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Abstract
We explore an error-bounded lossy compression approach for reducing scientific data associated with 2D/3D unstructured
meshes. While existing lossy compressors offer a high compression ratio with bounded error for regular grid data, methodolo-
gies tailored for unstructured mesh data are lacking; for example, one can compress nodal data as 1D arrays, neglecting the
spatial coherency of the mesh nodes. Inspired by the SZ compressor, which predicts and quantizes values in a multidimensional
array, we dynamically reorganize nodal data into sequences. Each sequence starts with a seed cell; based on a predefined
traversal order, the next cell is added to the sequence if the current cell can predict and quantize the nodal data in the next cell
with the given error bound. As a result, one can efficiently compress the quantized nodal data in each sequence until all mesh
nodes are traversed. This paper also introduces a suite of novel error metrics, namely continuous mean squared error (CMSE)
and continuous peak signal-to-noise ratio (CPSNR), to assess compression results for unstructured mesh data. The continu-
ous error metrics are defined by integrating the error function on all cells, providing objective statistics across nonuniformly
distributed nodes/cells in the mesh. We evaluate our methods with several scientific simulations ranging from ocean-climate
models and computational fluid dynamics simulations with both traditional and continuous error metrics. We demonstrated
superior compression ratios and quality than existing lossy compressors.

CCS Concepts
• Human-centered computing → Visualization;

1. Introduction

Scientific data, usually characterized by their ever-increasing sizes
with the growth of high-performance computing resources, cause
grand challenges for scientists in storing, transferring, and under-
standing them. In recent years, error-bounded lossy compression,
or simply lossy compression, advanced significantly to reduce data
size while maintaining an acceptable level of information fidelity.
Lossy compression, thus, has been treated as a methodology to al-
leviate the pressure caused by large-scale scientific data. Visual-
ization tasks such as volume rendering [Cho97, SW03], isosurfac-
ing [LSO∗17a], and topological data analysis [SPCT18,YLGW24]
have greatly benefited from lossy compression.

To date, the community’s primary focus for lossy compression is
regular grid data, where values are stored in an implicit order repre-
senting 2D and 3D domains. In our observation, most existing algo-
rithms rely on a block/stencil (e.g., 43 block in the orthogonal trans-
formation in ZFP [Lin14] and 23 stencil in the Lorenzo predictor in
SZ [TDCC17]) to compress regular grid data. However, efficient
compression of unstructured mesh data is lacking, which is more
challenging due to the lack of stencil structure for unstructured
mesh data and the requirement on storing both nodal data and mesh

information. Vertices in an unstructured mesh are oftentimes arbi-
trarily indexed in memory, oblivious to spatial coherency among
vertices, leading to a random data layout that challenges compres-
sors. For example, a previous study [LDC∗23] compressed nodal
data as a 1D series with a limited compression ratio in a CFD sim-
ulation. Furthermore, unlike regular grids, unstructured mesh data
are composed of not only the values on vertices but also the mesh’s
topology. This necessitates considering two distinct aspects (mesh
and nodal data) during compression and decompression.

We motivate this work by the amount of time-varying and multi-
variate data associated with a static mesh. For example, in a Model
for Prediction Across Scales-Ocean (MPAS-Ocean) [LBTM20]
simulation, a 60-year of monthly dataset across 80 depth layers
with 115 variables, including temperature, salinity, velocity, and
pressure, share the same underlying unstructured mesh. In this case,
the aggregated size of the nodal data is O(106) larger than the mesh
itself and necessitates the reduction of the nodal data.

To these ends, this paper introduces a novel error-bounded lossy
compression method for 2D/3D unstructured mesh data. Inspired
by the SZ [TDCC17] compressor, which predicts and quantizes val-
ues in a multidimensional array, we dynamically reorganize nodal

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1111/cgf.15097

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0009-0006-6285-7271
https://orcid.org/0000-0002-0630-1600
https://orcid.org/0000-0001-7776-1834
https://doi.org/10.1111/cgf.15097


2 of 12 C. Ren, X. Liang, & H. Guo / A Prediction-Traversal Approach for Compressing Scientific Data on Unstructured Meshes with Bounded Error

data into sequences. The key innovation compared with SZ is our
tailored predictor for unstructured meshes: we sequentially visit,
predict by extrapolation, and quantize the predicted value of every
mesh node, where the order of visiting mesh nodes is determined
by traversing on the dual graph of the unstructured mesh. Each se-
quence starts with a seed cell; based on a predefined traversal order,
the next cell is added to the sequence if the current cell can predict
and quantize the nodal data in the next cell within the given error
bound. The sequence grows until an unpredictable node is met, and
a new sequence is initiated until all nodes are traversed. As a re-
sult, one can efficiently compress the quantized nodal data in each
sequence until all mesh nodes are traversed.

To measure the quality of interpolated value preservation on un-
structured meshes of continuous fields, we introduce a new met-
ric, continuous mean squared error (CMSE), which is defined by
generalizing a traditional metric, MSE, that accumulates pointwise
errors to a metric that aggregates cellwise errors. CMSE measures
the overall statistical distortion of decompressed data on the contin-
uous domain instead of on mesh nodes only and is straightforward
to generalize to other metrics, including root MSE (RMSE), nor-
malized RMSE (NRMSE), and PSNR for continuous domains. We
also demonstrate why CMSE is more meaningful than traditional
pointwise difference metrics when measuring data distortion in a
continuous domain by several scenarios and evaluate our algorithm
on both CMSE and pointwise error metrics. In summary, this paper
makes the following contributions:

• A novel algorithm for data compression on 2D and 3D unstruc-
tured meshes;

• A comprehensive evaluation of our compression method with
our proposed continuous error metrics.

2. Related Work

We summarize related work in error-bounded lossy compression
and mesh compression.

2.1. Error-bounded Lossy Compression for Scientific Data

One can categorize compression algorithms into lossless and lossy
compression. Lossless compression achieves compression by elim-
inating redundancy within the data while allowing complete recon-
struction of the original data upon decompression, while lossy com-
pression keeps an acceptable amount of information and largely
reduces data size. However, lossless compressors are usually un-
suitable for scientific data due to their relatively low compression
ratios (generally not much better than 2:1) for floating-point num-
bers [ZDD∗21]. For scientific data, lossy compression usually de-
livers much higher compression ratios with quality guaranteed. One
can further categorize lossy compression into error-bounded and
non-error-bounded lossy compression based on whether the point-
wise error is restricted in user-specified error bounds.

Almost all existing lossy compressors are specific to regular
grid data. For example, one can compress regular-grid data with
prediction-based, transform-based, dimension-reduction-based,
and neural-based methods. Prediction-based compressors, such as
ISABELA [LSE∗11], FPZIP [LI06], MGARD [ATWK20], and

SZ family [LDT∗18, LZD∗22, TDCC17, ZDD∗21, ZDL∗20], apply
predictors (e.g., Lorenzo predictor [ILRS03]) first to estimate the
values of unknown data points according to known information
such as predicted data points, and then to use a quantization
scheme, e.g., relative coordinate quantization [RL00], to limit
pointwise error into a user-specified bound. Transform-based
compressors (e.g., ZFP [Lin14] and wavelet [LSO∗17b]) transform
original data into sparsely-distributed coefficients that are easier
to compress. Dimension-reduction-based compressors (e.g.,
TTHRESH [BRLP19]) reduce data dimensions by techniques
such as higher-order singular vector decomposition (HOSVD).
Recently, neural networks have been widely used to reconstruct
scientific data, such as autoencoders [LDZ∗21, ZGS∗22], super-
resolution networks [WGS∗23, HZCW22], and implicit neural
representations [XTS∗22, LJLB21, WHW22, MLL∗21, SMB∗20].
Yet, most neural compressors do not offer explicit pointwise error
control for scientific applications.

Few error-bounded lossy compressors consider unstructured
mesh data. Iverson et al. [IKK12] proposed a domain-
decomposition approach that divides the mesh into regions first,
followed by representing each region using the mean value of
the nodal data. The main drawback is the high storage overhead
of the regions represented as integer arrays, making it imprac-
tical for large-scale data. Researchers also explored non-error-
bounded compression of 2D unstructured grid data. For example,
Kamath [Kam20] proposed a training-based approach that targets
a fusion plasma simulation code with 2D triangular grids. Yet,
the method requires extra handling of high-error points with a re-
gression algorithm. Salloum et al. [SFH∗18] used a compressed
sensing approach to compress 2D unstructured grid data, which
requires an iterative and optimization process to decompress the
data. Salloum et al. [SKJ∗20] further explored using Alpert multi-
wavelets for compressing unstructured grid data. Another related
research is the compression of adaptive mesh refinement (AMR)
data [WPG∗23], which relies on AMR’s semi-structured blocks.

2.2. Unstructured Mesh Compression

Although related, the objective of our research is fundamentally
different from compressing the mesh itself (see Peng et al. [PKJ05]
for a comprehensive review). Instead, we assume that one can af-
ford to store an accurate mesh, and the data reduction challenge
stems from the accumulation of time-varying and multivariate data.

Mesh simplification offers a lossy manner to reduce a mesh
with edge-collapsing [UBF∗05], vertex clustering [RB93], and
wavelet-based methods [GSG96]. For a review of surface mesh
simplification methods, see Cignoni et al. [CMS98]. With edge-
collapsing, one can define different edge-cost functions serving dif-
ferent feature-preserving goals [UBF∗05]. For example, Natarajan
and Edelsbrunner [NE04] preserved the density map of mesh by a
metric of angles; Tram et al. [CCM∗00] preserved mesh boundary
by controlling boundary constraints; Chiang and Lu [CL03] pre-
served topology of isosurfaces by introducing multiple levels of de-
tails of a tetrahedral mesh. Vertex clustering methods group nearby
vertices into clusters based on various criteria, such as geometric
proximity or attribute similarity. Each cluster is then replaced by
a new representative vertex in a simplified mesh. Vertex clustering
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is fast but makes the geometry or topology of the original mesh
hard to preserve. Wavelet-based methods apply wavelet transform
to analyze the level of details needed by a local region. However,
a regular, hierarchical decomposition of the surface is required to
enable wavelet decomposition.

Besides, our method relates to but fundamentally differs from
triangle strips algorithms [EMX02], which compute an optimal de-
composition of triangle strips from a polygonal surface model with
a given cost function. While one could potentially formulate our
compression outputs as triangle strips, our method does not need to
adhere to clockwise or counter-clockwise alternation. Also, triangle
strips algorithms generally have high complexity and are difficult
to generalize to tetrahedral grids for compression.

3. Preliminaries

This section formalizes the inputs of our algorithm and reviews
three preliminaries: SZ compressors [TDCC17], barycentric inter-
polation, and evaluation metrics for lossy compression.

3.1. Unstructured meshes and unstructured mesh data

Without loss of generality, we consider 2D/3D simplicial meshes,
which contain only triangular/tetrahedral cells with a piecewise lin-
ear interpolation basis. If the input mesh is nonsimplicial and con-
tains higher-order elements, one can still use our method with a
triangulated mesh [DLRS10, Si19] without adding new vertices. In
this case, vertices in the original mesh remain in the exact ordering,
and our algorithm can still guarantee bounded error for the variable
values on each vertex, as described later.

We assume that the input mesh is constant for all variables across
all timesteps of the dataset. Considering a scalar variable f :X→R,
where X ⊂ R2 or R3 is the domain defined by the mesh complex
M = ⟨V,C⟩, f is represented by the nodal values { fi}, i ∈V , where
V and C are the sets of vertices and cells, respectively. The lossily
compressed f is defined by a user-specified (absolute) error bound
ξ such that | fi− f̂i| ≤ ξ for all i ∈V , where f̂i denotes the decom-
pressed value of fi.

3.2. Prediction-based lossy compression

For a comprehensive picture of our method, which essentially
redesigns the prediction stage of SZ [TDCC17], we review the
four major stages of prediction-based lossy compressors. Our al-
gorithm leverages existing modules provided by the SZ3 pack-
age [LZD∗22], which implements all necessary building blocks for
prediction-based lossy compressors. In general, there are four ma-
jor phases in prediction-based lossy compressors: prediction, quan-
tization, encoding, and lossless compression, as reviewed below.

Prediction. The prediction modules use interpolation or trans-
formation to predict neighboring data values. For example, SZ 1.4
uses the Lorenzo predictor [ILRS03] to predict the value of an un-
visited data point based on decompressed values of its neighbors.
If the prediction is within the error bound, the value is predictable
and further represented as a fixed-precision quantization code in
the quantization module described below; otherwise, the value is
unpredictable and must be stored in a lossless manner.

1st-phase 

predicted value
2nd-phase predicted values real value

quantization codes

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

1 2m-1

2nd-phase predicted values

2m-1-12m-1-22m-1-3 2m-1+1 2m-1+2 2m-1+3 2m-1

Figure 1: Linear-scaling quantization. For the value in this case,
the quantization code is 2m−1 + 2. Image reproduced from Figure
2 in Tao et al. [TDCC17].

Quantization. The quantization step uses an error-controlled
quantization encoder (Figure 1) to convert a predictable value to a
quantization code. We use the linear-scale quantization [TDCC17]
in this paper. Let m denote the number of bits (we set to be 16 to
cover reasonable range of error bounds [TDCC17]) used to encode
a data point; for the data value x, one can first obtain its predicted
value (shown as the red dot); imagine a series of 2nd-phase pre-
dicted values (shown as blue dots in Figure 1) that separate the 1D
axis linearly together with 1st -phase predicted value into segments
with length of 2ξ , as well as a partition of the axis in which each
interval takes two successive 1st - or 2nd-phase predicted values as
midpoint. We represent every interval by an integer, so-called quan-
tization code. The interval with 1st -phase predicted value as mid-
point is represented by 2m−1, and other intervals are represented
by consecutive integers by the order of their midpoints. There are
2m− 1 intervals with quantization codes between 1 and 2m− 1; a
data point lying within these intervals is predictable.

Encoding and lossless compression. With prediction and quan-
tization, data are transformed into two sets as bitstreams: quantiza-
tion codes (for predictable values) and floating point numbers (for
unpredictable values). For example, SZ 1.4 uses a customized Huff-
man encoder [Huf52] to transform the bitstreams into a compact
representation. After encoding, one can further reduce the encoded
data with off-the-shelf lossless compressors such as ZSTD [ZST].

3.3. Barycentric Interpolation and Extrapolation

This research uses barycentric extrapolation as the basis of the pre-
diction for unstructured mesh data. Still, the prediction requires a
deterministic (and preferably implicit) vertex ordering, which we
will detail in the next section. The barycentric interpolation scheme
establishes the piecewise linear representation of a simplicial mesh.
We explain the interpolation scheme with 3D tetrahedral meshes,
and the same scheme can be easily applied to 2D triangular meshes.
For an arbitrary location p ∈ X, one can estimate f (p) by first lo-
cating the cell c ∈C that contains p, and then we have

f (p) = λ0 f0 +λ1 f1 +λ2 f2 +λ3 f3, (1)

where {λi} are the barycentric coordinates of p with respect to c,
and { fi} are the scalar values on the four vertices of c, i = 0,1,2,3.
With the barycentric coordinates, we also have p = ∑

3
i=0 λipi and

∑
3
i=0 λi = 1, where pi = (xi,yi,zi)

⊺ are the coordinates of vertex
i. Assuming the cell is nondegenerate, one can transform between

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



4 of 12 C. Ren, X. Liang, & H. Guo / A Prediction-Traversal Approach for Compressing Scientific Data on Unstructured Meshes with Bounded Error

nodal data on
2D or 3D 

unstructured mesh

Input
2D or 3D 

simplicial mesh

prechecking if
simplicial

tessellation
NO

YES

sequences 
of 

quantization 
codes for 

non-seeded 
mesh nodes

prediction & 
quantization

while 
traversing

encoded 
sequences of 
quantization 

codes

Huffman 
encoding

ZSTD

Compressed 
data on mesh 

nodes

Outputseed-led 
encoded 

sequences of 
quantization 

codes
node values 

on seeds

reorganizing

Step 0: preprocessing
Step 1: traversal, prediction, 

and quantization

Step 2: variable-
length coding

Step 3: lossless compression

seed-led 
encoded 

sequences of 
quantization 

codes

ZSTD
decompressionreorganizing

encoded 
sequences of 
quantization 

codes
node values on seeds

sequences of 
quantization codes for 

non-seeded mesh nodes

Huffman 
decoding

dequantization
while traversaldecompressed nodal data on

2D or 3D unstructured mesh

Input
Output

Compression

Decompression

Figure 2: Workflow of our compression/decompression algorithm for unstructured mesh data.

Cartesian and barycentric coordinates with

(x,y,z,1)⊺ =
( x0 x1 x2 x3

y0 y1 y2 y3
z0 z1 z2 z3
1 1 1 1

)
(λ0,λ1,λ2,λ3)

⊺ . (2)

Barycentric extrapolation uses the same equations as above, except
that the point to be predicted is outside of the cell. Our prediction
scheme uses barycentric extrapolation for a point p′ outside a cell
with the same formulation as the barycentric interpolation; more
specifically, p′ is one of the neighboring cells’ vertices, as further
described in the next section.

3.4. Metrics for evaluating lossy compression results

One can quantify how well the decompressed data retains essen-
tial information while adhering to the defined error thresholds. Size
metrics quantify how much a compressor can reduce the data size.
Typical size metrics include compression ratio (CR), the ratio of
original data size to compressed data size, and bitrate (BR), the
average number of bits used to represent each value.

Error metrics measure how the decompressed data deviates
from the original data after compression, but all existing error met-
rics measure pointwise (in the context of unstructured meshes, ver-
texwise) error. Because an unstructured mesh represents the contin-
uous domain X, new metrics are needed to measure the compres-
sion quality of unstructured mesh data. Examples of vertexwise er-
ror metrics include MSE, which measures the average of squared
differences between nodal data

MSE( f , f̂ ) = 1/|V |∑i∈V ( f̂i− fi)2. (3)

The root mean squared error RMSE( f , f̂ ) =
√
MSE( f , f̂ ) scales MSE

to the original units of the data. The normalized RMSE (NRMSE)
further scales RMSE : NRMSE( f , f̂ ) = RMSE( f , f̂ )/( fmax − fmin),
where fmin and fmax denote the value range of f . One can further
measure PSNR, the ratio between the maximum possible value of
the data and the value of distorting noise that affects the quality of
the data in a logarithmic decibel scale: PSNR=−20log10

fmax− fmin

RMSE( f , f̂ )
.

We will further propose continuous versions of MSE-based metrics
later in this paper.

4. Our method

Figure 2 illustrates the workflow of our data compression and de-
compression methods for a simplicial mesh. We apply a graph
traversal-based method to traverse the mesh and determine the se-
quence order of mesh nodes in both compression and decompres-
sion processes. Both prediction and quantization are involved in
traversal, and we predict the values of newly visited mesh nodes by
barycentric extrapolation.

4.1. Traversal, prediction, and quantization

We use a greedy strategy to reorder the nodes into sequences that
can be predicted and quantized. The basic idea is to establish each
sequence with a seed cell, and an adjacent cell is added if the value
on the nonshared vertex can be predicted by the current cell. As
such, our method can leverage the spatial coherency of neighboring
cells and vertices to predict values by extrapolation.

Another key to our method is to use a pre-determined and im-
plicit traversal order. Specifically, we always visit the neighboring
cell with the minimum cell index. Such an implicit traversal order
avoids the storage of cell indices in compressed data, significantly
reducing the possibility of storage overhead because explicit traver-
sal orders could occupy a large amount of storage space. The choice
of traversal orders is further discussed and evaluated in Section 6.3

The pseudocode of our prediction-traversal-quantization algo-
rithm is shown in Algorithms 1 and 2. As illustrated in Figure 3,
we work on the mesh where vertex indices determine the origi-
nal memory layout. We start with an arbitrary cell as the seed and
losslessly store all nodal values of the seed. Then, we iteratively in-
crease the sequence length by traversing the mesh’s dual graph; the
dual graph’s nodes are C, and two cells are connected if they have
a shared face. Every time we visit a new cell, we also get a newly
visited node to be predicted in the cell. Then, we predict the value
of the newly visited node. Multiple predictors can be applied in this
stage with proper assumption of the data; for simplicity, we apply
barycentric extrapolation in Section 3.3 w.r.t. the last visited cell to
predict the newly visited node. Comparison over different predic-
tors is not covered in this work. The predicted value is transformed
with the error-controlled quantization (Section 3.2). The iteration
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Figure 3: The process of traversal on the mesh. We assume that all the cell indices are in-memory ordered. (a) A cell is randomly selected
to be “seed” (marked in red with index 27). The seed is directly marked as visited, and the values of all the nodes on the seed are losslessly
stored. (b) The cell with the smallest index among the neighbors of the last visited cell (the seed in red at this step) is selected as the cell to
visit next, marked in yellow and with index 26. The node newly introduced by the yellow cell is predicted by barycentric extrapolation w.r.t.
the last visited cell and encoded by quantizer shown in Figure 1. We then determine whether this node is predictable. (c) If the newly visited
node is predictable, we mark current cell #26 as visited and repeat all the operations in (b). Then we visit cell #13, predict and quantize
its newly introduced node, and determine whether it is predictable. (d) We mark cell #13 as visited and continue with its neighbor with the
smallest index, cell #12. After prediction and quantization, we determine whether it is unpredictable. (e) If the newly introduced node is
unpredictable, we do not mark the current cell (i.e., cell #12) as visited and instead terminate traversal starting with current seed, cell # 34.
We randomly select a new seed (cell #16 marked in red) from the set of unvisited cells and repeat traversal. (f) The cell (#15) with all visited
nodes is marked as visited. The whole algorithm terminates when all nodes are visited.

seed

seeds

(a) (b)

Figure 4: (a) Visualization of three traversal sequences in a 3D
unstructured grid data (LES-s); the semi-transparent surface is a
sliced plane of velocity magnitude visualized as context (b) data
layout of traversal sequences

terminates if (1) the newly visited node is unpredictable or (2) all
the neighbors of the current visiting cell have been visited. After
the termination, if an unvisited node exists, we start a new sequence
with an unvisited seed cell. Several sequences on a real-world 3D
dataset in shown in Figure 4 (a).

Our (de)compression algorithm takes O(|V |) to terminate be-
cause all mesh nodes are visited once. Around 2% of mesh nodes
have been predicted before by other cells but are then included in
later-chosen seed(s). Note that some cells will never be visited by
cell traversal until the algorithm terminates if all their mesh nodes
are visited via other cells.

4.2. Quantized data layout, encoding, and compression

With the prediction-traversal process, we organize quantization
codes into sequences, as illustrated in Figure 4 (b). Each sequence

is led by the seed and followed by all visited cells and thus consists
of three components: values of mesh nodes on a seed are stored as a
double precision floating point, quant_code of visited_node and se-
quence end mark are stored as integers. Because our traversal order
is implicit, there is no need to store it. After all sequences are com-
plete, we use SZ3’s encoding and lossless compression routines to
further reduce the sequences’ size, as reviewed in Section 3.2.

We analyze the storage cost of our data layout. Let nseq denote
the number of sequences shown in the box of Figure 4, equiva-
lent to the number of seeds one chooses to visit all nodes. Let
d denote the dimension of the mesh. For double-precision data
points, the numbers of nodes in sequences in Figure 4 are within
[2|V |+(6d + 4)nseq,2|V |+(8d + 2)nseq] bytes, which consists of
three parts: the size of (1) values on all seeds is 8d× nseq because
we losslessly store the values of seeds by 8 bytes; (2) all non-seeded
values is within [2(|V | − dnseq),2(|V | − nseq)], because we have
(|V | − dnseq) non-seeded nodes if all the nodes of each seed are
not visited by other sequences and (|V | − nseq) non-seeded nodes
if only one node of each seed are not visited by other sequences. 2
bytes are used for the quantization code of every node; (3) all end
marks (all are single-precision infinity in our method) is 4nseq.

5. Continuous Mean Squared Error (CMSE)

We propose a suite of novel continuous error metrics to evalu-
ate the quality of lossy compressed data on unstructured meshes.
Metrics commonly used to measure compression quality, includ-
ing MSE and its variants such as RMSE, NRMSE, and PSNR, are
pointwise errors on only mesh nodes when applied on unstructured
meshes and weigh all mesh nodes equally. However, in a contin-
uous domain, every position is associated with a function value,
which shows the continuity of the underlying physical principles
and thus needs taking into account [BW08, DCM12]. Every mesh
node affects interpolated values of all positions in the cells that are
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Algorithm 1: Compress
Data: mesh, nodal_values
seeds_values← [];
quant_codes← [];
decomp_values← zero vector with the same length as

nodal_values;
while not all nodes are visited do

seed← a randomly chosen cell from unvisited cells;
seed.visited← True;
for node in seed.nodes do

node.visited← True;
decomp_values[node]← nodal_values[node];
seeds_values.append(nodal_values[node]);
check if any unvisited cells incident to node have all

visited vertices after node is visited. If yes, set the cell(s)
to be visited;

end
quant_codes, decomp_values← TraverselFromSeed(seed,

mesh, quant_codes, decomp_values);
end
quant_codes← Huffman encoding quant_codes;
sequences← organize seeds_values and quant_codes;
sequences← lossless compress sequences by ZSTD;
return sequences

Algorithm 2: TraversalFromSeed
Data: seed, mesh, quant_codes, decomp_values
stack← [(seed, None)];
while stack! = /0 do

current_cell, previous_cell← stack.pop();
if current_cell.visited == False then

newly_visited_node← set(current_cell) -
set(previous_cell);

predict value of newly_visited_node by barycentric
extrapolation w.r.t. the decomp_values on previous_cell;

decompressed_value, quant_code← quantize the
predicted value;

if newly_visited_node is predictable then
quant_codes.append(quant_code);
decomp_values[newly_visited_node]←

decompressed_value;
else

quant_codes.append(end_mark);
break;

end
newly_visited_node.visited← True;
check if any unvisited cells incident to newly_visited_node

have all visited nodes after newly_visited_node is visited.
If yes, set the cell(s) to be visited;

push((neighbor_with_min_idx, current_cell))
end
return quant_codes, decomp_values;

incident to the mesh node. Different than Salloum et al. [SKJ∗20],
which compares the spectral amplitudes of two continuous fields
after wavelet transformation, we generalize MSE to fields repre-
sented by unstructured meshes.

Traditional pointwise metrics are suitable for uniformly struc-

(a) (b) (c)

A

A

A

B

B

B

Figure 5: Illustration of regions (filled by gray or blue) affected by
different mesh nodes in three meshes during interpolation. (a) In a
regular grid, any two interior mesh nodes (e.g., A and B) affect the
values of points in regions with the same size. (b) In an unstructured
mesh, some points (e.g., A) are incident to cells with smaller areas
while some points (e.g., B) affect larger areas. (c) Even if mesh
nodes are uniformly distributed in the field, boundary nodes (e.g.,
A) affect smaller regions than interior nodes (e.g., B) do.

tured meshes, where the value on a mesh node contributes to a
fixed area of the region (Figure 5 (a)). However, in a non-uniform
grid or unstructured mesh, the total area of cells incident to a mesh
node varies node by node. Some regions on the field are sampled
sparsely, and thus mesh nodes in those regions are incident with
larger cells (Figure 5 (b)); some nodes are on the boundary of the
field and incident to fewer cells (Figure 5 (c)). To consider the error
over all positions in a continuous field, we weigh the influence of
mesh nodes according to how large the region in which they affect
values on points by continuous mean squared error (CMSE).

Recall the definitions in Section 3.3, the pointwise squared error
at a point p ∈ X is defined by e(p) = ( f̂ (p)− f (p))2. We define
cellwise squared error of a tetrahedral cell c to be the integral of
pointwise squared error in the cell:

E(c) =
∫∫∫

c
e(p)dV,

where dV is the infinitesimal volume of the cell. While MSE
takes an average of pointwise squared error over all mesh nodes
(Equation (3)), CMSE takes an average of pointwise squared error
of all points in a continuous field:

CMSE( f , f̂ ) = 1/|VC|∑i∈C E(ci),

where VC is the total volume of cells in the mesh and ci is the
ith cell. With CMSE defined, we can define continuous RMSE,
NRMSE, and PSNR based accordingly, as shown in Table 1.

The closed form of cellwise squared error varies by interpola-
tion method. We take barycentric interpolation as an example. The
pointwise squared error is

e(p) =
(
∑

3
i=0 λi( f̂i− fi)

)2
, (4)

where λ0 to λ3 are barycentric coordinates of p w.r.t. the cell c
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containing p. Cellwise squared error of cell c is then given by:

E(c) =
∫∫∫

c
e(p(x,y,z))dV

=
∫ 1

0

∫ 1−λ0

0

∫ 1−λ0−λ1

0
e(p(λ0,λ1,λ2)) · |Jc|dλ2dλ1dλ0,

where Jc is the Jacobian of the mapping from (x,y,z) to (λ0,λ1,λ2):

Jc =
∂ (x,y,z)

∂ (λ0,λ1,λ2)
=

 ∂x
∂λ0

∂x
∂λ1

∂x
∂λ2

∂y
∂λ0

∂y
∂λ1

∂y
∂λ2

∂ z
∂λ0

∂ z
∂λ1

∂ z
∂λ2

 (2)
=

[
x0−x3 x1−x3 x2−x3
y0−y3 y1−y3 y2−y3
z0−z3 z1−z3 z2−z3

]
. (5)

Note that the relation of rectangular coordinates (x,y,z)⊺ and
barycentric coordinates (λ0, λ1, λ2,λ3)

⊺ of p is given in Equa-
tion (2), which shows that rectangular coordinates (x,y,z)⊺ of any
point p are a linear combination of λ0, λ1, λ2, and λ3. Since all the
four λi’s sum up to 1, we replace λ3 by the other three. Thus, the
derivatives in Equation (5) are all constants w.r.t. λ0, λ1, and λ2,
and the whole determinant of Jacobian matrix can be pulled out of
the integral. We further simplify the closed form of the remaining
integral term and have

E(c) =
|Jc|
60 ∑

3
i=0 ∑

3
j=i( f̂i− fi)( f̂ j− f j). (6)

Validation of CMSE is provided in Supplementary Materials.

Table 1: Continuous versions of MSE, RMSE, NRMSE, and PSNR.

Metric Definition
CMSE 1

VC
∑i∈C

∫∫∫
ci
( f̂ (p(x,y,z))− f (p(x,y,z)))2dxdydz

CRMSE
√
CMSE

CNRMSE
√
CMSE/( fmax− fmin)

CPSNR −20log10CNRMSE

Table 2: Benchmark datasets (MPAS-O (hiRes) is in single-
precision; all others are in double-precision.)

dataset dim attribute(s) # nodes # cells
synthetic 2D scalar 1,000 1,903

MPAS-O 2.5D
temperature, salinity,
vorticity, velocities

235,055 478,834

MPAS-O
(hiRes)

2.5D longWaveHeatFluxDown 3,692,805 7,329,255

LES (small) 3D pressure, turb_mu, velocities 829,192 4,936,613
LES (large) 3D pressure, turb_mu, velocities 67,855,938 137,271,946

VFEM 3D pressure, velocity 1,889,283 11,110,922
CAR 3D pressure, velocity 8,565,665 49,419,394

6. Evaluation

This section compares our method with two state-of-the-art error-
bounded lossy compressors, SZ3 [LZD∗22] and ZFP [Lin14]. Note
that SZ3 and ZFP are not originally designed for unstructured mesh
data, and it is nontrivial to reorganize unstructured grid data into
regular stencils (e.g., 4×4×4 blocks used in ZFP) while keeping
a high level of spatial coherence. The comparison aims to demon-
strate how compression ratios and quality could significantly im-
prove if spatial coherence were considered in our design. Specifi-
cally, in our experiments, we treat nodal data as a 1D array directly

from flattening the nodal values with their original in-memory or-
dering. In addition to our baseline comparison in Section 6.1, we
further evaluate our method over a time-varying multivariate data
(Section 6.2) and demonstrate an ablation study in Section 6.3,
which compares the proposed method with SZ/ZFP when data is
re-ordered by different traversal orders. We prototype our compres-
sion and decompression algorithms using Python with no paral-
lelization technology. All experiments are based on a 2021 Mac-
Book Pro with an Apple M1 CPU and 64 GB main memory.

The specifications of our benchmark datasets are shown in Ta-
ble 2. The synthetic data represents two Gaussian blobs with
phase difference π rotating around the center of a circular field.
The MPAS-O data are generated by the E3SM climate simula-
tion [LBTM20]. Mesh nodes in MPAS-O all have 3D coordi-
nates but are located around the earth’s surface and meshed by 2-
polytopes, and thus are interpreted as 2.5D. MPAS-O has Voronoi
mesh with hexagons and pentagons originally; we take its dual
graph and derive a triangular mesh. Both LES-small and LES-large
are from a large eddy simulation. VFEM and CAR are publicly
available CFD datasets [TGK∗04].

We evaluate our methods with four aspects: (1) size metrics vs.
ξ (%): compression ratio vs. ξ (%), where ξ (%) is normalized
ξ in percentage scale by the range of original value. Bit rate is
inversely proportional to compression ratio so we omit results of bit
rate vs. ξ (%); (2) error metrics vs. ξ (%): NRMSE and CNRMSE
vs. ξ (%); (3) Rate-distortion (i.e., error metrics vs. bit rate): PSNR
and CPSNR vs. BR; (4) Time metrics vs. ξ (%): running times of
compression and decompression vs. ξ (%).

6.1. Baseline Comparison

Compression ratio vs. ξ (%). As shown in Figure 6, compression
ratio is the most significant advantage of our method compared with
SZ3 and ZFP on most datasets tested by us, especially for lower er-
ror bounds, such as velocity magnitude on VFEM data. Also, the
compression ratio by our method rises very fast as we relax ξ when
ξ is small. For higher error bound, there might exist an intersec-
tion point of compression ratios by our method and SZ3 for some
datasets (e.g., ξ (%) = 3% for VFEM and ξ (%) = 1.8% for CAR).

NRMSE and CNRMSE vs. ξ (%). We show the results in Sup-
plementary Materials. The performance ranking of our method and
SZ3 is not consistent based on NRMSE and CNRMSE. For the tem-
perature field of MPAS-O and velocity magnitude of CAR dataset
around ξ (%) = 5%, our method shows better CNRMSE than SZ3
does but higher NRMSE. The difference in performance ranking
on NRMSE and CNRMSE results from the mesh’s geometry (as
illustrated in Section 5) and predictor. For example, MPAS-O data
is sampled on the ocean only over the earth, while the land is not
included. Although mesh nodes on MPAS-O data are almost uni-
form, the large number of mesh nodes on the boundary leads to
different performances of the two methods on CMSE and MSE.
We visualize the decompressed data by our method and SZ3 under
ξ (%) = 5% in Figure 9, where our method has better CMSE with
a better visual quality while SZ3 has better MSE.

Rate distortion (PSNR and CPSNR vs. bit rate). Our method
performs better according to rate distortion than SZ3 does on most

© 2024 The Authors.
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Figure 6: The performance of our method, SZ3, and ZFP on different datasets and their attributes.

(a) (b)

Figure 7: (a) Timings of (de)compression. They are almost consis-
tent over attributes and ξ ’s because the time complexity is always
O(|V |), so we average runtimes over all attributes and ξ ’s for each
dataset. (b) Average time to process a vertex. Larger datasets need
more time to process one node.

datasets (except CAR) under low bit rate. The variations of PSNR
and CPSNR are very close, so the ranking of coompressors hardly
changes. ZFP shows the best performance under high bit rate.

Running time. The time complexity of our method is O(|V |),
independent to ξ . The plot of running time vs. ξ (%) verifies this
statement and is provided in Supplementary Materials. We show
the average running time over ξ for the six datasets in Figure 7 (a).
We omit the comparison with SZ3 and ZFP as their C/C++ imple-
mentations deliver better performance than our Python implemen-
tation by nature. The ratios of numbers of nodes to running times
are in Figure 7 (b). The relative difference of this ratio between
datasets is significantly smaller than that of running time in Fig-
ure 7 (a), but large datasets still take more time to process a node.

Visual qualities. We compare both volume rendering and isosur-
face rendering of decompressed data by our method and SZ3 under
the same compression ratio (Figure 8). Note that visual compar-
isons with ZFP outputs at comparative compression ratios between
20 and 30 are unavailable for our benchmark datasets. For most
datasets, we have lower visual distortion compared to SZ3.

6.2. Evaluation with time-varying multivariate data

As the mesh structure usually does not change over time or variable
for time series multivariate data in many real-world applications
such as ocean simulations, we evaluate our method with a time-
series of MPAS-O data with two variables. In this case, the coor-
dinates of nodes (three float64 points for each 3D point) and cell
connectivity (three int32 points for three vertex indices of a cell)
takes 10.86 MB to store. In contrast, nodal data (a float64 value
for one variable of a point) in 744 timesteps of two variables takes
2.61 GB. We evaluate the compression ratio over time of tempera-
ture on the MPAS-O dataset under very close PSNRs (Figure 10).
After compression, the storage that one needs to save nodal data of
744 timesteps is reduced to 55.19 MB, compared with 201.09 MB
by SZ3 and 428.98 MB by ZFP.

6.3. Ablation Studies

We conduct additional experiments to support the hypothesis that
(H1) our coupled barycentric prediction and traversal scheme ef-
fectively compress nodal data. While it is impractical to disentangle
prediction and traversal entirely, we design experiments to explore
whether reordering alone is sufficient to compress nodal data effec-
tively. We also explore (H2) whether alternative traversal ordering
schemes could improve compression. For H1, we impose off-the-
shelf lossy compressors over our reordered data to see if SZ3/ZFP
over reordered data (noted as SZ3/ZFP-over-ours) outperforms our
coupled method. To test H2, we explored four alternative strategies:

• Descending strategy (implicit ordering used as the default in
our method): each sequence traversing towards the neighbor cell
with the minimum storage index;

• Ascending strategy (implicit ordering): each sequence traversing
towards the neighbor cell with the maximum storage index;

• Mixed strategy (implicit ordering): each sequence randomly uses
either the descending or ascending strategy;

• Accuracy-prioritized strategy (explicit ordering): each sequence
traversing towards the next neighboring cell with minimum pre-
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Figure 8: Volume rendering and isosurface results with the same compression ratio (CR) of our method and SZ3 on different datasets and
their attributes. We have better rendering and isosurface results compared with SZ3 under the same CR for all datasets.

diction error on the new vertex, incurring minimum prediction
error but requiring explicitly storing the vertex ordering.

Observation 1: While our reordering scheme alone (SZ3/ZFP-
over-ours) already improves off-the-shelf compressors, our coupled
prediction-traversal compressor further outperforms SZ3/ZFP-
over-ours to different extents. Note that this is not a strictly
controlled experiment because SZ3/ZFP features diverse predic-
tion/transformation schemes for the reordered data. Still, our com-
bined prediction-traversal scheme outperforms SZ3/ZFP-over-ours
to different extents depending on error bounds and data (compar-
isons in Figure 11 a/d and b/e), supporting H1 that both our predic-
tion and reordering contribute to the effective compression.

Observation 2: Among the alternative traversal orderings, the
three implicit ordering strategies are similar, but the explicit or-
dering scheme (although prioritizing accuracy during traversal)

is far inferior to implicit orderings. As shown in the left two
columns of Figure 11, the three implicit strategies exhibit the same
trend on compression ratio and rate-distortion (H2). Besides, in the
accuracy-prioritized traversal, the overhead of additionally stored
vertex ordering dominates compressed outputs (up to 99%).

7. Limitations

Although this work is not limited to 2D and 3D simplicial meshes
as we used in Section 6, there are several unexplored topics. First,
we cover neither simplicial meshes beyond 3D nor other unstruc-
tured data in 2D and 3D. Also, different triangulations lead to dif-
ferent results using different interpolation methods. Whether arbi-
trary triangulation ways would show similar results or if interpola-
tion in arbitrary polytope is required is still an open question.

One limitation is the flattened compression ratio as ξ increases.
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Original data Decompressed data (Ours) Decompressed data (SZ3)

Figure 9: Surface rendering of original MPAS-O data and recon-
structed data by our method and SZ3 under ξ (%) = 5%. Render-
ing result of our method is very close to that of original data, but
that of SZ3 has more noise-like dots and shows a different pattern
around the equator compared to the other two rendering results.
Our method has CNRMSE of 0.0128 and NRMSE of 0.0288; SZ3
has CNRMSE of 0.0148 and NRMSE of 0.0260. Our method pro-
vides better CMSE as well as visual performance but larger MSE,
which manifests that CMSE measures visual quality better.

(a) MPAS-O - temperature (b) MPAS-O - meridional velocity

Figure 10: Compression ratios over time of (a) temperature and
(b) meridional velocity on MPAS-O data under PSNR around 30
dB. The mesh structure takes 10.86 MB to store. We have a better
compression ratio even under slightly better PSNR: Our method
decreases the storage from 1.30 GB to 26.18 MB for temperature
data and to 29.01 MB for meridional velocity data in 744 timesteps.
SZ3 reduces 1.30 GB to 135.93 MB and 65.16 MB for temperature
and meridional velocity, respectively, while ZFP reduces them to
261.75 MB and 167.23 MB. The compression ratio of our method
slightly jitters because of the heuristics on seed placement.

This is because the predicted value on every new vertex accu-
mulates errors from all the vertices of its adjacent cell; as ξ in-
creases, the prediction error could climb fast, leading to higher
entropy/complexity of quantization codes and damaging the com-
pression ratio. Meanwhile, the storage of seed/sequence will also
incur overhead. Likewise, our method also exhibits a turning point
in rate-distortion curves, caused by the sudden increase of se-
quences as ξ decreases. As an example, the velocity magnitude of
the VFEM dataset needs 58,130 sequences for ξ (%)=0.0002% but
only 1,853 sequences for ξ (%)=0.0005%. As such, there is a minor
improvement in PSNR (because of the small error bound change)
with a suddenly increased bit rate, leading to the flattening effect.

Another limitation in the current algorithm is parallelization. The
time complexity of our algorithm is O(|V |) because every node is
visited once. However, one needs to wait until the traversal start-
ing with the current seed terminates to begin the next traversal. It
would be possible to select multiple seeds at first to start traversal,
but high-frequency communication among traversals is required to
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Figure 11: Ablation study with temperature in the MPAS-O dataset
(first row) and velocity magnitude in the LES (small) dataset (sec-
ond row). Especially, (c) and (f) illustrate the decomposition of
floating-point data and vertex ordering in the compressed file size
for the accuracy-prioritized strategy.

exchange information on visited nodes, and running time may not
benefit from the communication.

8. Conclusions and future work

We introduce an error-bounded lossy compressor for unstructured
mesh data. The key to our compression is to use a barycentric ex-
trapolation scheme to predict nodal values paired with a greedy
mesh traversal strategy to represent nodal values as separate se-
quences. Each sequence starts with a seed cell and iteratively grows
with an implicit traversal order until the newly added cell cannot be
predicted with the error-controlled quantizer. We also introduce a
metric that evaluates data distortion in continuous domains, CMSE,
a more general version of MSE tailored for unstructured meshes.
We evaluate our algorithm on several datasets and demonstrate su-
perior quality and compression ratio compared with state-of-the-art
error-bounded lossy compressors agnostic to unstructured meshes.

This work can be extended in multiple ways. First, one can use
our strategy to predict point cloud data, which is easy to triangulate
by methods such as Delaunay triangulation. Second, there might
be metrics to precheck if our method or other compressors, such
as SZ3 and ZFP, can achieve a better compression ratio without
executing all the compression methods. Third, further research is
needed to understand the impact of lossy compression on unstruc-
tured grid volume visualization.
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