process.
Using an ontological-relational perspective limits the use of numeric
representations with which a lay audience might not be familiar.

Representation Design We now proceed to design our models around
the pump metaphor for the human heart. As mentioned above, the
basic heart function is the transport of blood through the circulatory
system. Physically, we choose to represent the human heart with a
commercially available pump, suited to transport the same amount
of liquid. The physical pump is operated by moving a piston up and
down, which first creates negative pressure in the inlet when it is moved
upwards. This is similar to the diastole of the cardiac cycle. When the
piston is moved downwards, the pressure inside the pump, towards
the outlet is increased. This resembles the systole. The demand for
blood in the body is represented by a buffer that is drained at a constant
rate. This rate resembles the pump output of the heart. To keep the
buffer filled, constant operation of the pump is required. In this state,
the system represents the normal function of a heart. This manually
operated, physical representation (PM) is shown in Figure 2a.

To compare manual and automated representations, we ensure that
operating the pump can be taken over by a set of sensors and actors.
While it would be preferable to leave the manual pump in place and
design a system for automatic operation, we opted for a simpler design
in favor of practicality. We utilize an electric pump operating similarly to
the manual one. Electrical pumps are typically designed for continuous
operation as opposed to our chosen manual exemplary. However, this
would destroy the systole/diastole metaphor. Therefore, we split the
pump into one simulated and one operational part. The simulated
part consists of a motor, operating a piston complete with simulated
handles in reciprocating motion, to imitate the operation of a user. The
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(a) Physical. Our representation is embodied by physical objects,
according to the metaphor.

(b) Virtual. All parts of the physical setup are simulated in a corresponding
2D environment.

Figure 2: Comparison of the physical and virtual representation. The
pump (1) on the canister (2) represents the basic heart function. Liquid
is transported to the buffer vessel (3) on the right. The level indicator
(4) marks the point at which the water level has to be kept to represent
5–6 L/min of flow. The valve (5) leads into the reservoir (6).

operational part consists of the electrical pump, switched on and off
in the rhythm of the simulated pumping. The system is controlled by
a level sensor in the buffer vessel, which switches on the pump when
the water level in the buffer vessel is under a certain threshold. Thus,
we obtain a physical representation that works autonomously (PA).

After designing the physical representation, we now reproduce the
pump metaphor in a virtual setting. To keep the interaction with the
model similar to the physical installation, we simulate the process using
Unity [noa], since it provides a basic physics simulation environment
that serves our purposes. For the simulation, we take multiple consid-
erations into account. It could be done in a 3D environment, where
interaction is still performed via mouse and keyboard while introducing
additional complexity for observers. Virtual and augmented reality
simulations of the process could be used as well. These technologies
present additional complications that could influence our metrics. We
opt for a 2D representation to limit interaction with the virtual repre-
sentation to the same interaction points that exist in the physical version.
In both representations, the handle of the pump is moved up and down
to collect and expel liquid, and the targeted flow rate is symbolized by
the watermark in the draining vessel. This way we limit the focus of
our study to the factors of manifestation and mode of operation.

In our Unity simulation, we show a schematic view of the physical
installation. The canister, pump, and buffer are represented by 2D
objects, as shown in Figure 2b. The piston is in the same position, on
top of the canister, operated by moving the piston up and down. An
observer can move the piston with mouse and keyboard gestures, while
the drag and weight of the object are simulated in the physics engine.
When the piston is moved downwards, the ejected water is represented
by particles exiting the hose into the buffer. The particles exit the
buffer from the bottom, depending on how wide an adjusted opening
is, simulating the draining of the buffer. This represents the process
virtually, with a manual operation (VM). These are the same interaction
points as in the physical installation. The motion of the piston can
be automated using a simple script to obtain an automated virtual
representation (VA), as the virtual counterpart of the automated pump.

3.2. Variations of the Model

For the representations of the cardiac function, as shown in Figure 2, we
now introduce different physiological and pathological states to create
variations of the model. An overview of these scenarios and how they
are represented in the physical and virtual representation respectively is
shown in Figure 3. The individual scenarios illustrate how cardiac func-
tion changes in contrast to normal function. We use examples of com-
mon pathologies that can be illustrated using our model. In a consultation
with a medical doctor, we ensured that the scenarios were depicted cor-
rectly, within the limited scope of our metaphor. In our study, participants
are presented with each of the four variations of our representation (PM,
PA, VM, VA), each depicting a different scenario. Their task is to deter-
mine the difference between normal cardiac function and the altered state
in the specific scenario. The four scenarios (S1–4), are discussed below:

Exertion (S1) leads to increased demand for oxygen in the body.
While at rest the cardiac output is 5−6 L/min, this output can increase
drastically during exercise, to even more than 35 L/min in elite
athletes [KL22]. In our model, we represent the cardiac output by
a slowly draining buffer vessel. In the interactive version, observers
have to keep the buffer vessel filled around a marked threshold. In
the automated version, a binary level sensor determines the fill state
and pauses the pump when the sensor triggers. A state of exertion is
simulated by opening the drainage valve of the buffer vessel further,
as compared to the normal state. This is illustrated in Figure 3a.

Aortic Stenosis (S2) is caused by a stiffening of the aortic valve,
leading it to not properly open. The heart has to work harder to contract
the left ventricle and the systolic pressure increases [PA22]. To represent
this physically, we 3D printed an obstruction of the pump’s outlet,
reducing the area of the outlet hose by half. In the virtual representation,
this is simulated by increasing the resistance of the piston, as well
as increasing the speed of the particles spilling into the reservoir. We
illustrate the visible differences of this in Figure 3b.

Systolic Heart Failure (S3) or heart failure with reduced ejection frac-
tion is a condition where the left ventricle’s pumping output is reduced.
Here, the heart’s ability to contract is limited by physical factors [HL22].
We represent the reduced pumping capability by limiting the movement
range of the piston in the physical model. We automate the physical
pumping process by simulating a reciprocating pump. The reduction
of stroke volume is achieved by reducing the length of the rotating lever
operated by the motor. Virtually this is represented by limiting the range
of the piston. This can be seen in Figure 3c.
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(a) Exertion. Higher oxygen demand
is represented by opening the drainage
valve of the buffer vessel.

(b) Aortic stenosis. The narrowing of
the aortic valve is represented by a
narrowing of the pump’s outlet.

(c) Systolic heart failure with reduced
stroke volume. Limited heart volume is
represented by limiting the movement
range of the piston.

(d) Cor Pulmonale. Difficulty in trans-
porting blood to the lungs is simulated
by puncturing the inlet of the pump.

Figure 3: Scenarios, representing different heart conditions with a virtual (top) or physical metaphor (bottom).

Cor Pulmonale (S4) is the fourth condition we simulate. In this
case, the part of the heart that pumps blood into the pulmonary artery
is affected. Depending on the cause, this does not entail a reduced
ejection fraction [VQL∗06]. We represent pulmonary hypertension
by drilling a hole into the inlet of the pumping mechanism. In the
virtual representation, we simulate this by a reduction of the number
of particles spawned by the outlet and a decreased weight of the piston.
Figure 3d depicts this condition.

4. Study

We use a 2×2 full-factorial within-subject design, with manifestation
and mode of operation as independent variables. Manifestation can be
physical (P) or virtual (V), and operation can be manual (M) or automatic
(A). This results in four representations with different combinations of
manifestation and mode of operation (PM, PA, VM, VA), which are
illustrated in Figure 1. The scenarios were assigned to representations
using a 4×4 Graeco-Latin Square design [noa08] to combat familiar-
ization effects. In a sequence of four runs of the study, the order of
scenarios, as well as the order of representations was unique. A number
of participants (28) that is a multiple of four ensures that each combi-
nation of model and scenario is examined an equal amount of times.

4.1. Participants

We recruited 28 participants for our study from faculty staff and students.
20 identified as male, and eight as female. 16 of them used visual aids.
Age was collected in discrete intervals between 18 and 54 years. The

largest age group was between 25 and 34 years old, which was 20
participants in total. Two participants self-reported to be well versed
in anatomy, 14 participants reported basic knowledge, 11 reported
themselves to be novices, and two participants reported no anatomical
prior knowledge. One participant has a high school degree, 11 have a
bachelor’s degree, 12 have a master’s degree, and four completed a Ph.D.
level education. All trials of our study took place in person, in the same
environment. The participation was voluntary and no compensation was
provided. Participants could opt out at any point if they felt discomfort.

4.2. Procedure

Every participant interacted with one representation (PM, PA, VM,
VA) per scenario (S1–S4), within a randomized order per individual
subject. Each run of the trial started with the participants being led
into the room where the experiments were conducted. The participants
were handed a written introduction summarizing the nature of the tasks
they were about to be presented with. We explained the procedure and
clarified essential vocabulary. Subsequently, the participants were asked
to read an introduction to the first scenario and we explained the task.

For each scenario, participants were first presented with a representa-
tion of normal heart operation, to familiarize themselves with the model
and how it represents normal heart function. They were allowed as much
time as they desired with the normal functioning model. After that, we
introduced the complication into the model, i.e., the variations discussed
in Section 3.2. The participants were allowed as much time as they
wanted with the altered state. Then they were asked to complete a quiz,
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to determine how much they understood a complication (H1). After
the quiz, we asked them to complete two additional questionnaires.

The task was to answer questions about how the different complications
affect certain vital parameters in a multiple-choice quiz. The participants
were presented with one representation, first in a normal state, then in
a complicated state. Then they had to decide how the vital parameters
heart rate, cardiac preload, and afterload were affected in the
scenarios. The multiple-choice quiz allowed the answers increased,
lowered, and unaffected. The quiz also contained binary questions
about the presence of the symptoms fatigue and shortness of breath.
We allowed the participants to indicate they are unsure about the
answers, to prevent them from making random choices. These
parameters were the same for every scenario and were introduced and
thoroughly explained to subjects beforehand.

The first questionnaire the participants were confronted with was
the NASA Task Load Index (TLX) [HS88]. We closely kept to the
instructions provided by NASA with only one exception: We used
a discrete scale from 0 to 10 for the questionnaire as opposed to the
0–100 scale with 21 increments that NASA suggests. The TLX uses
6 components to measure the subject perceived load during a task. The
individual components are mental demand, physical demand, temporal
demand, performance, effort, and frustration. These individual factors
are measured on a scale from high to low (except for performance which
is measured from good to bad). We used the resulting task load index to
test for H2. During the first experiment of every trial, we performed the
scale ranking procedure for the TLX. This procedure is used to identify
participants’ subjective biases for the different components of the task
load index. The task load index for a given task was then calculated
by computing the weighted average of the participant’s ratings.

The second questionnaire assesses emotional engagement, as proposed
by Wang et al. [WSK∗19]. They propose to measure engagement as
comprised of the following categories: creativity, affective engagement,
physical engagement, intellectual engagement, and social engagement.
The items of the questionnaire consist of statements the participants
rate on a scale of 0 to 10, to be consistent with our implementation of
the NASA-TLX. To keep the questionnaire reasonably concise we used
a single question for each factor of engagement as proposed by Wang
et al. Similar to the TLX, we computed the engagement score as the
average of all components, however, we performed no scale-weighing
procedure for our engagement score. This score was used to test for H3.

Additionally, after every experiment, we asked the participants to
leave written feedback. While the participant fills the questionnaires
we prepared the next experiment. The process was repeated until
the participants had seen all four representations and filled out the
corresponding questionnaires. Subsequently, the subjects were asked
to fill out a final questionnaire about their overall experience. In it, they
are asked to rank the models from most to least enjoyed. This ranking
was used in addition to the engagement score to test for H3. The final
questionnaire also contained two open text questions about the most
and least like experiences with any representation overall. The written
statements were used for the qualitative analysis.

Subjects were provided instructions for both parts of the question-
naire, with written explanations of every item, which they could refer
to at any point. At the end of the session, there was a debrief, where we
asked the participants about their overall thoughts on their experience
with the models, and thanked them for their participation.

4.3. Analysis

We used a mixed methods approach to address our three hypotheses.
This section describes the analysis performed on both quantitative and
qualitative data.

Quantitative Analysis We collected the results of the quiz (H1), NASA
TLX (H2), and our custom engagement questionnaire (H3) for all ex-
periments of all study participants. To analyze the influence of these two
factors on the variables quiz-score, TLX-score, and embodiment score,
we opt to employ Wobbrock et al.’s Aligned Rank Transformed ANOVA
(ART-ANOVA) [WFGH11]; a non-parametric framework reliant on an
initial rank transformation of the data that allows for the subsequent use
of complete two-way ANOVA models. This non-parametric model was
used because the model’s assumption of normally distributed residuals
was rejected when probed with Shapiro-Wilk tests. The statistical signif-
icance of the factors was evaluated for each such model using ANOVA-
standard t-tests. Multiplicity was accounted for by adjusting the signif-
icance threshold using a standard Bonferroni correction. For H3 we ad-
ditionally investigate participant’s preference in a model’s manifestation
and mode of operation. Participants ranked their personal preferences
for each of the four combinations of operation mode and manifesta-
tion. These ranks, owing to their obvious non-normal distribution, were
tackled non-parametrically. More specifically, an initial omnibus Fried-
man test [Fri37] was performed to investigate whether any of the four
combinations were statistically significantly different from each other,
in which case it was followed by a series of Wilcoxon Signed-Rank
Tests [Woo08] to probe their pairwise differences. For these pairwise
tests, multiplicity was again accounted for using a Bonferroni correction
of the significance threshold across the six comparisons performed.

Qualitative Analysis We used a coding approach to quantify our
collected qualitative data [Chi97], with three independent coders. For
this, we broke down the collected written feedback in our questionnaires
into 78 utterances. In our qualitative analysis, we performed both
deductive and inductive coding. As a first step, we assigned each
comment to the representations it referred to. This was decided based
on the context given by the questionnaires and the content of the
statement. Multiple assigned representations were possible, for example,
if a statement read “. . . in the physical variants. . .”, we assigned it
to both of the physical representations. We found some statements
referring exclusively to our used metaphor, which would apply to every
representation. These will not be used to validate the hypotheses and
will be discussed separately. In the deductive coding step, we had three
individual coders perform an assignment of the statements to the aspects
of understanding (H1), task load (H2), and subjective enjoyment (H3)
while rating them as positive or negative. Monitoring the Krippendorf
α value [Kri11] for inter-coder agreement, we iteratively refined the
assignment until an α greater than 0.8 was reached. The disputed cases
were then decided by a majority vote. Finally, each coder performed an
inductive coding, assigning common concepts to their choices. These
codes were unified in a final session. We use this categorization to draw
further insights from the feedback.

5. Results

In this section, we present the findings of both the quantitative and
qualitative parts of our study. We then draw our conclusions in relation
to each of our hypotheses in a triangulation.

© 2024 The Authors.
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Figure 4: Histogram matrix of TLX scores by manifestation and opera-
tion mode. Average scores per participant across dimensions are shown
behind the dashed lines. The manual row shows an increased task load.

5.1. Quantitative Results

Understanding (H1) The quiz scores yielded diverse results across both
manifestations and interaction modes. The ART-ANOVA conducted
showed neither a main effect for manifestation (F(1,27)=0.025;p=
0.87) nor for operation (F(1,27)=1.28;p=0.27). We could also not
show an interaction effect between operation and manifestation to be
statistically significant (F(1,27)=0.01;p=0.92).

Task Load (H2) The weighted NASA-TLX scores are shown
in Figure 4. Firstly, the ANOVA showed no significant effect of
manifestation on task load (F(1,27)< 0.01;p = 0.99). However, the
ANOVA highlighted a significant effect of manual interaction on
task load (F(1,27)<7.94;p<0.01). Participants, as expected, reported
higher physical demand in the interaction with physical representations
(median=3) compared to virtual ones (median=1.5). When comparing
task load for different operation modes, manual models have a notably
higher physical demand component (physical demand median=4.5) than
automated ones (physical demand median=0). The effort component
was also consistently rated higher for manual models (median=5) than
for automated ones (median=3.25).

Emotional Engagement and Preference (H3) Figure 5 shows the
results of the engagement questionnaire. Here, the conducted ANOVA
showed a statistically significant effect of manifestation on the engage-
ment score (F(1,27)<18.73;p<0.01). The median engagement score
for physical models is 7, while for virtual ones it is 5.95. The effect of
manual interaction on engagement was also statistically significant
(F(1,27)<31.61;p<0.01), with the overall score for manually oper-
ated representations (6.95) higher than that of automatic ones (5.75).

When comparing engagement scores of physical and virtual represen-

Figure 5: Histogram matrix of engagement scores by manifestation
and operation mode. Average scores per participant across dimensions
are shown behind the dashed lines. Both manual and physical sides
show an increase in engagement.

tations in detail, physical models have produced higher scores across sev-
eral engagement components. More specifically, creativity, affective en-
gagement (medians 6.5 vs 5), social engagement (medians 7.5 vs 6.75),
as well as physical engagement (medians 6 vs 4.25) all receive higher
median ratings for physical representations. Comparing engagement
scores between the two modes of interaction, manual representations
receive a noticeably higher physical (medians 7.5 vs 4), social (medians
7.75 vs 6), and affective (medians 6.25 vs 5) engagement score. We also
did not find a significant correlation between task load and engagement.

We finally show the results of the ranking of the four representations
in Figure 6. To probe this hypothesis quantitatively, we performed an
omnibus Friedman Rank Sum Test to compare the distribution of ranks

Figure 6: Stacked bar charts of preference votes for the different
models. All participants chose their most (green) to least preferred
(red) representation in the final questionnaire. Physical manual
representations are significantly more preferred than others, while
virtual automated are the least popular.
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across the four combinations of manifestation and operation mode
(χ2 = 41.571, p < 0.01). Given the Friedman test’s significance, we
subsequently performed paired, post-hoc Wilcoxon Rank Signed Tests
to investigate each of the six pairwise differences between models. We
observe significant differences between most variants, with the notable
exception of physical automated and virtual manual representations
(p=1).

5.2. Qualitative Results

Figure 7: Results for the deductive coding of the qualitative feedback.
The Y-axes in the subplots refer to the codes of the respective hypotheses.

We present a summary of the result of the deductive coding step in
Figure 7. The codes that emerged in the inductive coding are explained
below, in conjunction with the associated deductive codes. Selected
examples for statements are given in quotes.

Understanding (H1) We found 16 statements that described increased
understanding when using physical manual representation, but only
two negative statements on this. We registered six statements reporting
non-visual insight, i.e. insights not gained over the visual channel,
five of which directly referenced added haptic information (“[i liked
the] haptic feedback of the pressure on the pump”), and one referring
to audible changes in the system. Additionally, six statements reported
visual insight gained from physical manual representations (“seeing
the flow rate as water gave me a good idea of how the volume
moved”). Conversely, the automated representations with physical
manifestation received five and virtually manifested two negative
comments respectively. Here, participants reported confusion about how
automated representations would react to complications (“frequency
was missing", “visualization of the diastole was unclear”).

Task Load (H2) Deductive coding reveals four statements pointing to-
wards increased task load when working with physical manual represen-
tations. The inductive coding shows three of these comments referring
to increased cognitive effort. Examining these comments in detail, we
find that only one participant specifically stated that they found added
cognitive load added by the physical manual representation (“The hands-
on interaction adds an extra layer of cognitive effort”). One participant
reported difficulties in determining the difference between physical
manual and automated representation. The final comment was about the
thickness of the black line, and finding it hard to see the water line. For

Table 1: Summary of the triangulation process.

Quantitative Qualitative Triangulation
Deductive Code:
• Understanding Qualitative

H1 Quiz Inductive Codes: support
• Non-visual understanding
• Visual understanding
Deductive Code:

NASA- • Task load Quantitative
H2 TLX Inductive Codes: support

• Physical load
• Cognitive load
Deductive Code:

Questionnaire, • Enjoyment Full
H3 Ranking Inductive Codes: support

• Interaction
• Aesthetics

the virtual manual representation, two participants stated the desire for re-
fined controls. The only statement about physical effort in the physical
representation states the necessity to step back to gain a better overview.

Enjoyment (H3) 16 Participants made positive remarks on their
enjoyment of the physical manual (‘‘Doing the work yourself was
engaging”, “Manual pump was fun”, “[I liked the] interactivity”),
five for the virtual manual, and four for the physical automated
representation. We did not receive any positive comments on the virtual
automated model. Statements about interaction were a large group
of positive remarks on both manual representations, counting 15 for
the physical and five for the virtual. As another positive factor for the
enjoyment of both of the physical models, four participants reported
positively on our design, which we grouped into the category aesthetics
(“The clear tubes in the physical display were most compelling”).

5.3. Triangulation

Finally, we discuss the triangulation of our results (Table 1):

Understanding (H1) While quantitative methods did not show
measurable improvements, the positive results for the inductive coding
in the category understanding, as well as the positive results for
physical manual representations in the inductive categories visual
understanding and non-visual understanding positively support our
theory. In conclusion, H1 is only supported subjectively, and we can
not show a measurable knowledge gain. Thus, we recommend further
research on the effect of haptic feedback in manual representations.

Task Load (H2) Here, our quantitative analysis revealed that our
participants reported a higher task load when working with manually
operated representations. However, our qualitative analysis does not
fully support this result. Of the comments that relate to increased task
load, only a single comment directly referred to a higher cognitive
effort when working with physical manual representations in general.
The remaining comments were specifically aimed at visual difficulties,
resulting from the way we built our physical model. The only cognitive
difficulties in working with virtual manual models, reported only by
two participants, referred to difficulties with the keyboard controls.
Physical effort did not appear as a factor in the interaction with our
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models. While there is some evidence to support the hypothesis that
working with manual models increases subjective task load, we see little
support for this from our qualitative analysis. We therefore conclude
that task load did not play an important role for our participants.

Enjoyment (H3) In terms of the subjective enjoyment of physical and
manual representations, the qualitative and quantitative results align.
Physical and manual representations yielded significantly higher results
on our engagement questionnaire. In the summary ranking, physical
manual representations were preferred by a majority. Further qualitative
analysis reveals that interaction is a main facilitator of engagement,
both in physical and virtual models. Additionally, the aesthetics of
our representations were positively remarked upon in the physical
models. The evidence collected supports the hypothesis that physical
manifestation, as well as manually operated representations, are enjoyed
more than virtual or automated ones.

6. Discussion

Our study is a first attempt to disentangle the factors of operation mode
and manifestation to highlight their individual effects on representations
of a complex physiological process and associated complications.
While we study a very specific example derived from the medical
domain, we use common physicalization concepts like an embodied
metaphor [ZM08] and direct interaction [BZW∗22]. With this, we aim
to make the concept understandable to a lay audience. From our results,
we argue that physical manifestation and direct manual operation
are both beneficial factors in data physicalizations.

Our quantitative metrics did not show a positive impact of physical
manifestation and manual interaction on our participants’ understanding
of the represented process. This finding is consistent with prior studies
conducted by Jansen et al. [JDF13], Hurtienne et al. [HMC∗20] and
Drogemuller et al. [DCW∗21]. However, our qualitative methods reveal
a subjective benefit, as reported by participants in their feedback. This
indicates that manual operation in the form of direct interactivity
in physical representations can lead to increased understanding.
As opposed to physical representations, virtual representations do
not benefit from such non-visual insight. Interestingly, our findings
contrast to the results by Pollalis et al. [PMW∗18], who highlight the
shortcomings of physical representations in accurately representing
visual information. Instead, we find that when using manual operation,
virtual and physical representations can provide comparable levels
of understanding. Finally, with respect to memorability, Stusak et
al. [SSB15] have shown that physicalizations are more memorable
than virtual visualizations. Our study did not consider such long-term
effects, but we recommend investigating further the effects of direct
interactivity on the memorability of physicalizations.

Furthermore, we show that physical data representations benefit
highly from direct interactivity. Our quantitative results indicate
higher engagement for such representations, consistent with previous
findings of Hurtienne et al. [HMC∗20]. Our results indicate that this is
not caused by a difference in manifestation alone. If observers are not
able to manually interact with a representation, a virtual one may
be equally or better suited. This is also supported by our participants’
ranking of the different representations, where virtual manual and
physical automated models were ranked similarly.

In our study, we focus on metaphorical models. The creation of more

complex representations would be more feasible in a purely virtual
setting than in the physical space. We think that manual interaction
can serve as an enhancement to both physical and virtual repre-
sentations. Similar to Hurtienne et al. [HMC∗20], who measured the
physical effort to increase when working with a physical representation,
we observe increased reported task load in the manual condition. On
closer inspection, our quantitative results show that this may stem from
the lessened use of cognitive resources of our participants when they
did not interact with the representations themselves. Combined with
the heightened engagement during manual interaction, we conclude
that representations without direct interaction are less engaging.

7. Limitations and Future Work

We designed our representation with the assumption that modeling
the cardiac cycle as a simplified metaphor would be beneficial for
a layperson audience. Despite having been checked by a clinical
doctor, our abstracted model and its variations may have caused
misunderstandings of the (patho)physiological processes they represent.
In our study, we collected 14 negative comments that referred to the
model itself as opposed to aspects specific to manifestation or mode
of operation. Thus, we recommend investigating further the effect of
the degree of abstraction on (physical) metaphors in future work.

When creating our virtual representations, we modeled the pump
metaphor in unity with certain concessions. While using a simple,
two-dimensional model of our physical setup did not visibly impact our
results, limiting the interaction with the virtual pump to the keyboard led
to an absence of haptic feedback. Because of 15 comments referencing
the positive impact of manual interaction on the engagement, as
well as 6 comments mentioning non-visual insights gained from
physical representations, a different method of controlling a virtual
representation may yield more positive results. Haptic feedback may
be a greater influence than immersion, augmented or virtual reality
methods may offer limited benefits. When comparing interactive
representations in the future, we recommend using input devices
with feedback mechanisms. This could range from force-feedback
joysticks to custom devices that simulate physical resistance.

Our analysis of the test scores failed to show an advantage of either
of our four representations on the participant’s understanding. We used
four scenarios to test our hypotheses with four different representations.
One used scenario, simulating physical exertion (S1), was not fully
equivalent to the other three. Participants using manually operated
representations scored worse in the exertion scenario. This may have
been because the possibility of non-visual insight was not given because
of the lack of haptic feedback. Therefore, we recommend considering
the presence of haptic feedback in manual representations in future
comparative studies.

Finally, we acknowledge that our sample was biased towards a young,
age group of male subjects with a relatively high education. Cardiac
pathologies are relevant to everyone especially due to preventable risk
factors, such as smoking. However, data physicalization may have
additional benefits in educating an audience with low visualization
literacy, including children. Future work considering a more diverse
demographic could reveal further insights into the effectiveness of
educational pathophysiological process representations—also with
regard to learning aspects such as constructivism, active learning, or
learning-by-doing [HJC14,HHJ∗17].
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