
© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

Eurographics Conference on Visualization (EuroVis) 2024
W. Aigner, D. Archambault, and R. Bujack
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 3

psudo: Exploring Multi-Channel Biomedical Image Data with
Spatially and Perceptually Optimized Pseudocoloring

S. Warchol1,2 , J. Troidl1, J. Muhlich2, R. Krueger1,2,3, J. Hoffer2, T. Lin1, J. Beyer1, E. Glassman1, P. Sorger2, and H. Pfister1

1 Harvard School of Engineering and Applied Sciences, 2 Harvard Medical School, 3 New York University

Figure 1: In psudo, domain experts can analyze (a) multichannel biomedical images through (b) pseudocoloring and (c) additive blending
into a single visualization. (d) Using a novel color palette assignment method, users can generate perceptually and spatially optimal palettes
and (e) iterate on these palettes based on focus & context exploration of the visualization and their specific constraints.

Abstract
Over the past century, multichannel fluorescence imaging has been pivotal in myriad scientific breakthroughs by enabling
the spatial visualization of proteins within a biological sample. With the shift to digital methods and visualization software,
experts can now flexibly pseudocolor and combine image channels, each corresponding to a different protein, to explore their
spatial relationships. We thus propose psudo, an interactive system that allows users to create optimal color palettes for
multichannel spatial data. In psudo, a novel optimization method generates palettes that maximize the perceptual differences
between channels while mitigating confusing color blending in overlapping channels. We integrate this method into a system
that allows users to explore multi-channel image data and compare and evaluate color palettes for their data. An interactive
lensing approach provides on-demand feedback on channel overlap and a color confusion metric while giving context to the
underlying channel values. Color palettes can be applied globally or, using the lens, to local regions of interest. We evaluate
our palette optimization approach using three graphical perception tasks in a crowdsourced user study with 150 participants,
showing that users are more accurate at discerning and comparing the underlying data using our approach. Additionally, we
showcase psudo in a case study exploring the complex immune responses in cancer tissue data with a biologist.

CCS Concepts
• Human-centered computing → Visualization systems and tools;

1. Introduction

The discovery of fluorescent biomarkers has dramatically enhanced
our understanding of how cells function and interact [Ren13,
LSP03] by visualizing how proteins are expressed within cells. In-
deed, the 2008 Nobel Prize in Chemistry was awarded to scientists
who first identified and isolated green fluorescent protein within
jellyfish [Wei08]. Such fluorescent proteins can now be fused to
other targeted proteins, allowing biomedical experts to distinguish
and investigate cells of different types and states [CTE∗94, Ren13,
LSP03]. For instance, cancer biologists use immunofluorescence
microscopy to investigate tumor growth, immune response, and the
impact of specific therapies [TNC∗20]. Advances in multiplexed

imaging [LIW∗18] now allow experts to digitally analyze 50+
biomarkers within the same specimen. Here, pseudocoloring, or
the mapping of color to individual image channels, followed by
the additive mixing of these channels into a composite visual
encoding, serves as a digital twin to traditional analysis methods
and is critical for exploring tissues and communicating findings.

However, pseudocoloring has several limitations. First, the
blending of pseudocolored channels can make it hard to infer each
variable in isolation and compare these variables [GG14b]. More-
over, visualizing more than three pseudocolored channels simulta-
neously leads to a phenomenon known as metamerism, where var-
ious combinations of colors within the palette produce identical vi-
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sual outputs, making it impossible for humans to distinguish which
specific channels are being expressed. Second, while color mod-
els and spaces that attempt to match human perception have been
extensively researched [Col04, Ott20], the standard RGB (sRGB)
color space, which is typically used to pseudocolor channels and
blend them into a composition visualization, is not perceptually
uniform, thus limiting graphical perception. Third, the spatial prop-
erties of multi-channel data influence these visualizations in that
the overlap of highly correlated variables exacerbates these visual
limitations. This blending of overlapping channels through addi-
tive mixing often yields colors outside of the sRGB gamut, thus
further misrepresenting the underlying data. However, no approach
for palette assignment and visualization exists that accounts for vi-
sual perception and the spatial relationships between channels, nor
do systems to evaluate and compare palettes on real data.

To address these needs, we propose a novel method for color
palette assignment integrated into an interactive system for the
visualization of multi-channel imaging data (Fig. 1). We make
the following contributions: (1) A method for assigning and
visualizing optimized color palettes to multi-channel imaging
data. Our method considers perceptual differences between
colors in the palette as well as the distinctiveness of color
names in the palette; colormaps containing a greater number of
uniquely named colors are more effective for graphical perception
tasks [LH18, RSGP21, RS21]. In addition, our method considers
the spatial overlap of channels to address ambiguous and po-
tentially confusing color blending. Users can further assign or
exclude certain colors or color names in the optimization process.
(2) psudo, an interactive system for assigning color palettes to
and visualizing multi-channel data. Based on a user’s data and
input, we automatically assign an optimal palette and preview the
composite visual encoding. psudo supports quick and interactive
refinement of a suggested palette by offering interactive visualiza-
tions on channel overlap, the presence of out-of-gamut colors, and
feedback on a channel confusion score. We further offer a lensing
approach to apply a color palette either globally or to a local region
of interest. (3) Evaluation of psudo and our palette assignment
method. We conducted a user study to compare psudo to existing
standards for palette assignment and visualization of multi-channel
imaging data. Participants performed three tasks inspired by
biomedical image analysis: estimate values from a multi-channel
visualization, search for regions of interest, and compare channels
spatially. We demonstrate that psudo improves graphical per-
ception, particularly when more than two channels are visualized
concurrently. We further assert the utility of psudo in an actual
usage scenario through a case study with a cancer biologist.

2. Related Work

Modeling Color. Seminal work quantifying human perception of
color established the CIEXYZ color space [SG31], which mod-
els the colors humans perceive in terms of three primary colors
(X, Y, Z). This mirrors trichromatic theory, which states that the
three types of photoreceptor cone cells in our eyes are sensitive
to red, green, and blue light, forming the basis for modern color
science [WSK68]. While CIEXYZ models how the eye perceives
the addition of colored light, it is not perceptually uniform in that
distances in this space do not correspond to perceived changes in

color. The Standard RGB (sRGB) [AMCS96] space, meanwhile,
represents colors as a function of the three primary base colors
red, green, and blue and is gamma corrected [AMCS96] to account
for human perception. However, while this gamma correction is in-
spired by perception, it is not perceptually uniform and only models
a subset of the full CIEXYZ gamut. However, visualization systems
using sRGB typically assume image data to be already in a gamma-
corrected space, which is not the case when image intensity is a lin-
ear function of the measured underlying physical process. In con-
trast, the CIELAB [Col04] space is designed to reflect human per-
ception by aligning color distances with perceived differences. Yet
recent research has identified flaws in the perceptual uniformity of
this space, necessitating new distance functions to accurately mea-
sure the perceptual distance between colors [SWD05,GC12]. More
recently, the OKLab [Ott20] space uses CIEDE2000 [SWD05] for
color difference calculation and improves hue preservation while
blending colors. OKLab has been used to calculate color dis-
tance [YVK∗23], to create color gradients [SJ21], and to model
lightness and chroma when blending [Lev21]. Broadly, the key dif-
ferences between these spaces are the positions and distances be-
tween colors and how those distances align with human perception.
In psudocoloring a channel, and thus interpolating between black
and a given color, different spaces yield drastically different gra-
dients. We use OKLab to pseudocolor channels and compute color
differences based on its hue-preserving properties when blending
colors [Bri23,Lil23] and empirical behavior. However, other spaces
can easily be substituted into our overall method.

Color perception is influenced by the specific terms used
to describe colors, which vary across languages and cul-
tures [HLX∗19, TAW∗09]. Heer and Stone [HS12] create a
probabilistic model to quantify the nameability and salience of
colors’ names in English. Using this model, one can calculate the
distance between colors based on naming patterns, which we use
as one aspect of our novel palette optimization method.

Color Palette Selection. Best practices for using color palettes
differ based on the visualized data types [Bre94, SSSM11, Sza18].
For categorical data, ColorBrewer [HB03] and Tableau both
offer a set of color palettes that are designed to be perceptually
distinct and have been integrated into many popular visualization
tools [Wic16, Was21, Hun07]. Other approaches consider color
name distinctiveness to create palettes [VM16] and evaluate
both categorical [HS12] and quantitative colormaps [LH18].
Methods for interactive palette assignment for categorical data
have gained popularity in recent years, including systems that
maximize perceptual color differences while also considering
user constraints and the intended analysis task [Mit15, FWD∗17].
Gramazio et al. [GLS17] integrate the color name distance into
palette generation and allow users to build palettes iteratively.
Wang et al. [WCG∗19] and Lu et al. [LFC∗21] introduce data-
aware approaches that assign colors to classes in scatterplots based
on class overlap. Whereas these methods operate on categorical
data, multi-channel imaging data is both categorical (the color
used to pseudocolor each channel) and continuous (color transfer
within a channel) and is additionally complex as these colors are
additively mixed. Thus, in our optimization method and in contrast
to previous methods, we evaluate the spatial relationships between
and overlap of channels to create optimal palettes.
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Visualizing Spatial Data Using Color. The assignment and blend-
ing of colors have been extensively researched to optimally visual-
ize spatial 2D [Rob88,HSKIH07,GG14a,LXL21,BTS∗18] and vol-
umetric data [SDB∗17, KGZ∗12, CWM09]. Levkowitz et al., when
investigating linear color scales, find that greyscale can outperform
color scales traditionally thought to be perceptually linear [LH92],
motivating the development of the e.g., OKLab colorspace. Ro-
gowitz et al. [RT98,RKPC99] highlight the limitations in using the
rainbow colormap for spatial data and propose colormaps that vary
saturation or luminance depending on the spatial frequency of the
data. The standard technique when pseudocoloring biomedical data
is to scale luminance for each channel, motivating our visualization
approach. Reda et al. [RNAK18] find colormaps with many hues
to be effective for quantity estimation, while divergent colormaps
are best for pattern perception tasks. Subsequent work evaluates
gradient perception [RP19] and the role of nameability within
colormaps [RSGP21] and finds that colormaps with salient colors
are better at emphasizing global features, whereas less colorful col-
ormaps better communicate local features [Red23]. We thus con-
sider the distinctiveness of color names when optimizing palettes
while also considering the added complexity of channel blending.

Some volume visualization approaches similarly use perception
research and color differences to visualize differences in neural
pathways [ZSZ∗06] or use harmonic color maps to create more aes-
thetically pleasing visualizations of volumetric data [WGM∗08].
Kuhne et al. [KGZ∗12] emphasize hue preservation and build
a machine-learning model to omit false colors from blending.
Finally, Kumar et al. [KZX∗23] propose an interactive radial
color map to visualize multi-variate data to voxel color and
opacity. However, while these approaches look at alpha blending,
combining multi-channel spatial imaging data requires additive
mixing, such that each individual channel value is consistently
visualized independent of the number of channels. Thus, we use
OKLab to pseudocolor channels before combining these channels
in CIEXYZ to ensure the underlying values are preserved.

Most similar to our approach is work investigating the visual-
ization of multi-channel imaging data; Dunn et al. [DKM11] note
that the spatial relationships between variables impact the effec-
tiveness of a visualization; whereas co-occurring variables necessi-
tate color-mixing, correlated variables that exist in proximity but
do not directly overlap require different considerations. Zhou et
al. [ZAZH20] use kernel density and co-localization estimation to
visualize pairs of variables. Liu et al. [LWB15] use dimensional re-
duction to transform high-dimensional data into RGB values. In our
case, individual channels must be preserved and visualized simul-
taneously. Finally, Cheng et al. [CXM19] embed data samples and
assign colors in a perceptually uniform space. However, the blend-
ing they propose is not additive and does not consider color names.

3. Visualizing Multi-Channel Biomedical Images

The visual analysis of multichannel images is critical across many
domains, but we are specifically motivated by our collaboration
with cancer researchers; these pathologists, biologists, and oncol-
ogists rely on whole-slide multiplexed tissue images generated
through methods such as CycIF [LIW∗18], which can capture the
spatial expression of 50+ protein targets across regions up to 10cm2

Figure 2: Multi-channel Image Data Visualization: (a) Each data
channel is (b) assigned a color, (c) pseudocolored by linearly in-
terpolating between black and the color, and (d) additively mixed.

and containing millions of cells at subcellular resolution. Investi-
gating these images and analyzing the tumor microenvironment at
unprecedented detail [NMV∗22] is essential for cancer diagnosis
and therapy evaluation [AWK22, HCLA17]. Our past work build-
ing visual analytics approaches for such experts [KBJ∗20,JKW∗22,
WKN∗23] emphasizes the essential role that visual inspection of
the underlying data plays, both to steer supplementary analysis
and validate results. To do so, domain experts often visualize as
many as eight channels simultaneously. However, per trichromatic
theory, humans can only fully perceive 3 color channels simul-
taneously, [WSK68]. Additionally, the tools that these experts
frequently use [AMR04, SLE∗22, ABM∗12, MGP∗22] visualize
by using pseudocoloring channels and then additively mixing
them using sRGB and suggest palettes containing the primary and
secondary colors. This approach results in the likely presence of
out-of-gamut colors and is influenced by the non-linearities of the
RGB color space. We thus propose a visualization and color palette
assignment approach that better aligns with perception and mini-
mizes ambiguous blending of colors, which is inevitable with more
than three channels. We also emphasize the highly exploratory
nature of expert analysis and the importance of toggling channels
on and off to accurately perceive the underlying image data and
add features to help users identify overlap and channel expression.

psudo Visualization Pipeline. Motivated by prior work on
perception [Ott20, SJ21, Lev21], in psudo, we modify the default
visualization pipeline to use perceptual color spaces (Fig. 2).
Each channel is assigned a color from an overall palette and thus
pseudocolored by linearly interpolating between black and the
corresponding color in OKLab [Ott20], which models perceived
hue, brightness, and chroma when blending colors. This blending,
however, differs from additive mixing, which combines channels
instead of interpolating between them; we use the CIEXYZ space,
which specifically models human perception when adding light
of different colors, to perform this additive mixing. We find this
pipeline produces the clearest visual encodings and avoids both
out-of-gamut colors and "washed-out" composite encodings.

4. Color Palette Optimization

psudo’s core component is a novel palette optimization method
for multi-channel images that enables interactive palette recom-
mendations based on the visualized data, the spatial relationships
between channels, and perceptual considerations (Fig. 3).

Optimization Components. We generate color palettes through
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an optimization method with the following components: First, we
consider the perceptual difference between colors in the palette to
ensure the colors are well distributed throughout the gamut. Sec-
ond, we evaluate the semantic distance of color names for all pairs
of colors in our palette [HS12], which has been shown to improve
graphical perception [LH18, RSGP21, RS21] in colormaps. Third,
we consider the color-confusion between channels (i.e., when
different combinations of channels and their intensities create
similar-looking colors). For example, if two highly overlapping
channels are pseudocolored red and green, mapping yellow to a
third channel creates ambiguity and confusion. As such, we try
to optimize a palette in which singular linear combinations of
channels produce distinct colors. Additionally, through constrained
optimization, certain colors can be explicitly included or omitted.

Objective Function. We integrate these three components into
an objective function and optimize palettes through stochastic
global optimization. We experimented with the basin-hopping
technique [LS87] and dual annealing [XSFG97] to find suitable
minima, but found simulated annealing [KGV83] to provide the
most consistent convergence across our experiments. We found
that, especially for a low number of channels, many roughly
equivalent minima exist and that an initial temperature of 15
best explores the search space. Our overall optimization method
operates on multi-channel imaging data, I, with n channels and a
color palette, P, of n colors, and generates an optimal palette, P∗,
by optimizing an objective function L(Pn, In).

P∗ = argmin
P

L(Pn, In) (1)

More specifically, the objective function, L, is defined as the
weighted sum of the following subfunctions, which map directly
to the aforementioned three optimization components.

L(P, I) = ω1L1(P)+ω2L2(P)+ω3L3(P, I) (2)
We abstract pseudocoloring and blending of channels in the ob-
jective function with the following functions. color pseudocolors
the i-th channel’s imaging data Ii, by converting an sRGB color,
Pi(R,G,B), to OKLab, Pi(L,a,b), and then interpolating between black
and the color.

color(Pi(R,G,B), Ii) = Ii ∗OKLab(Pi(R,G,B)) (3)
Next, to additively mix image channels In, we first pseudocolor
each channel with the corresponding color from palette Pn, convert
each channel to CIEXYZ, take the sum across all channels, and
convert them back to OKLab.

mix(Pn(R,G,B), In) = OKLab(
n

∑
i=1

CIEXY Z(color(Pi(R,G,B), Ii))) (4)

Next, we describe the components of our optimization in detail.

4.1. Maximizing Perceptual Differences Within the Palette

L1 aims to maximize the perceptual differences between colors
in a palette (Fig. 3). Using Euclidean distance to calculate large
color differences is problematic, as these spaces are derived
from just-noticeable differences [AATF20]. Inspired by existing
approaches that use OKLab or CIEDE2000 to calculate small
color distances [YVK∗23, GLS17, LFC∗21], we maximize the
minimum distance between two colors in the palette, as calculated
using Euclidean distance in OKLab.

L1(P) = min
1≤i̸= j≤n

∥OKLab(Pi)−OKLab(Pj)∥ (5)

Figure 3: Objective Function Components: L1 and L2 distribute
colors perceptually and linguistically, respectivley. L3 considers the
spatial overlap of channels.

4.2. Maximizing Color Name Distinctiveness

Our ability to distinguish between colors is intrinsically
linked to the names we ascribe to each color, the distinc-
tiveness of these names, and their distance from one an-
other [HLX∗19, TAW∗09, HS12]. This, in turn, impacts our
graphical perception in spatial data [RSGP21, Red22]. In L2, we
attempt to improve graphical perception by evaluating the distinc-
tiveness of color names in a palette (Fig. 3); when assigning a color
palette, we consider the difference between a pair of colors a,b,
using the name cosine distance D(a,b). This metric is derived from
a survey with over 3 million entries [HS12] where participants
identified colors by name and quantifies the distance between
colors in terms of these responses.We compute the average name
distance D between pairs of (n) color in the palette, P.

L2 =− 1(n
2
) n

∑
i=1

i

∑
j=1

D(Pi,Pj) (6)

As with L1, this component of our overall loss operates strictly
on the palette. Thus, we must consider a third term in order to
avoid out-of-gamut colors and prevent overlapping channels from
blending to form a color already in the palette.

4.3. Minimizing Color Blending Confusion

The use of pseudocolored composite images to visualize the
spatial distribution of multiple variables faces significant chal-
lenges due to human perception limitations in discerning blended
colors [GG14a] and the possibility that different combinations of
channel values can yield identical colors, making it impossible for
a viewer to identify which channels produced a given color. Given
human trichromatic vision, such confusion and metamerism are
inevitable when visualizing more than three channels. However,
given the inseparable role this visualization method plays in the
work of our domain collaborators, we attempt to reduce this
ambiguity in our optimization method (Fig. 3). In the Supplemen-
tary Material, we further demonstrate how our approach reduces
potential metamerism when compared to baseline colormaps, as
well as how our system provides context to ambiguous regions.
To quantify this confusion, we consider the input channel intensity
values and resulting colors in the composite encoding and use mul-
tivariate multiple regression to evaluate how well these intensity
values can be used to predict the resulting color. Such a model will
thus perform worse on a dataset and palette that contains multiple
combinations of markers that yield similar colors. Additionally,
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this approach penalizes the presence of out-of-gamut colors, as if
channel intensity values are increasing without a corresponding
color change, the data is not being effectively encoded. We thus fit
a model using ordinary least squares regression to predict a given
pixel color in OKLab in terms of the n channel intensity values, I:
YL,a,b = β0+β1I0+ ...βnIn. We then calculate the root mean square
error of this model relative to the colors that pseudocoloring and
mixing imaging data, I, with palette P.

L3 = RMSE(mix(P, I),Ŷ (I) (7)

To make this approach scalable, we fit and predict on a 5,000-pixel
subsample of the original image, omitting any pixels outside of
the established contrast limits of a channel (see Sec 5.1), ensuring
there is meaningful marker expression at these points. We use the
resulting RMSE score as our confusion metric that indicates how
much color blending confusion remains in our optimized palette.

4.4. Evaluating Our Optimization Method

In addition to the user study and case study detailed in Sec. 7 and
Sec. 8, respectively, we also perform small-scale evaluations of the
individual components of our optimization method and on the abil-
ity of our method to reduce metamerism.

Evaluating Model Components Based on Reda et al.’s finding
that nameability is comparable to the perceptual difference in
evaluating a colormap [RNAK18], we equally weigh the contri-
butions of both as ω1 = ω2 = −1. Many local minima maximize
the perceptual distance between colors; we find that by combining
these two loss components, we select one of these minima that
does not include two colors with the same name. We weight L3
relative to the average loss across 100 random palettes, x̄, such that
ω3 = x̄−1, normalizing in a method similar to Lu et al. [LFC∗21].
In a small-scale ablation study (see Supplementary Material), in
which 30 users estimated 30 values in multi-channel biomedical
images (following Sec. 7’s estimate task), users were more accurate
using the full objective function (74.6%) than they were when we
omitted L1, L2, or L3 from the optimization (70.4%, 69.6%, and
71.5%, respectively). While this supports the respective orders of
magnitude for ω1, ω2, and ω3, a larger-scale study is needed to
quantify the benefit of each component in more depth.

Evaluating Metamerism Reduction A key motivation for this
project was to minimize color confusion or the presence of
metamers while also providing interactive ways for users to
identify potentially problematic regions and discern the relative
contribution of different channels in those regions. We use an
example dataset of partially overlapping circles (see Supple-
mentary Material) to demonstrate the presence of such artifacts
when using a naive RGB blending approach and highlight how
psudo’s optimization method and interface help users build a
more accurate understanding of the underlying data. We compare
this dataset when visualized using sRGB and pseudocolored
with RGB primary/secondary colors to the same dataset with
an optimized palette and visualized with our approach. On a
per-pixel basis, we can then perform non-negative least-squares
regression to determine the relative contribution of each color in
the palette that could result in a pixel of that color (e.g., 1*R +
1*G = Yellow Pixel). We perform this regression on each possible
combination of channels, which, for this four-channel image,

leaves 15 solutions per pixel. We then omit all solutions that have
near-zero coefficients, as this means that the given color does not
meaningfully contribute to the color at that pixel, and additionally
omit all solutions with a 2-norm of 0.005, as this solution does not
accurately reflect the color shown. Thus, we are left with a list of
potential combinations of colors in our palette that could produce
the color at the pixel value. If every single pixel has a single
solution, we can roughly say that no metamers exist, whereas if a
pixel has multiple solutions, we find that multiple combinations of
colors and intensities in the palette could produce this color. In this
limited experiment, we find that 15.5% of the pixels in the baseline
image are potential metamers, while only 3.5% of the pixels in the
optimized image are metamers. For more information about this
analysis, please see the Supplementary Material.

4.5. Incorporating User Preferences

Based on our domain experts’ needs to manually fine-tune palettes
or pick certain colors, we support constrained optimization.
Across domains, there are expectations that specific channels be
pseudocolored in certain colors; in immunofluorescence imaging,
DAPI, a biomarker for DNA, is typically colored blue. Users may
lock an exact color for a channel, in which case we only optimize
the remaining colors. A user may also define a looser constraint by
providing a color name for a given channel. Thus, our optimization
method suggests a color above a user-specified salience threshold.
We found an initial salience threshold of 0.6 to balance precision
and search space for the most common color names. However, a
lower threshold is better suited for more obscure colors, prompting
the configurability of this value. This is calculated based on a
formula [HS12] where p(c,n) is the probability that a color c is
identified as a name n. For example, p(‘#0000FF‘, ‘blue‘) = 0.817
means that #0000FF is identified as "blue" 81.7% of the time. We
further allow users to exclude specific colors from the generated
palette. In this case, we omit any color above the specified salience
threshold from the palette.

5. psudo: Palette Creation and Visualization System

Palette creation is an iterative, user-driven process. In psudo,
users can interactively explore their data, create optimized color
palettes, and evaluate and modify palettes in a web-based system
(Fig. 4). Users can explore the current palette, specify constraints,
and get feedback on palette details such as color confusion and
out-of-gamut colors in a lens-based focus-and-context approach.

5.1. Image Exploration

In psudo’s main view (Fig. 4, a), users can zoom, pan, and
toggle channels to explore large multiplexed images. We use a
perceptually-based visualization pipeline for blending different im-
age channels into a single view, as described in Sec. 3.

Individual Channel Inspection. Each channel displayed in the
main viewer is also visualized in isolation (Fig. 4, b), allowing a
user to investigate features in these channels and their presence
in the composite visualization. The single-channel views can be
linked to the view state of the main view, or users can zoom and
pan within them independently.

Setting Contrast Limits. When generating fluorescence images,
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Figure 4: psudo visualizing lung cancer tissue [SSY∗22]. We display (a) the combined visualization and (b) each channel in isolation.
(c) Users can change the colors for each channel. They can lock the colors of specific channels and specify color names to (d) to generate
optimal palettes based on our optimization method. (e) An interactive lens provides on-demand feedback on channel overlap and lets
users change the optimization scope. (f) Past palettes are displayed, allowing users to rollback to a previous version and create a palette
iteratively. Linked views of (g) palette quality and (h) channel marker expression allow users to compare palettes and explore their data.

the bit-depth of the camera generates data with a much higher dy-
namic range than is perceptible to humans, and meaningful expres-
sion of a particular biomarker often exists within a much smaller
range of values [Joh12]. Therefore, experts typically first set con-
trast limits for each channel [KBJ∗20]. Intensity values are thus
clamped to the minimum and maximum values set and linearly
stretched between the range to use the bit-depth of the dataset ef-
fectively. Users can set contrast limits in two ways, either manually
or by using an automatic approach specifically designed for CycIF
data. For automatic contrast assignment, we exploit that pixel in-
tensity values in CycIF data are generally log-normally distributed.
Hence, by using a tri-modal Gaussian mixture model, the meaning-
ful dynamic range of that channel is captured in the greatest of the
three Gaussians. When image channels are made visible, we set the
contrast limits using this method with respect to the global data dis-
tribution. Moreover, users can also set contrast limits locally when
focusing on local features in a region of interest (see Sec. 5.3).

5.2. Dynamic Palette Generation and Refinement

We integrate our palette assignment method into psudo to enable
iterative palette refinement within an interactive visualization tool.

Baseline Optimization. All palettes are optimized relative to the
set contrast limits. When loading a dataset, we automatically assign
a palette with our optimization method. When additional channels
are toggled on (Fig. 4, c), we lock the colors already assigned and
assign a new color relative to these existing channels, preventing
the palette from switching unexpectedly while ensuring new chan-
nels are visualized effectively. Alternatively, users can generate an
entirely new palette using unconstrained optimization (Fig. 4, d).

Accommodating User Preferences. We allow the palette to be
further refined based on user input; locking a color to a channel
prevents that color from being changed, and the other colors in the
palette are optimized relative to locked values (see Sec 4.5). Users
can specify a color name if they do not require a specific shade

of that color. Our domain collaborators had different visualization
preferences. For instance, some preferred to never use white, while
others preferred to reserve certain colors for specific channels.
Thus, if users want to omit colors from the generated palette, they
can add those names to the excluded color list (Fig. 4, d).

Feedback on Optimization Results. We visualize the three
individual components of our objective function and the overall
loss (L1,L2,L3,L) as gauge charts that update when any change
to the palette is made (Fig. 4, g). This helps deter users from
creating suboptimal palettes, and provides a basis for comparing
multiple palettes. In addition, as more and more channels are
visualized simultaneously, this visualization provides context as to
how each subsequent channel impacts perception of the composite
visualization. To avoid confusion, for any visualizations that do
not directly show or apply the color palette, we use greyscale.

Iterative Palette Refinement. In psudo, users can iteratively re-
fine palettes tailored to their specific requirements. Users can test
constraint configurations until a satisfactory outcome is achieved;
they can begin with unconstrained palette optimization and by pro-
gressively refining constraints, enhance visual quality and accom-
modate personal preferences. Alternatively, they may begin with a
pre-existing palette and improve it. psudo displays a history of
prior-generated palettes (see Fig. 4, f), which can be re-activated
by mouse click. By juxtaposing the composite visual encoding and
explicitly showing color assignments for each channel, users can
quickly assess the quality of individual optimization results.

5.3. Focus & Context Interaction

For our collaborators, effectively visualizing regions of interest
within a tissue is often more important than visualizing the en-
tire image. Moreover, these regions of interest often contain mark-
ers that were not necessarily expressed throughout the image, in-
dicating, e.g., the presence of a rare cell type or specific im-
mune reaction [NMV∗22]. We thus extend our previous lensing ap-



© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

Warchol et al. / psudo: Exploring Multi-Channel Biomedical Image Data with Spatially and Perceptually Optimized Pseudocoloring 7 of 14

Figure 5: Interactive Lensing: (a) Users can investigate the
marker expression and palette quality by dragging a lens over a
ROI. Individual channels or combinations of channels can be an-
alyzed in isolation (b, left), and out-of-gamut pixels and coexpres-
sion can be shown in the overlap view (b, right).

proach [JKW∗22] to allow users to inspect these regions of interest
and perform local palette optimization.

Changing Optimization Scope. Highlighting global versus local
features in the data often requires different color palettes [Red23].
In our system, users can thus change the scope of optimization by
zooming and panning throughout the image and focusing an inter-
active lens on their intended region. Users can re-compute contrast
limits and optimize a new palette relative to the spatial expression
of channels within the lens (Fig. 4, d). Additionally, the lens can
be used to evaluate a palette within a given region; as users navi-
gate the image, the loss gauges update to reflect the color-blending
confusion within the lens (see Fig. 5, a).

Close Inspection of the Composite Visualization. The interactive
lens provides two additional features to allow users to inspect the
overlap of channels in their data. First, the lens can be used to look
at individual channels or user-defined combinations of channels
(Fig. 5, b) such that the user can compare these channels to the
overall visualization. Using a slider, the user can fade between
the two views to understand how these channels are reflected
in the composite encoding. Second, the lens shows the overlap
of channels and the presence of out-of-gamut colors through a
greyscale overlay in which all out-of-gamut pixels are displayed
in white (Fig. 5, b). Users can use these two features to explore
regions of potential confusion when generating a color palette or
identify regions in which the marker expression or overlap differs
significantly from the overall image. A linked density plot (Fig. 4,
g) visualizes the distribution of marker values within the lens or, if
the lens is not enabled, globally.

6. Implementation

To support gigapixel, multi-channel image data, and a wide
array of users, we emphasize scalability and web-based tech-
nologies in our implementation. Therefore, psudo uses a
client-only architecture that relies heavily on Rust compiled to
WebAssembly [KT22, HRS∗17] to perform palette optimization
and evaluation on a user’s machine. We build on Viv [MGP∗22]
and Vitessce [KGM∗21] to visualize the data and use custom We-
bGL shaders to perform the color space conversions necessary to
support our visualization pipeline. Data can be loaded either locally

Figure 6: User Study Stimuli: Cropped regions of cancer tissue.

or directly from a cloud bucket or URL. Additionally, we authored
two Python packages on PyPi; we implemented optimized and
vectorized color space conversions in colorutil and created
a scalable Python implementation of Heer and Stone’s [HS12]
Categorical Color Components (C3) library, available on PyPi as
pyc3. We also authored a Rust implementation of C3 (rust-c3,
which can be compiled to WebAssembly and run in the browser.
We will make this code open-source upon acceptance of the paper
and offer a public demo of psudo for users across domains to use
with their data at https://psudo.xyz.

7. User Study

We ran a within-subjects user study to investigate the effectiveness
of our color optimization approach. We asked participants to per-
form graphical perception tasks in two conditions. The first condi-
tion was the baseline, where the composite visual encoding is pseu-
docolored and mixed using sRGB primary and secondary colors,
adding orange and white when displaying eight channels, which
mirrors the palettes used in popular multi-channel image view-
ers [ABM∗12, MGP∗22]. The second condition uses our palette
optimization and visualization method. We additionally vary the
number of channels to evaluate how this impacts user performance.

7.1. Stimuli

We use cropped regions from a multi-channel CycIF
dataset [LIW∗18] (40 image channels, 25,808 × 36,857 pix-
els). The data contains notable regions of tumor-immune
interaction and was previously used to study the progression of
melanoma [NMV∗22]. We crop regions of this image at different
levels of resolution to avoid global/local bias and use only channels
with significant spatial expression within the cropped region.

7.2. Participants

We ran our crowd-sourced study on Prolific [PS18]. We recruited
and prescreened participants through Prolific, selecting those who
self-identified as proficient in English, without any visual impair-
ments, and residing in the United States. A desktop computer was
required to participate. However, as further discussed in Sec. 9, the
inherent variance in screen resolution and lighting does influence
results, as does the inherent variance in visual literacy among par-
ticipants. Participants were compensated at a rate of $20 USD per
hour. We excluded participants whose accuracy or time across all
tasks fell outside of two standard deviations of the mean accuracy
and time across all experiments. We recruited 170 participants but
omitted 20 individuals based on our exclusion criteria. Participants
took an average of 10.70 seconds per task and, accounting for the
tutorial, spent an average of 650.74 seconds on the overall study.

https://psudo.xyz
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Figure 7: User Study Tasks: Tasks inspired by domain-specific
analysis to evaluate perception of multi-channel spatial data.

Participants reported as 57% female, 41.8% male, and 1.2% other
/ prefer not to say. They were, on average, 37 years old.

7.3. Tasks

Our study included three tasks, which are motivated by our col-
laborations with cancer biologists [KBJ∗20, JKW∗22, WKN∗23,
GBR∗23]. We build upon existing studies that evaluate the visu-
alization of spatial data [Mun15, RNAK18, QR22] and also draw
on Munzner’s work [Mun15] in task abstraction for visualization.
We specifically focus on the lower level search and query tasks.

Estimate. Participants are asked to estimate the value of an in-
dividual channel at a specific point in the visualization (Fig. 7).
Participants must query the visualization, and identify a value in
the visualization. Domain experts perform such value estimation
when identifying cell types and morphological features within tis-
sue and while validating computational approaches. This task is
also motivated by existing work evaluating inference in visualiza-
tions [MKA∗11, RNAK18, HDHA10, RSGP21]; we adapt a task
proposed by Reda et al. [RNAK18] where users estimate the value
of a channel at a specific point in the visualization. We evaluate
accuracy in this task as the absolute distance from the guess to the
correct answer relative to the value range. In all tasks, users may
not toggle channels and must rely on the composite visualization.

Compare. In the second task, participants compare channels in
the visualization [RNAK18], which falls under the query action
in Munzner’s taxonomy [Mun15]. We superimpose a box on the
visualization and ask participants to choose which of the two
channels (out of all displayed channels) has a higher average
value in the box (Fig. 7). This task mirrors the analysis of our
collaborators; cancer biologists compare the relative presence of
biomarkers to quantify immune response and tumor growth.

Search. Participants are asked to search for and identify more
complex features and patterns in the visualization. This task falls
under the search action category in Munzner’s taxonomy [Mun15].
It is motivated by the need to locate a specific feature present
in an individual channel in the composite visualization, such as
identifying a notable spatial neighborhood pattern within cancer
tissue [WKN∗23]. Pattern identification is a key component of hu-
man attention and perception [HP07] and related research proposes
similar tasks [RNAK18, HDHA10]. In this task, we show partic-
ipants a small region from an individual channel and ask them to

identify the same region in the composite visualization (see Fig. 7).
We calculate participant accuracy as the distance from the selected
region to the target region, normalized relative to the image size.

7.4. Hypotheses

We have the following hypotheses for this study. These hypotheses
and the experimental setup were preregistered with OSF [War23].

H1: Participants will have higher accuracy on the graphical percep-
tion tasks using psudo when compared to the standard approach
(sRGB primary and secondary colors, no optimization).

H2: Participant accuracy will decrease as the number of channels
in the stimuli visualization increases.

7.5. Procedure

Participants first had to complete a tutorial, which included exam-
ples of the three tasks that had to be solved correctly to continue.
Text pop-ups explained incorrect choices. Next, participants were
asked to complete 20 random tasks, where the dataset, number of
channels, data, and visualization approaches were all randomly
assigned. Randomly assigning tasks implies the number of times
a user completes a given task may vary. While we found no statis-
tically significant correlation between user performance and task
count, further user studies may benefit from keeping this count con-
stant to eliminate any anchoring (see Supplementary Material for
more information). Each task should take no more than 30 seconds,
and a countdown clock encourages users to follow this timeline.

Baseline. Across our experiments, we compare our approach to
a baseline approach, where channels are pseudocolored and com-
bined in sRGB and palettes are composed of the sRGB primary col-
ors (for two channels), sRGB primary and secondary colors (four
and six channels), adding white and orange (eight channels). We
randomly assigned these palettes to the channels in a dataset.

7.6. Results

Overall, we find that our approach outperforms the baseline when
four, six, and eight channels are displayed when estimating and
comparing. Our approach performs similarly to the baseline when
searching or visualizing only two channels. We hypothesize that
when only two channels are visualized, even the baseline approach
adequately distinguishes channels. Furthermore, the similar per-
formance in the search task may be explained by the constrained
search space users had to evaluate, as they were asked to search a
small region of the overall image, which is a simpler use-case than
in many real-world tasks. Moreover, the conditions that help users
identify global features vs. local features differ [Red23], further
motivating a larger-scale study of behavior at different scales. We
summarize our results in Fig. 8 and investigate each task in isola-
tion and the overall performance across all tasks, including search,
as we find no evidence that our approach is worse than the status
quo. We provide our raw data and report in further detail on the
parameters of our statistical models in the Supplementary Material.

Estimate. Participants performed similarly at quantity estimation
for two channels, but our approach outperformed the baseline
at four and six channels (Fig. 8). To further evaluate the impact
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Figure 8: User Study Results: Our within-subject user study (N=150) indicates that users perform better using psudo as color palette
assignment method when compared to the baseline when estimating and comparing values. Error bands represent 95% confidence intervals.

of the approach (psudo vs. baseline) on task performance
while accounting for the number of channels, we use a two-way
Analysis of Variance (ANOVA). As the approach and number of
channels are randomized, we do not expect interaction between
these variables. We reject the null hypothesis, finding that both
approach (F1,1168 = 9.01, p < 0.0001) and the number of channels
(F1,1168 = 27.6, p < 0.0001) are significant. The F-test on the
underlying multiple-regression model rejects the null hypothesis,
showing that this model is significant (F = 18.83, p < 0.000001),
while the positive coefficient on the approach (0.0397) and the
negative coefficient on the number of channels (−0.0153) suggest
that our approach improves graphical perception (H1) and that the
number of channels negatively impacts both approaches (H2).

Search. Participant performance on this task when comparing our
approach and the baseline was nearly identical. (Fig. 8). We again
perform ANOVA, where we find the number of channels does im-
pact performance (approach: F1,694 = 14.15, p < 0.0001. However,
we find that the approach does not meaningfully impact perfor-
mance (p > 0.0001). This result thus supports H2 but not H1. In
these experiments, palettes were optimized for the entire cropped
section as opposed to the ROI directly around the pattern. Further
analysis could investigate how modifying palettes to specifically
emphasize these local features impacts overall performance.

Compare. Our approach outperforms the baseline, with the largest
difference at 4 channels. Differences at six and eight channels,
meanwhile, are not outside of a 95% confidence interval (Fig. 8).
As such, without further analysis, we cannot project these results
out to a larger number of channels. By performing ANOVA, we
find that both approach (F1,1195 = 24.61, p < 0.0001) and the
number of channels(F1,1195 = 39.37, p < 0.0001) are significant
factors. The F-test on the underlying multiple-regression model
rejects the null hypothesis, showing that the model is significant
(F = 32.59, p < 0.005) in predicting accuracy, with a negative
coefficient for the number of channels (−0.0372, p < 0.005),
supporting H2 and a positive coefficient (0.1316, p < 0.05) for our
approach, supporting H1.

Overall Performance. Finally, we analyze performance across all
tasks, which we find decreases as the number of channels increases
(H2) and that the psudo pseudocoloring and palette assignment
technique yields better participant accuracy when compared to the
baseline (Fig. 8). However, improvement is most notable at four
channels and fails to clear a 95% confidence interval for six and
eight channels. We additionally notice that performance decreases
at an increasing rate as the number of channels increases. We are

interested in building on this study to further quantify this behav-
ior by testing across a wider number of channels. Following the
same statistical approach taken with each of the individual tasks,
we use ANOVA to determine if the variable significantly impacts
normalized performance and examine the model to quantify this
impact. This test indicates that the approach and number of chan-
nels remain significant across tasks (F1,3061 = 30.91, p < 0.0001
and (F1,3061 = 69.04, p < 0.0001, respectively), with, again, a neg-
ative coefficient for number of channels (−0.0225, p< 0.0001) and
a positive coefficient for our approach (0.0675, p< 0.0001), further
demonstrating that participants do benefit from psudo’s method of
palette assignment and multi-channel visualization (H1).

8. Case Study: Melanoma Analysis

We demonstrate the utility of our system through a case study with
a cancer biologist from Harvard Medical School, following the
Pair Analytics [AHKGF11] model. The expert spent one hour in-
vestigating a 40-channel section of cancer tissue, 25,808×36,857
pixels in size (∼ 17× 24mm). They were interested in analyzing
this tissue as they had previously identified regions of interaction
between immune cells and the tumor and wanted to understand how
these regions correlated with the stages of melanoma progression.

The biologist first investigated a region containing a significant
immune population directly adjacent to tumor cells. They were
specifically interested in visualizing three channels, each of which
corresponds to a different cell population: SOX10 (tumor), CD3
(immune), and CD11C (macrophages). They indicated that blue
is generally used to visualize tumor cells and thus selected that
color name in the psudo interface. They had no requirements for
the other two channels and wanted to draw a stark contrast to the
presence of these three populations. Finally, they changed the opti-
mization scope from global to local using the lens (see Sec. 5.3) to
accentuate the spatial patterns within this region and generated an
optimal color palette. Fig. 9, a shows this region as visualized with
the optimal palette. The biologist emphasized that this visualization
supports their hypothesis that the presence of macrophages may be
suppressing the immune cells as they attempt to combat the tumor.
The biologist then investigated this suppression in greater detail
and zoomed into a smaller region on this boundary, as emphasized
by Fig. 9, a. To show immune suppression, the biologist was
interested in visualizing T cells (immune cells that combat tumors)
and their disparate states; these states indicate how "exhausted" the
T cells are, which impacts their ability to fight the tumor. We kept
the SOX10 marker on to show the tumor and additionally added
four channels, TIM3, PD1, LAG3, and C8A, which, in this order,
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Figure 9: Melanoma tissue visualized with psudo (a), showing
disparate cell populations containing varying levels of immune re-
sponse, visualized with (b) psudo and (c) with the sRGB baseline.

visualize low to high levels of T cell exhaustion. The biologist
identified that the more exhausted states generally lie closer to
the tumor (see Fig. 9). To compare our approach to the sRGB
baseline, we show the same data and contrast limits using a palette
of primary and secondary colors, as recommended by the cancer
biologist’s typical image viewer [ABM∗12], in Fig. 9, c. Here, the
channels are pseudocolored and blended in sRGB. Distinctions
between variables are more apparent with psudo, whereas the
sRGB version has less contrast and is harder to discern.

Overall, the biologist stressed the tedious and ad-hoc nature of
their previous palette assignment method and emphasized that the
degree of objectivity that psudo offers is compelling. Addition-
ally, they had several suggestions to enhance psudo. First, they
indicated that sometimes they want overlapping channels to have
nearly identical colors when these channels correspond to highly
correlated variables and when they want to visualize the channels
in tandem without drawing distinctions. Next, when investigating
different subpopulations, it would be helpful to specify hierarchical
classifications for channels; for instance, they would like to assign
"warm" colors to a certain set of channels and "cold" colors to an-
other set without specifying the individual color for each channel.
We will consider these suggestions in future work.

9. Limitations and Discussion

Accessibility. Despite their frequency, we do not explicitly address
visual impairments as part of this study. To our knowledge, there
is no perceptually linear color space that models red-green color
blindness, though such a space could easily be integrated into our
methods. However, existing research has devised ways to simulate
red-green color blindness through the transformation of pixel
values, which we could use to evaluate our approach further.

Device Variation. Factors such as lighting, viewing angle, hard-
ware, and device color profiles influence a user’s ability to perceive
data on a screen. We attempt to mitigate the impact of these factors
by evaluating on a broad swath of users. These results may differ
from a more controlled user base (e.g., pathologists using highly
specialized hardware). Thus, a wider-scale survey that collects
data relating to these viewing factors would better demonstrate
generalizability while providing insights into specific use cases.

Data Variance. We evaluated our approach using biomedical imag-
ing data. However, the spatial properties of this data may differ

from data from other domains and modalities. Existing approaches
have evaluated the impact of spatial frequency on the perception of
single-channel data [RNAK18]. Further research should investigate
how the correlation between variables impacts graphical perception
for multi-channel data. We plan to evaluate our approach with data
from other domains (e.g., environmental science, geography, as-
tronomy) to better understand how data from each field differs and
how a holistic approach can best accommodate these discrepancies.

Data Encoding with Blended Colors. Encoding multiple image
channels as different colors and blending them into a combined
view is not ideal from a perceptual point of view. Color is a non-
separable channel for humans, often resulting in difficulties de-
coding the individual channel values from the blended visualiza-
tion [GG14a]. Therefore, blending of data channels should only
be used for spatial scientific data, such as measured multi-channel
image data, where it is vital to show each pixel’s value in its cor-
rect x and y position. Non-spatial high-dimensional data should be
handled with alternative encodings, such as polar coordinate plots,
small multiples, or dimensionality reduction techniques. Further-
more, users should always have the option to toggle the visibility
of individual channels to look at their data one channel at a time.

10. Conclusions and Future Work

The results of our studies suggest that continued development and
widespread adoption of our approach could profoundly impact the
effectiveness of scientific visualization across domains, allowing
for more precise analysis and more effective communication of
findings. Additionally, by introducing a degree of objectivity into
the process of visualization and data exploration, we hope to lower
the barrier to entry for those looking to investigate and understand
complex, multi-channel data while enabling experts to better quan-
tify their preferences and workflows when visualizing such data.
We see several avenues of future research that further these goals.

Incorporating 3D Data. Many of the considerations and design
decisions that went into psudo are relevant to optimally visual-
izing higher dimensional data. Specifically, optimizing color as-
signment during visualizing multi-channel volumetric data adds an-
other level of complexity to our existing approach, as we must also
consider the spatial overlap of channels across the z dimension.
Our biomedical collaborators have begun collecting such 3D fluo-
rescent imaging and we plan to integrate that data into our approach
and adapt methods accordingly.

High Impact Deployment. Recent studies find that the display
systems used by pathologists to view tissues impact these experts’
perception of clinically relevant features and thus influence
clinical performance [TJA∗14]. Our results suggest that palette
assignment and pseudocoloring may be similarly significant.
Thus, by continuing to develop our approach and integrate our
methods with existing systems that visualize biomedical imaging
data [MGP∗22, SLE∗22, ABM∗12] and systems for presentation
and storytelling of these data [RCH∗22], this research may
help improve experts identify and disseminate key findings and
ultimately improve clinical outcomes.
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