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Figure 1: User interface of SemLa (Semantic Landscape): Map view (a), List view (b), Sample-level consisting of natural language summary
(c), Visually Integrated Feature Importance view (d), token-to-token and token-to-similarity relation graphs (e, f), Label-level comprising
label-cluster list (g), confusion table (h), and the Map and List views in comparison mode (i and j).

Abstract
In natural language processing (NLP), text classification tasks are increasingly fine-grained, as datasets are fragmented into
a larger number of classes that are more difficult to differentiate from one another. As a consequence, the semantic structures
of datasets have become more complex, and model decisions more difficult to explain. Existing tools, suited for coarse-grained
classification, falter under these additional challenges. In response to this gap, we worked closely with NLP domain experts in
an iterative design-and-evaluation process to characterize and tackle the growing requirements in their workflow of developing
fine-grained text classification models. The result of this collaboration is the development of SemLa, a novel Visual Analytics
system tailored for 1) dissecting complex semantic structures in a dataset when it is spatialized in model embedding space, and
2) visualizing fine-grained nuances in the meaning of text samples to faithfully explain model reasoning. This paper details the
iterative design study and the resulting innovations featured in SemLa. The final design allows contrastive analysis at different
levels by unearthing lexical and conceptual patterns including biases and artifacts in data. Expert feedback on our final design
and case studies confirm that SemLa is a useful tool for supporting model validation and debugging as well as data annotation.

CCS Concepts
• Computing methodologies → Natural language processing; • Human-centered computing → Visual analytics;

1. Introduction

In natural language processing (NLP), text classification is widely
used for language understanding tasks such as sentiment analysis,
intent recognition, and occupation classification [SO21, CTG∗20,
ECCB23]. For these tasks, NLP practitioners commonly adopt

† Corresponding author: munkhtulga.battogtokh@kcl.ac.uk

deep learning models like CNNs, LSTMs, and pre-trained large
language models (LLMs) [LPL∗22]. Although these models score
high in performance metrics like accuracy, they are well-known to
be difficult to interpret and trust. As trustworthiness is crucial to
practical applications, many existing visual analytics (VA) tools
and explainable AI (XAI) techniques [LWY∗22, LST20, RSG16,
Vig19] aim to simplify analysis of deep learning models.
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However, text classification tasks have grown more com-
plex in recent years [CTG∗20, MGS21] leading to what exist-
ing work refers to as fine-grained text classification, character-
ized by datasets with 1) numerous, and 2) semantically close
labels [SO21]. For example, BANKING77, a fine-grained text
classification dataset representative of those in practical applica-
tions [CTG∗20], has 77 labels and LLMs like GPT-3 Davinci
have difficulty distinguishing between the close labels on this
dataset [SRL∗22]. The many labels lead to complex semantic struc-
ture comprising intricately interconnected sample groups, and fine-
grained understanding of label meaning is required to distinguish
the similar labels [SO21]. Due to these challenges, existing VA
tools struggle to meet the requirements of explaining how fine-
grained text classification models reach their decisions (Section 2).

Motivated by this gap, we introduce our novel VA system
SemLa, which is designed in an iterative design-and-evaluation
process in close collaboration with NLP experts from both indus-
try and academia. Building on our previous project on interpretable
fine-grained text classification [BLDB24], we started our collabo-
ration on this project in late 2022 and worked together to tackle the
challenges in the workflow of developing fine-grained text classi-
fication models in practice. We developed and evaluated our sys-
tem iteratively through multiple rounds of expert feedback each
followed by improvements to the system.

Our final system streamlines various tasks in model development
workflow, as we demonstrate through case studies and validate via
expert feedback. The capabilities of our system include showing
discrepancies between ground-truth data distribution and what the
model has learned, unearthing lexical and conceptual patterns in-
cluding biases from data, sample-level explanations that explic-
itly show fine-grained label semantics, and label-level insights that
help understand relationships between different classes or within
the same class. Our contributions in this paper are as follows:
(i) The design of our visual analytics system SemLa (Semantic
Landscape) (and its components) for fine-grained text classifica-
tion; (ii) Documentation of the iterative design study, including re-
flections and discussion; and (iii) Detailed evaluation of the final
design based on expert feedback and case studies.

2. Related Work

2.1. Visual Analytics for Deep Learning Models in NLP

An extensive body of existing work leverages VA systems and
techniques to understand, assess, and debug deep-learning mod-
els in various domains [HKPC19, LRBB∗23, GZL∗21, SSSEA20].
Earlier works in NLP include sample-level (local) explanation
techniques e.g., saliency visualization of encodings [LCHJ16],
bipartite-graph attention visualization in LLMs [Vig19], and fea-
ture importance saliency visualizations based on LIME [RSG16]
and SHAP [LL17]. Others enable label-level insights. For example,
FeatureInsight [BAL∗15] allows users to inspect model errors of a
specific label by comparing two groups of samples by the words
that are most unique to each group. Similarly, FIND [LST20] uses
word clouds to assess what words a model associates with a class.

Most similar to our work is DeepNLPVis [LWY∗22], a VA
tool for analyzing deep learning models at multiple (corpus, word,

and sample) levels. However, since its corpus-level view allows
selecting only two labels at a time, understanding all key inter-
relationships between many labels is infeasible due to combina-
torial explosion, which means a large number of classes remains
a challenge. The sample-level visualization does not consider fine-
grained label semantics, essential for understanding similarities and
differences between analogous labels [MGS21,LLLZ21,BLDB24].
In contrast, our system has a corpus-level view that visualizes any
number of labels at the same time and a sample-level view that ex-
plicates fine-grained label semantics to differentiate similar labels.

Another similar work is LabelVizier, a human-in-the-loop work-
flow for validating and relabeling text annotations [ZXD∗23], in
which a surrogate machine learning model, in combination with
LIME, is used to explain why the existing labels may have been
assigned to text records so as to identify labeling issues such as du-
plicate or incorrect labels. LabelVizier focuses on annotation errors
made by humans and overlooks errors made by the model itself,
whereas our system supports the debugging of model errors.

2.2. Text Corpora Visualization

As our work aims for multi-level analysis including corpus level,
text corpora visualization is also relevant to us. The most rele-
vant method in this category is topic modeling (the task of iden-
tifying high level topics in a corpus), including Non-negative
Matrix Factorization (NMF) [LS99] and Latent Dirichlet Alloca-
tion (LDA) [BNJ03]. An existing VA system employs LDA-based
method for incremental labeling and classification [YTJ∗19]. Its
known limitations include the need for users to determine the
number of topics in the beginning and poor suitability for visu-
alizing many topics at the same time. Hierarchical topic mod-
eling, in which topics are identified at multiple levels, is an al-
ternative approach suitable for addressing the above limitations
relating to the number of topics. These include Semantic Con-
cept Spaces [EAKC∗20], ArchiText [KDEP21] and TopicBub-
bler [FWC23], which are however designed for analyzing text cor-
pora rather than model outputs.

Some works use topic modeling to analyze generative models.
A tool for detecting AI-generated text, unCover, employs it to ex-
plain the change of topics in (potentially AI-generated) news arti-
cles [LBS∗23]. Another approach uses it to analyze sentiment in
online public discussions about ChatGPT [OUR∗23]. Our work fo-
cuses on explaining the outputs of a discriminative model.

3. Domain Background

In this section, we detail related XAI literature and the workflow of
the collaborating NLP experts, essential for anticipating the practi-
cal challenges and requirements described in Section 4.

3.1. Explainable AI

Contrastive explanations answer “Why P rather than Q?”
[JSR∗21, Mil19], a natural question when a model makes an er-
ror. Contrastive explanations can reveal the “distinguishing fac-
tors” that separate one outcome from the other, and are more suit-
able for explaining differences between similar labels than sim-
ple feature importance estimates [RSG16, STY17]. Related work
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[JSR∗21, RMP21] often adopts a minimal approach, which aims
to identify the most distinguishing factor. However, this approach
does not elaborate why a word is considered to be distinguishing,
as it fails to show how the word is related (or unrelated) to each
outcome (label). In an ideal explanation, the labels should be repre-
sented by fine-grained aspects such that the explanation shows how
(through which aspects) a word is related to a label [BLDB24].

Contrastive explanations are distinct from counterfactual ones,
as the former answers “Why outcome P rather than Q?” while
the latter concerns alternative antecedents (counterfactuals) that
change the outcome from P to another (but not necessarily
Q in particular) [SACPF21]. In our setting with many labels
(outcomes), the former is more suitable for targeted debugging
of specific confusions. Furthermore, answering “Why P rather
than Q” does not require the use of counterfactuals. Examples
of VA tools that rely heavily on counterfactuals include Ad-
ViCE [GHYB21], DECE [CMQ21], and ViCE [GHYB20]. We em-
ploy non-counterfactual example-based explanations that are suit-
able for explaining fine-grained labels (see Section 6.4).

Evaluating explanations When incorporating multiple XAI
methods into a single VA framework, “trust in the explanation
methods themselves” remains a significant issue [SSSEA20], as
“How to evaluate explanations?” is still an open question. One im-
portant factor for the trustworthiness of explanations is faithfulness,
which refers to how accurately an explanation represents the actual
reasoning process of a model [JG20]. Existing faithfulness mea-
sures include calculating the impact of perturbing or erasing impor-
tant words [DJR∗20,JW19], or guessing back the model predictions
based on explanations [LYW19, Ngu18, BLDB24]. However, there
is yet no consensus on which method is the best. As long as the
question of “How to evaluate explanations?” remains open, any ex-
planation method on their own cannot be fully trusted, especially if
multiple competing methods are in disagreement with each other.

3.2. Model development cycle

To understand the problems experts face in their work, we charac-
terized their model development cycle based on detailed discussions
and preliminary questions in our evaluation rounds (Section 7). The
simplified cycle (see Fig. 2) consists of three main phases: data
preparation, model preparation, and entering production.

The data preparation phase in turn consists of three stages: data
collection, analysis, and annotation. User data is first collected from
conversations in the data collection stage and then manually ana-
lyzed for patterns so as to design the label set in the data analy-
sis stage, which involves the experts using visualization techniques
like topic modeling and dimension reduction. Each sample is then
assigned a label in the last data annotation stage of this phase.

In the next model validation and selection stage of the model
preparation phase, the experts evaluate the models using validation
data and standard performance metrics (e.g., accuracy), and select
a model. This takes substantial manual effort involving ad-hoc ap-
plications of visualization and XAI techniques (e.g., feature im-
portance estimation, dimension reduction) using tools like Jupyter
Notebook, Holoviews, and spreadsheets. As the red dotted arrows

Figure 2: Model development cycle.

in Fig. 2 show, the experts often go back to data preparation to do
more data collection or re-annotation (e.g., to correct mislabels).

Finally, once a model is trained, the experts debug the model
before deployment, which entails similar manual efforts as during
validation. As the blue dotted arrows in Fig. 2 show, it is normal
practice to collect data after model debugging or even deployment
to continually improve the model.

4. Requirements Analysis

This section establishes the domain requirements and correspond-
ing visual tasks, distilled from analysis of existing visualization lit-
erature (Section 2), domain background in XAI (Section 3.1), and
iterative discussions with the domain experts and understanding of
their workflow (Sections 3.2 and 5).

4.1. Domain requirements

Five key requirements were identified in our investigation:

R1 Hierarchical understanding of model reasoning. Achieving a
multi-level understanding of model predictions and errors, us-
ing high-level (general) and low-level (specific) insights.

R2 Fine-grained explanation of individual predictions. Explaining
the fine-grained aspects that distinguish similar labels.

R3 Revealing model weaknesses. Uncovering weaknesses like spu-
rious features, biases, and root cause of frequent confusions.

R4 Visualizing semantic characteristics of labels. Understand-
ing the inter-relationships between labels, dissecting the fine-
grained concepts, and identifying sub-clusters within a label.

R5 Safeguarding against false impressions. Faithfully representing
model reasoning with minimal built-in assumptions and helping
users in critically assessing explanations.

4.2. Tasks

Abstracting tasks is crucial in turning domain requirements into
actionable elements. We have identified a set of key tasks based on
the domain requirements. To satisfy the requirement of enhancing
the hierarchical understanding of model reasoning (R1), the tasks
are categorized based on the level of investigation they cater to.

1. Global-level:
T1 Identifying high-level patterns in encoding space: Tied to the

requirement for hierarchical understanding (R1), this task fo-
cuses on model validation and identifying systemic patterns.

T2 Identifying areas of weakness: Directly addressing the re-
quirement to reveal model weaknesses (R3), this task involves
pinpointing weaknesses for model validation and debugging.
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T3 Comparing models: Aligned with the requirement for hierar-
chical understanding (R1), this task involves high-level com-
parisons between models.

2. Label-level:
T4 Explaining and highlighting decision boundaries between la-

bels: Tied to the requirement for understanding the charac-
teristics of labels (R4), this task is vital for debugging and
understanding how labels relate to each other.

T5 Explaining how a model (mis)understands a certain label:
This task supports revealing model weaknesses by identify-
ing misconceptions in label understanding (R3).

T6 Identifying similarities between label groups: Aligned with
the requirement to visualize semantic characteristics of labels
(R4), this task aids in debugging and data re-annotation.

T7 Identifying sub-clusters within one label group: Relating to
the same requirement (R4) as the previous task, this task aids
in debugging and data re-annotation.

3. Sample-level:
T8 Explaining the importance of each word through multiple

metrics: This task, crucial for model debugging, aligns with
explaining individual samples (R2) and safeguarding against
potential false impressions from a single metric (R5).

T9 Providing fine-grained contrastive explanations: Supporting
the requirement for fine-grained sample-level explanations
(R2) and safeguarding against potential false impressions
from the coarse-grained feature importance explanation (R5),
this task focuses on analysis for debugging and validation.

5. Iterative Design Study

The SemLa VA system, emerged from an intensive one-year de-
sign study involving a total of six NLP experts. Table 1 details
their diverse expertise and their specific contributions to the de-
sign study. Adhering to the structured Nine-Stage Design Study
Framework [SMM12], we ensured a methodical construction of the
system, which encompassed iterative cycles of design, implemen-
tation, and evaluation. In this section, we delineate the conduct of
our design study, detailing the chronological progression of the de-
velopment process as depicted in Fig. 3.

5.1. Precondition Stages

In Nov. 2022, our journey began with an initial consultation with
industry NLP expert E1, who oversees the entire development cy-
cle of their organization’s AI models as the leader of the research
and development team. During the meeting, upon recognizing the
significant potential of visual analytics in enhancing their model
development workflow, we started our dedicated exploration in this
direction. Previously, we had collaborated with the same leading
expert on research about interpretability of fine-grained text clas-
sification [BLDB24]. Leveraging the domain knowledge from this
prior engagement, we expanded our research to visual analytics,
guided by thorough and targeted literature review. Motivated by
the aim to overcome the challenges posed by existing VA systems,
particularly their inadequacies in managing the combinatorial com-
plexity associated with numerous labels (motivation behind R1),
we conceptualized an approach. The strategy involved spatializing

Table 1: Summary of the interview participants’ background.

# Domain expertise Role Involvement
E1 5 years in NLP AI team leader Entire study
E2 7 years in dialogue sys-

tem
Client liaison &
Model development

Evaluation 1 &
2

E3 7 years in NLP Model development
& data analysis

Evaluation 1

E4 3 years in NLP & dia-
logue system

Configuring generic
models to client
specifications

Evaluation 2

E5 2 years in NLP PhD in abusive lan-
guage detection

Evaluation 2

E6 2 years in medical NLP PhD in verification Evaluation 2

the samples of all labels within one model embedding space, illus-
trating the relationships among labels through the spatial distribu-
tion and proximity of sample points. This approach can make rela-
tionships between similar labels and samples visually discernible,
and in combination with a high-level of interactivity, enable users
to navigate and explore this space– comprising diverse neighbor-
hoods and areas– at various levels of granularity. Driven by this in-
teractive spatialization approach, we implemented an initial proof-
of-concept system, which consisted of the early forms of two key
components: the Map view (Fig 1a) prototype and the label-cluster
list (Fig 1g) within the Label-level view (see Section 6.1).

5.2. Core Stages: Iteration 1

Discussion: In Jan. 2023, the preliminary version of the system was
showcased to the lead expert during a meeting. The consensus was
that the spatialization approach indeed showed promise in tackling
R1 and could serve as a foundational element in the system. How-
ever, it was also recognized that the current design fell short of
fully meeting the domain experts’ needs, indicating the necessity
for additional features. Following an in-depth discussion about the
domain-specific challenges and the expert’s vision for the tool’s
functionality, a set of requirements was delineated, primarily fo-
cusing on enhancing the explanation of individual predictions (R2)
and the identification of model weaknesses (R3).

Co-design & Implementation: Prioritizing the crucial need to ex-
pose model weaknesses (R3), we introduced features such as er-
ror filtering and a confusion table to the leading expert. We opted
for presenting the confusions in a table format (Fig. 1h), which of-
fered compactness and clarity as well as the ability to sort con-
fusions based on frequency through simple interactions with the
table header. Following this, we developed the Sample-level view
(Fig. 1c-f), directly addressing the requirements for elucidating in-
dividual predictions (R2) and pinpointing model weaknesses (R3).
Initially, our focus was on integrating a straightforward feature im-
portance functionality. However, given the imperative to avoid false
impressions (R5) and taking into account insights from the domain
background (Section 3.1), it became evident that incorporating re-
sults from various metrics was essential. Consequently, we crafted
our Visually Integrated Feature Importance (VIFI) view (Fig. 1d),
which provides a user-friendly interface to investigate the signif-
icance of words according to multiple diverse metrics. We soon
reacknowledged that while feature importance is informative, it in-
herently offers a coarse-grained perspective. To address this, we
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Figure 3: Timeline of the iterative design process.

turned our attention to contrastive explanations. Based on our prior
insight that explaining fine-grained labels requires making label se-
mantics explicit [BLDB24], we conceptualized an example-based
contrastive explanation approach, incorporating three distinct visu-
alizations (Fig. 1c,e,f), detailed in Section 6.4.

Evaluation: The current prototype, designed to meet requirements
R2, R3, and R5, was evaluated by three industrial experts E1, E2,
and E3 through semi-structured interviews, detailed in Section 7.1.
While receiving positive feedback, experts also highlighted areas
for enhancement, including the need for 1) a model comparison
feature, 2) clearer headers in sample view relation charts, and 3) im-
proved bidirectional and hierarchical sorting of the confusion list.

5.3. Core Stages: Iteration 2

Discussion: After reviewing the feedback so far obtained, we iden-
tified two additional key requirements: 1) the need for a hierarchical
understanding including high-level model comparisons (R1), and
2) the necessity for more in-depth comparative analysis of label
similarities and differences (R4) both between and within groups.

Co-design & Implementation: In response to the feedback from It-
eration 1, several improvements were integrated, e.g., headers were
added to the relation charts for better clarity and the confusion ta-
ble received hierarchical sorting capabilities. To meet the require-
ment of R1 & R4, a new abstraction layer was introduced for lo-
cal words, enabling the visualization of localized commonsense
concepts. Furthermore, a comparison mode feature (Fig 1i-j) was
implemented, providing the capability to contrast any two groups
of samples. This mode was compatible with the system’s exist-
ing functionalities, offering options such as concept-based filter-
ing, ground-truth vs. prediction comparisons, label differentiation,
a lasso tool, and sample-level analysis for longer texts.

Evaluation: In Oct. 2023, upon the completion of the system, a
second round of evaluation was initiated. This phase involved five
domain experts: two returning from the initial round (E1 & E2),
a new member from the same industrial AI team (E4), and two
additional evaluators (E5 & E6) with an academic background en-
compassing NLP, XAI, and VIS. Employing a similar approach as
before, semi-structured interviews followed by surveys were con-
ducted with each evaluator. Section 7.2 details the procedure and
results of this evaluation. The follow-up survey revealed a unani-
mous endorsement of the system by the evaluators. Feedback was
uniformly positive across all components, validating the fulfillment
of all predefined requirements. Particularly, the comparison mode
garnered strong recognition for its practicality and effectiveness.

5.4. Analysis Stages

Post the second evaluation round, we gathered comprehensive feed-
back, leading to in-depth discussions and valuable reflections on the
lessons learned, which we discuss in Section 9.

6. SemLa: System Description

This section describes our VA system SemLa and its components.

6.1. Overview

The system interface consists of four coordinated views. The Map
view projects a corpus to a 2D scatter plot using sample embed-
dings by a selected model and dimension reduction (Fig. 1a). We
primarily used t-SNE [MH08] as the dimension reduction method
to calculate positions, but the users can also switch to UMAP po-
sitions [MHSG18]. These two methods are known to consistently
produce high-quality projections across different parameter set-
tings [EMK∗21]. For t-SNE, we used the scikit-learn implemen-
tation with the parameters perplexity p = 40, number of iterations
n = 1000, and otherwise default parameters. For UMAP, we used
the Python UMAP library and default parameters (neighborhood
size of 15 and minimum distance of 0.1). In both cases, we used
inner product as the distance metric. Each sample is represented
by a circle (or another shape at low-level to differentiate labels).
Upon hovering over a circle, a tooltip shows the underlying raw
text, the ground-truth label, and the predicted label of the associ-
ated sample. At the high level, as there are too many labels to vi-
sually encode, which often mix and overlap without forming clear
clusters [JKA∗23], labels are grouped into clusters and the clusters
(not the labels) are encoded in the colors of the samples. The Map
view dissects the visual space through various features, including
zooming, panning, filtering, and a novel interactive local word vi-
sualization (see Section 6.2), which helps users navigate and under-
stand patterns in different neighborhoods. The List view (Fig. 1b)
synchronously summarizes the concepts, words, and labels present
in the current samples on the Map view as the user interacts with
the system. Both views have comparison modes (Fig. 1i-j and Fig.
4c) for contrastive analysis, in which the Map view presents two
separate scatter plots (showing two different groups of samples, or
the same corpus through two different models) and the List view
shows which concepts, words, and labels are more likely to be in
one group than in the other. The Sample-level view explains a sin-
gle prediction upon the user selecting an individual sample (Fig. 1c-
f) through four sub-views (see Sections 6.3 and 6.4). Lastly, the
Label-level view consists of label-cluster list (Fig. 1g), which lists
labels grouped by similarity, and confusion table (Fig. 1h), which
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is a ranked table showing pairs of labels and how frequently they
were confused with one another. The user can sort this table by
its columns (e.g., confusion frequency) to easily find which la-
bels were most confused with one other. Upon selecting certain
labels from the confusion table or label-cluster list, the Map and
List views update by showing only samples of those labels.

6.2. Local Words

For semantic structures comprising many neighborhoods with hier-
archical relations, a method for identifying patterns at multiple lev-
els is necessary (R1). The closest related work is BERT-based topic
modeling [ACT∗24], which can not only explain datasets but also
models. However, it relies on clustering to identify topics in a top-
down manner by grouping samples into clusters and then extracting
the top keywords (using class-based tf-idf analysis [Gro22]), which
has two problems: 1) clustering is computationally expensive and
2) the top-down approach forces the data to be seen through an
extra lens (by introducing arbitrary assumptions in the form of hy-
perparameters, e.g., the number of clusters or their density).

Therefore, we propose our
simple and fast Localized
Word Clouds (LWC) algo-
rithm (Algorithm 1), which
finds patterns directly from

model embedding space in a bottom-up manner without relying on
clustering (R5). LWC identifies words localized to a neighborhood,
i.e., occurring only there and nowhere else. It computes the locality
of a word as the area enclosing all of its occurrences, allowing
users to filter words by locality size. The result of LWC, which we
refer to as local words (see above), resembles a word cloud but
it differs in that LWC results can be overlaid meaningfully on a
corpus’ 2D projection. Over generating multiple word clouds to
explain multiple labels (as in FIND [LST20]), our approach has the
advantages of being space efficient and avoiding word repetitions.

The low latency of LWC allows
the local words to update as the user
zooms, pans, or filters to analyze dif-
ferent sample groups. For example,
as shown on the left, when the user
zooms into a certain area (the area

containing “train” in the previous image), more fine-grained pat-
terns appear (R1). Moreover, patterns within errors (R3) and label
groups (R4) can be unearthed by filtering the samples by error or
label with filtering options and the Label-level view respectively.

Furthermore, LWC can be
applied recursively to extract
abstract concepts from local
words (see left). Such concepts
can assist users in identifying
potential biases, spurious fea-

tures (R3), and hidden relationships between labels (R4). LWC
can also be applied to positions with any number of dimensions
but applying it to 2D sample projections takes advantage of
the dimension reduction algorithms’ existing ability to generate
high-quality visualization layouts.

Algorithm 1: Localized Word Clouds (LWC)

LWC outputs a set of l local words L = {w1,w2, . . . ,wl} and their
corresponding positions PL = {p1, p2, . . . , pl} in a space S (of arbi-
trarily many dimensions) given inputs that include M samples D =
{x1,x2, ...,xM} and their positions PD = {p1, p2, . . . , pM} in S. The out-
put words are filtered by their frequency with parameter T and by lo-
cality size with function R(·). A function C(·) computes the center of
the locality of word w, on which w is to be visualized. Our choices of
functions R and C are described in supplementary materials.

input : D = {x1,x2, ...,xM}, PD = {p1, p2, ..., pM}, R, T, C
output: L = {w1,w2, ...,wl}, PL = {p1, p2, ..., pl}
L←{};
PL←{};
W ← an empty map;
for xm ∈ D do

for w j ∈ xm do
if w j /∈W.keys() then

W [w j ]← an empty list;
end
p← pm ∈ PD;
W [w j ].add(p);

end
end
for wi ∈W.keys() do

(p1, p2, ..., pF )←W [wi];
if R(p1, p2, ..., pF ) and F > T then

pi← C(p1, p2, ..., pF );
L.add(wi);
PL.add(pi);

end
end
return L,PL

6.3. Visually Integrated Feature Importance (VIFI)

Our Visually Integrated Feature Im-
portance (VIFI) view employs a
stacked bar chart to merge various
feature importance metrics into a uni-
fied visual representation (Fig. 1d).
Each segment of a bar (see left) is
allocated to a distinct feature impor-
tance metric, which enables users to

see the cumulative importance of a word as well as the individual
contribution of each metric. VIFI facilitates critical analysis of fea-
ture importance and helps users avoid false impressions (R5).

6.4. Example-based contrastive explanations

We propose novel example-based
contrastive explanations, which expli-
cate why a sample relates more to one
label than it does to another (R2, R3)
by representing the labels with their
respective in-distribution samples ex-
emplifying their fine-grained aspects
(R4). SemLa incorporates three such

visualizations, each explaining a query sample with respect to two
other samples: the closest sample, which shares the same label as
the query sample, and a contrast sample, which has a different label.
Out of those three, one shows natural language summary (Fig. 1c),
and the other two (which we refer to as relation graphs collectively)
show token-to-token links between the three samples (Fig. 1e and
Fig. 4b) and the contribution of each token to the similarities be-
tween the three samples (see image directly above and Fig. 1f).
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7. Evaluation

In this section, we provide a detailed report of the methodology
followed in our evaluation. These include conditions, sample size,
data exclusions (if any), any statistical method used in the analysis,
and all relevant measures.

Our evaluation involved two structured evaluation rounds (each
comprising semi-structured interviews and follow-up surveys) with
a total of six experts (four from industry and two from academia).
Table 1 describes the profile and involvement of each expert. The
first round was in Feb 2022 with three industry experts, assessing
the tool’s alignment with the primary requirements, followed by the
second round in Oct 2023 with five experts (two returning from the
previous round), which focused on evaluating the overall usability
of the final tool and specifically examining the enhancements made
in response to the first round’s feedback.

7.1. Evaluation Round 1: Feb. 2022

7.1.1. Protocol

Time and Participants. This round in Feb. 2022 involved three
industry dialogue system experts, who work on delivering conver-
sational AI solutions to client companies. Experts E1 and E3 are
deeply involved in model development, while E2 has a more client-
centric role. A common aspect of their daily responsibilities is ex-
plaining model reasoning and weaknesses.

Activities and Duration. The evaluation encompassed three indi-
vidual semi-structured interviews, each tailored to assess the sys-
tem at its initial stage. Key components under review were the
Map, List, Sample-level, and Label-level views (Fig. 1). Following
a standardized format outlined in Table 2, each interview spanned
approximately ninety minutes. Sessions started with a prelimi-
nary preparation during which objectives were clarified. A succinct
overview of the tool, highlighting its main features and a demon-
stration using the BANKING77 public dataset [CTG∗20] known
for its fine-grained intents, was provided. We used the benchmark
dataset due to privacy concerns of using actual user data. The
demo system incorporates a BERT model [DCLT19], trained via
metric-based learning method [CZMX22] for 5-way 1-shot classifi-
cation, which facilitates explaining predictions via distances (from
query sample to a support set comprising samples from five dis-
tinct labels, with one sample per label). Subsequently, experts en-
gaged with SemLa, experimenting with its functionalities across
four predefined tasks (see supplementary material). The tasks, de-
signed to mirror specific requirements and objectives, provided in-
sights while experts verbalized their thoughts. The evaluation con-
cluded with a reflective survey with open-ended questions, along-
side eight five-point Likert scale questions (with options ranging
from “strongly disagree” to “strongly agree”). The survey aimed
to gather holistic feedback about the system’s effectiveness with
respect to domain needs, its overall usability, and suggestions for
improvements.

7.1.2. Results

SemLa received highly positive feedback. All experts strongly
agreed on the system’s overall usefulness and its ability to clar-
ify individual predictions and identify label sub-clusters (R2). For

aspects like identifying model weaknesses (R3), high-level un-
derstanding of models, explaining decision boundaries within la-
bels, and identifying semantic overlaps between labels, the major-
ity strongly agreed on the system’s effectiveness, with one expert
somewhat agreeing. As for the visualizations’ intuitiveness, one ex-
pert strongly agreed, while the others somewhat agreed. A detailed
summary of the experts’ responses to open-ended questions align-
ing with these ratings will be presented in the following paragraphs.

Use Cases and System Utility: The experts expressed signifi-
cant enthusiasm about the system’s potential, describing it as “im-
mensely valuable” for tasks like model debugging, which involves
pinpointing weaknesses and understanding the root causes of er-
rors. Additionally, they highlighted its utility in client communica-
tions. One expert noted the system’s capability to “intuitively spot
weaknesses” by enabling users to 1) filter errors using confidence
thresholds (referred to as “top and tail” the errors), and 2) compre-
hend these errors for “targeted intervention” rather than relying on
“trial-and-error” approaches for model improvement.

Most Effective Visualizations: The experts varied in their pref-
erences for the system’s visualizations. One expert highlighted the
sample-level visualizations, particularly the contrastive explana-
tions, as “novel and very useful.” Another expert emphasized the
utility of integrating the confusion table with token-to-similarity
relations, finding it instrumental in grasping the model’s primary
errors. The third expert valued the combination of Local Words vi-
sualization with the interactive features of the map, appreciating its
versatility in offering insights at various levels.

System Novelty and Capabilities: Responses to the system’s
novelty largely focused on its sample-level explanations. All ex-
perts agreed that the system provides “deeper insights” compared
to existing tools at their disposal. The two experts (E1 & E3) deeply
involved in model development provided specific insights: one re-
marked they had “never seen anything like this” that digs deep into
the root causes of errors despite being experienced with explana-
tion and visualization techniques (e.g., LIME, topic modeling); the
other noted that, unlike current tools, our system enables a clearer
understanding of error causation. Particularly, they highlighted the
relation graphs (Fig. 1e-f) that offer contrastive explanations as the
most innovative and useful visualizations.

Visualization Understandability and Learnability: Overall,
all experts agreed that the visualizations were intuitive and easy
to grasp with minimal learning required. They did, however, sug-
gest some enhancements for clarity, such as adding column headers
to the relation graphs for easier sample identification, and tooltips
providing further meta-details about the visualizations (e.g., expla-
nation of value calculations). One expert particularly noted the sys-
tem’s compatibility with their existing workflow, stating it would
integrate seamlessly and enhance their work process. They empha-
sized the system’s ability to easily reveal insights that are “very
difficult to find from spreadsheets” (raw tabular data), thereby sig-
nificantly improving their workflow experience.

Recommendations for System Enhancement: Experts sug-
gested that our system could be more effective in facilitating com-
parisons between different models, e.g., checkpoints or models
trained with different hyperparameters. While acknowledging the
system’s current capacity to support model comparison by loading

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



8 of 12 M. Battogtokh et al. / Visual Analytics for Fine-grained Text Classification Models and Datasets

Table 2: Interview Procedure and Duration.

Order of Procedure Activities Duration
Preliminary
Preparation

1) Introductory questioning
2) Tool walkthrough

10-15 min

Task Scenarios 1) Test via predefined tasks 45-60 min
Follow-up

Survey
1) Reflection on the tool
2) Likert-scale questions

15-20 min

different models, they recommended features specifically tailored
for this task. Suggestions included a sequential time-lapse anima-
tion across checkpoints, or a parallel view comparing two mod-
els. Other suggestions include the earlier ones like adding tooltips
to provide meta-details about the visualizations and implementing
column headers in the relation graphs for enhanced clarity.

7.2. Evaluation Round 2: Nov. 2023

SemLa was further refined based on the insights from the first eval-
uation round, adhering to the iterative process. The usefulness and
usability of the tool were then evaluated again with the one-on-one
interviews and follow-up surveys.

7.2.1. Protocol

Time and Participants. In Nov. 2023, we conducted the second
evaluation round, broadening our reach to more experts from both
industry and academia to gather extensive and unbiased feedback
about the system’s usability across diverse domain backgrounds.
Five participants were involved: E1 and E2, who had participated in
the previous evaluation, were joined by E4, a colleague from their
industrial AI team. E5 and E6 were from academia and both had
two years of NLP experience in academic and industrial settings.
The evaluators’ familiarity with NLP, XAI, and VIS was gauged
through background questions in the survey. Each of the five par-
ticipants had NLP experience, averaging 3.8 years in the field. All
five rated their familiarity with XAI as moderate to high, and simi-
larly, they were well-versed in visualization techniques.

Activities and Duration. Mirroring the methodology of the pre-
vious evaluation, we continued with semi-structured interviews,
adhering to the specific process and timing detailed in Table 2,
concluding with the follow-up survey. To illustrate the general-
izability of the system, we demonstrated it on more datasets for
fine-grained text classification, including Medical Bios [ECCB23],
GoEmotions [DMAK∗20], and HWU64 [LESR21]. This round,
while still assessing the overall usability of the system, emphasized
evaluating the impact of the newly integrated modes and function-
alities through the evaluation tasks and survey questions.

7.2.2. Results

Reflection on Overall Usability: The follow-up survey results
showed the system had a good level of overall usability. According
to the Likert-scale question responses, all five participants agreed
on the system’s utility, indicating that the tool was indeed bene-
ficial. Regarding how easy the visualizations were to understand,
there was a strong alignment among participants, two answering
agree and three answering strongly agree. The system excelled in

meeting the requirements of offering a high-level model under-
standing (R1), facilitating the understanding of individual predic-
tions (R2), identifying model weaknesses (R3), and aiding users
to discern sub-clusters within labels (R4), with all five participants
answering strongly agree. The system’s effectiveness in clarifying
the fine-grained aspects of individual labels (R2) and distinguish-
ing between similar labels (R4) received positive feedback, with
four out of five participants answering strongly agree and one an-
swering agree.

Reflection on Usefulness: In addition to the above, by ana-
lyzing the interview transcripts and the open-ended question re-
sponses, we found the common theme that the participants consis-
tently praised the system’s ability to “massively” reduce the com-
plexity of many difficult analysis tasks in one tool, e.g., error analy-
sis, model validation, bias detection, and data exploration, at differ-
ent hierarchical levels. Regarding the efficacy of specific visualiza-
tions, the comparison mode emerged as a standout feature, receiv-
ing accolades from all five participants for its effectiveness. The
Map view was commended by four participants, making these two
features the most praised for their usefulness.

Participants provided valuable insights into unanticipated use
cases for the tool, revealing potential areas for feature expansion.
Notably, E6 highlighted its capacity to discern adversarial samples
while E1, E2, and E4 recognized its utility in demystifying com-
plex AI systems for non-expert audiences, such as elucidating why
solutions like ChatGPT do not supplant task-oriented dialogue sys-
tems. These unexpected applications suggest promising directions
for further refinement and enhancement of the tool’s capabilities.

Expectations on Improvements Some experts commented that
SemLa is ready to be polished for production and as such they ex-
pect minor improvements including UI enhancements and better
system guidance, which we discuss in Section 9.

8. Case Studies

Throughout our design study, we conducted in-depth case stud-
ies on various fine-grained text classification datasets. We illustrate
through two case studies how SemLa can be used to tackle impor-
tant requirements and streamline the model development workflow.

8.1. Identifying Root Cause of Model Errors on BANKING77

BANKING77 is a popular public benchmark dataset for intent
recognition [CTG∗20]. This dataset has 77 labels related to the
same banking domain, which makes it very fine-grained even
among other fine-grained text classification datasets and represen-
tative of how complex datasets are in practical applications. We
analyzed a BERT-base model (fine-tuned on the training split) on
the test split with 3080 samples.

We began our analysis by filtering errors on the Map view and
inspecting the label distributions in the List view. From the gold
label list and predicted label list respectively, we saw the labels
ranked by their shares of the false negative and false positives pre-
dictions. For example, 3.7% and 3.4% of the false negatives cor-
responded respectively to the labels compromised_card and sup-
ported_cards_and_currencies, whereas 3.2% and 3.2% of the false
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Figure 4: Multi-level analysis results: a) local words in the two top-confused labels getting_spare_card and top_up_by_card_charge,
b) token-to-token links in a false positive case of getting_spare_card (represented by an example on the left) being mistaken for top-
ping_up_by_card_charge (represented by an example on the right) confirms that the word “card” was a confounding feature, and c) label
topping_up_by_card_charge has the word “card” more often than the label getting_spare_card in the model predictions, as the word “card”
appears over the former but not the latter at frequency threshold of 30.

positives corresponded respectively to top_up_by_card_charge and
reverted_card_payment?. The confusion table in the Label-level
component, confirmed this, and sorting the table by the columns
“ground-truth” and “prediction” provided a detailed breakdown of
the specific confusions. Interestingly, when sorted by confusion
frequency (clicking on the frequency column’s header), we found
the most frequent confusion was mistaking getting_spare_card for
top_up_by_card_charge, which happened three times. Our goal be-
came understanding this confusion and why the model most fre-
quently predicted top_up_by_card_charge false positively.

To understand the top confusion, we first looked at the local
words (ignoring stop words) with the default frequency threshold
of 20 (selected interactively to balance visual clutter) and found
that “card” was in the intersected area (shown by enclosing hulls
corresponding to each label) of the two labels, and that “top” and
“up” were only in the area of top_up_by_card_charge. The most
common word across the two labels was “card”, which appeared in
66.3% of samples (Fig. 4a), which is expected based on the label
names. Furthermore, we looked at the three errors using the Sam-
ple level component. In all three errors, the word “card” was found
to be a confounding factor (Fig. 4b shows one of these errors), that
related to both the incorrect top_up_by_card_charge label and the
correct getting_spare_card label, which suggested that the model
associated the word “card” to the former more strongly.

To confirm this, we activated compare mode and looked at the
two labels side by side and found that “card” indeed occurred
in more samples predicted to be top_up_by_card_charge despite
there being an equal number of samples for each label in the
dataset (Fig. 4c). This was also true against the label that was
second most frequently mistaken for top_up_by_card_charge (sup-
ported_cards_and_currencies).

Furthermore, when we compared the samples that were pre-
dicted to be top_up_by_card_charge with those that actually be-

longed to this label, the word “card” was more frequent in the for-
mer group than in the latter. On the other hand, the words “top”
and “up” were less frequent in the former than in the latter. These
suggested the model was giving the word “card” more importance
than it should when predicting top_up_by_card_charge.

In summary, our analysis showed that the model associated
the word “card”, which was common among many other la-
bels, too strongly with top_up_by_card_charge, which explains
why the model most frequently predicted this label false posi-
tively. Based on this insight, we experimented with further fine-
tuning the model on a small training set comprising 1) sam-
ples of top_up_by_card_charge that do not contain the word
“card” and 2) samples of those (target) labels confused with
top_up_by_card_charge (e.g., getting_spare_card) that do con-
tain the word “card”. Doing so removes all confusions of
top_up_by_card_charge with the target labels and increases accu-
racy from 88.67% to 88.90%. When we do not filter the samples
based on the word “card”, confusion with some of the target labels
still remains and the accuracy increase (to 88.77%) is less despite
more training data. These results concretely show that SemLa can
provide practical insights that can lead to model improvements.

8.2. Hidden Conceptual Relations in Multi-Domain Datasets

HWU64 [LESR21] and CLINC150 [LMP∗19] are multi-domain
intent recognition datasets with 64 labels in 18 domains and 150
labels in 10 domains respectively. We analyzed BERT-base models
(each fine-tuned on the training split of the respective dataset) on
the test splits containing 1076 and 4500 samples respectively. On
these datasets, we often found unexpected cross-domain conceptual
relationships between seemingly unrelated labels.

The most interesting case
was on CLINC when looking
at the most frequent confusion.
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The most frequent confusion was between the seemingly unre-
lated labels vaccines and cancel_reservation. To investigate why,
we clicked on the confusion to see the two labels on the Map
view. Upon not finding an apparent connection between the la-
bels when looking at the local words, we switched to visualizing
the local concepts. Then, we found there are many countries men-
tioned in cancel_reservation label (“spain”, “mexico”, “america”,
“china” and “zimbabwe”), and that the error cases all contained the
word “cuba”, which is also a country. Even though “cuba” was not
among any sample that actually has the label cancel_reservation,
the model likely made these errors after recognizing that “cuba”
was similar to other country names (see image above). The system
automatically extracted and instantly showed us this hidden con-
ceptual relation, which otherwise would not have been apparent
without manually looking through the data in detail.

9. Reflection and Discussion

We identified several takeaways from our design study after analyz-
ing our evaluation results and reflecting on our collaboration with
the domain experts. These apply to developing a generalizable sys-
tem that addresses the needs of different user profiles.

Cast a wide net to generalize The diverse backgrounds (dialogue
system, medicine, abuse detection) of the participants in our design
study entailed a wide range of requirements and individual differ-
ences in how they prioritized the requirements and model aspects
(performance, explainability, robustness). This was reflected in the
expert feedback, as the most novel feature according to each expert
was often related to their background. Often, a system feature that
one expert paid little attention to was the most novel to another. For
example, the idea of our VIFI view, which was merely acknowl-
edged by most experts, was highlighted as one of the most novel
features with strong significance by expert E5 who has high level of
experience and in-depth understanding of XAI methods. Therefore,
our reflection is that what may seem like unnecessary complexity to
one expert can be a necessity for another. When addressing a task
with wide applicability like text classification, to prevent overly tai-
loring our system design to only a subset of potential users, it was
worthwhile to ensure that our requirements analysis encompassed
not only the practical challenges experienced by the experts, but
also the common problems addressed by previous works and the
background domain knowledge in XAI.

Resist the temptation to simplify Simplicity is a key factor in
usability and an important design principle behind our novel visu-
alizations. However, as previously discussed, neglecting individual
differences in user requirements for simplicity would lead to poor
generalizability. Furthermore, based on the questions we received
from some of the experts, omitting low-level details behind the vi-
sualizations or key information that needs to be clear (e.g., how are
the link strengths calculated in our relation graphs, or what are the
labels that correspond to each column) can hurt transparency and
reduce the simplicity experienced by the user.

Use XAI techniques responsibly As each individual explanation
method simplifies model reasoning, each can only offer a limited
perspective. Furthermore, as multiple competing methods disagree

with each other (Section 3), acknowledging these limitations to the
users and offering them multiple perspectives is essential for pre-
venting misconceptions and using these methods responsibly. This
applies to users at both ends of the spectrum when it comes to how
much they know about the explanation methods and how likely they
are to trust them. Based on our discussions with the experts, for
users who lack knowledge of explanation methods, providing mul-
tiple perspectives and acknowledging the limitations are critical in
reducing vulnerability to misconceptions, whereas for users who
are generally familiar with explanation methods, the same multiple
perspectives are required to address the current issue of “trusting
the explanation methods themselves” [SSSEA20]. This pervasive
need for multiple perspectives motivates adopting visual analytics
systems when applying XAI methods in practice and new ways of
integrating multiple explanations together into the same system.

Accompany freedom with guidance In our last evaluation round,
two experts suggested a common direction for improving SemLa
for production, which was guiding users to intuitively follow a se-
ries of steps to complete common tasks. They suggested providing
documentations and tutorials within and outside the system, or tai-
loring the default settings and the UI design for the important and
common usage scenarios. They explained that these comments are
actually based on the system’s strength– the wide variety of fea-
tures and full freedom to explore the model and the data. This res-
onated with the initial challenge we faced in Iteration 1, which was
deciding how to best exploit the freedom-to-explore based on user
requirements. We reflect that while offering the users a high-degree
of freedom is useful for generalizability, ensuring usability by pro-
viding guidance tailored to user requirements is essential.

10. Conclusion and Future Work

In this paper, we detailed the intensive iterative design study involv-
ing a total of six NLP experts (with different backgrounds and dif-
ferent roles) that resulted in our visual analytics system SemLa for
analyzing fine-grained text classification models and datasets. Our
evaluation of the final design based on expert feedback and case
studies shows that SemLa effectively addresses the special chal-
lenges posed by the task and that it can overall be a useful tool for
assisting experts in their workflow of analyzing models and datasets
with a diverse range of use cases. In future iterations, we would like
to refine SemLa to be used in production scenarios by adding more
ways of extracting insight from data using our LWC algorithm and
assisting in communication between experts and non-experts. We
are also excited by the prospect of extending our techniques to other
application domains of deep learning, such as image processing and
multi-modal input processing.
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[RMP21] ROSS A., MARASOVIĆ A., PETERS M.: Explaining NLP
models via minimal contrastive editing (MiCE). In Findings of the
Association for Computational Linguistics: ACL-IJCNLP 2021 (On-
line, Aug. 2021), pp. 3840–3852. doi:10.18653/v1/2021.
findings-acl.336. 3

[RSG16] RIBEIRO M. T., SINGH S., GUESTRIN C.: “Why should i trust
you?”: Explaining the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (New York, NY, USA, 2016), KDD ’16, p. 1135–1144.
doi:10.1145/2939672.2939778. 1, 2

[SACPF21] STEPIN I., ALONSO J. M., CATALA A., PEREIRA-FARIÑA
M.: A survey of contrastive and counterfactual explanation generation
methods for explainable artificial intelligence. IEEE Access 9 (2021),
11974–12001. doi:10.1109/ACCESS.2021.3051315. 3

[SMM12] SEDLMAIR M., MEYER M., MUNZNER T.: Design study
methodology: Reflections from the trenches and the stacks. IEEE Trans-
actions on Visualization & Computer Graphics 18, 12 (2012), 2431–
2440. doi:10.1109/TVCG.2012.213. 4

[SO21] SURESH V., ONG D.: Not all negatives are equal: Label-aware
contrastive loss for fine-grained text classification. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing
(Online and Punta Cana, Dominican Republic, Nov. 2021), pp. 4381–
4394. doi:10.18653/v1/2021.emnlp-main.359. 1, 2

[SRL∗22] SAHU G., RODRIGUEZ P., LARADJI I., ATIGHEHCHIAN P.,
VAZQUEZ D., BAHDANAU D.: Data augmentation for intent classifica-
tion with off-the-shelf large language models. In Proceedings of the 4th
Workshop on NLP for Conversational AI (Dublin, Ireland, May 2022),
pp. 47–57. doi:10.18653/v1/2022.nlp4convai-1.5. 2

[SSSEA20] SPINNER T., SCHLEGEL U., SCHÄFER H., EL-ASSADY
M.: explAIner: A visual analytics framework for interactive and ex-
plainable machine learning. IEEE Transactions on Visualization and
Computer Graphics 26, 1 (2020), 1064–1074. doi:10.1109/TVCG.
2019.2934629. 2, 3, 10

[STY17] SUNDARARAJAN M., TALY A., YAN Q.: Axiomatic attribution
for deep networks. In Proceedings of the 34th International Conference
on Machine Learning (2017), ICML’17, JMLR.org, p. 3319–3328. URL:
https://dl.acm.org/doi/10.5555/3305890.3306024. 2

[Vig19] VIG J.: A multiscale visualization of attention in the transformer
model. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics: System Demonstrations (Florence, Italy,
July 2019), pp. 37–42. doi:10.18653/v1/P19-3007. 1, 2

[YTJ∗19] YAN Y., TAO Y., JIN S., XU J., LIN H.: An interactive visual
analytics system for incremental classification based on semi-supervised
topic modeling. In 2019 IEEE Pacific Visualization Symposium (Paci-
ficVis) (2019), pp. 148–157. doi:10.1109/PacificVis.2019.
00025. 2

[ZXD∗23] ZHANG X., XUAN X., DIMA A., SEXTON T., MA K.-L.:
LabelVizier: Interactive validation and relabeling for technical text anno-
tations. In 2023 IEEE 16th Pacific Visualization Symposium (PacificVis)
(2023), pp. 167–176. doi:10.1109/PacificVis56936.2023.
00026. 2

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://dl.acm.org/doi/10.5555/3295222.3295230
https://dl.acm.org/doi/10.5555/3295222.3295230
https://doi.org/10.18653/v1/2021.findings-acl.245
https://doi.org/10.18653/v1/2021.findings-acl.245
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.1145/3495162
https://doi.org/10.1111/cgf.14733
https://doi.org/10.1111/cgf.14733
https://doi.org/10.1038/44565
https://doi.org/10.18653/v1/2020.emnlp-main.24
https://doi.org/10.18653/v1/2020.emnlp-main.24
https://doi.org/10.1109/TVCG.2022.3184186
https://doi.org/10.1109/TVCG.2022.3184186
https://doi.org/10.18653/v1/P19-1560
https://doi.org/10.18653/v1/P19-1560
https://doi.org/10.18653/v1/2021.emnlp-main.46
https://doi.org/10.18653/v1/2021.emnlp-main.46
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.18653/v1/N18-1097
https://doi.org/10.1016/j.cose.2023.103476
https://doi.org/10.18653/v1/2021.findings-acl.336
https://doi.org/10.18653/v1/2021.findings-acl.336
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1109/ACCESS.2021.3051315
https://doi.org/10.1109/TVCG.2012.213
https://doi.org/10.18653/v1/2021.emnlp-main.359
https://doi.org/10.18653/v1/2022.nlp4convai-1.5
https://doi.org/10.1109/TVCG.2019.2934629
https://doi.org/10.1109/TVCG.2019.2934629
https://dl.acm.org/doi/10.5555/3305890.3306024
https://doi.org/10.18653/v1/P19-3007
https://doi.org/10.1109/PacificVis.2019.00025
https://doi.org/10.1109/PacificVis.2019.00025
https://doi.org/10.1109/PacificVis56936.2023.00026
https://doi.org/10.1109/PacificVis56936.2023.00026

