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(a) DVR of scalar field (b) importance field (c) our extinction optimization

view #1: S = 0.37 view #2: S = 0.26

view #3: S = 0.41 view #4: S = 0.33
(d) our viewpoint optimization

Figure 1: Conventional direct volume rendering (DVR) in (a) is often prone to occlusions. Given the importance field in (b), we propose a
transmittance-based extinction optimization in (c) and a concurrent viewpoint selection in (d), which together reveal interesting structures. A
visibility score S is listed for each of the exemplary views in (d), indicating that view #3 conveyed most of the important regions.

Abstract
A long-standing challenge in volume visualization is the effective communication of relevant spatial structures that might
be hidden due to occlusions. Given a scalar field that indicates the importance of every point in the domain, previous work
synthesized volume visualizations by weighted averaging of samples along view rays or by optimizing a spatially-varying
extinction field through an energy minimization. This energy minimization, however, did not directly measure the contribution of
an individual sample to the final pixel color. In this paper, we measure the visibility of relevant structures directly by incorporating
the transmittance into a non-linear energy minimization. For the first time, we not only perform a transmittance-based extinction
optimization, we concurrently optimize the camera position to find ideal viewpoints. We derive the partial derivatives for the
gradient-based optimization symbolically, which makes the application of automatic differentiation methods unnecessary. The
transmittance-based formulation gives a direct visibility measure that is communicated to the user in order to make aware of
potentially overlooked relevant structures. Our approach is compatible with any measure of importance and its versatility is
demonstrated in multiple data sets.

CCS Concepts
• Human-centered computing → Scientific visualization; Visualization techniques; • Computing methodologies → Visibility;

1. Introduction

Scientific visualization is frequently concerned with the visualiza-
tion of three-dimensional spatial data. Depending on the application,
different parts of a spatial domain might be more or less relevant
to the user. Unfortunately, many of those interesting regions might
be occluded and thereby hidden. In the literature, this is known as

the occlusion problem [VG05,MMD10,GRT13,AZD17]. To reduce
occlusions two strategies are available: either the transparency of
less relevant structures is increased to clear the view on meaningful
structures, or a viewpoint is chosen in which less occlusion occurs.
Either way, a measure is needed that determines how much of the
relevant information is visible on the screen. Previous opacity and
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extinction optimization approaches [GRT13, GRT14, GSME∗14,
GTG17, AZD17, BRGG20] all utilized a metric that assessed the
visibility of important information indirectly. That is, an energy
was defined that rises when occlusions occur, but how well the
resulting structures are actually visible on screen was not calcu-
lated directly. This indirect optimization had the advantage that a
solution could be found analytically with a subsequent smoothing
step [AZD17, GTG17], which made this approach simple and effi-
cient. The indirect nature, however, made the adjustment of energy
weights difficult and there was no direct feedback on how much
relevant information is seen. In this paper, we address this challenge
by employing a quality metric that directly measures the impact that
each voxel has on the screen, which is expressed by the so-called
transmittance. Having such a direct quality metric not only allows
us to phrase the adjustment of the transparency in an optimization-
based manner, for the first time, we are also able to optimize the
viewpoint simultaneously. Fig. 1 shows results of our extinction
and viewpoint optimization. We present a variational formulation
that leads to a non-linear optimization problem, for which we pro-
vide an efficient parallelized algorithm that is implemented on the
GPU. In analogy to the volume rendering integral, we derive integral
equations for the required partial derivatives that can be computed
directly in a ray marching loop. The implementation of an automatic
differentiation algorithm is therefore not necessary. In summary, we
make the following contributions:

• In contrast to the previous extinction optimization [AZD17], we
utilize a transmittance-based quality metric for the assessment of
how well relevant information is visible on screen.

• We concurrently optimize for the extinction field and for the
viewpoint that communicate the relevant information best.
• Using variational calculus, we derive closed-form equations for

the required derivatives, which can be calculated by ray marching.
• We show to the user how much relevant information is visible.

In the following, we first summarize existing work on transfer func-
tion, extinction, and viewpoint optimization, which is followed
by a brief description of direct volume rendering. Afterwards, the
transmittance-based optimization of extinction and viewpoint is
introduced. The approach is evaluated on several data sets, cover-
ing application domains such as fluid dynamics, geophysics, and
medicine. The paper is concluded with an outlook on future work.

2. Related Work

2.1. Transfer Function Optimization

Direct volume rendering uses transfer functions to map from a scalar
field to optical properties such as color and transparency [JSYR14].
How well information is perceived strongly depends on the choice
of transfer function. To avoid tedious trial and error exploration, He
et al. [HHKP96] stochastically mutated transfer functions from an
initial pool based on interactive user preferences and quality met-
rics such as entropy, histogram variance, and edge energy. Using
the scalar field and its first and second-order directional deriva-
tives along the gradient, Kindlmann and Durkin [KD98] semi-
automatically adjusted transfer functions to reveal material bound-
aries. Wu and Qu [WQ07] let users choose individual features from
multiple direct volume renderings that have been made with dif-
ferent transfer functions, and then synthesized a view that shows

or removes selected features. Correa and Ma [CM11] augmented a
transfer function editor with a visibility histogram to communicate
how well certain value ranges are represented in the image. Fur-
ther, they represented the opacity transfer function with a Gaussian
mixture model and optimized for an improved visibility. To mini-
mize the informational divergence between data and view, Ruiz et
al. [RBB∗11] minimized the Kullback-Leibler distance between the
viewed visibility distribution and a user-defined target distribution.
All of the methods above modeled transfer functions as functions
of the scalar value (and its derivatives). To address occlusions the
transfer function was varied spatially, which is discussed next.

2.2. Opacity and Extinction Optimization

Several approaches varied the opacity spatially along view rays
in order to remove occlusions [VG05]. Early smart visibility ap-
proaches [VKG04, VKG05] displayed per pixel the object with
maximum importance along the ray or switched to sparser object
representations to support windowing. The opacity has also been
adjusted in a context-dependent manner [BGKG05]. Further lines of
research avoided occlusions through exploded views [APH∗03] and
spatial deformation [CSC07]. A finite-difference based optimiza-
tion of discrete opacity values along rays was performed by Chan
et al. [CWM∗09], who improved the perception of direct volume
renderings by considering visibility, structural shape and image vari-
ations, and perception theory. Instead, we utilize a continuous mea-
sure for pixel contribution and derive derivatives symbolically. Maxi-
mizing the contribution of the farthest relevant sample point on a ray,
Marchesin et al. [MMD10] derived a blending weight for the sam-
ples. Ament et al. [AZD17] extended a linear visibility optimization
from semi-transparent geometry [GRT13,GRT14,GSME∗14] to vol-
ume data and realized that the optimization has a closed-form solu-
tion if smoothing is done separately in a post-process. This idea has
later been picked up for geometric data [GTG17,BRGG20,ZRPD20].
The problem is that this formulation reduces the visibility of a voxel
indirectly based on how much importance is gathered in front or
behind it, which does not measure how visible a certain voxel truly
is. In this paper, we measure the actual contribution of a fragment
to the final pixel color [CM11]. Unlike Correa and Ma [CM11], we
optimize for an extinction field and not for a parametric transfer
function. Further, Ament et al. [AZD17] performed a separate ex-
tinction optimization from the light source to illuminate relevant
objects, which can lead to inconsistent lighting. In this paper, we
optimize the extinction from camera and light source concurrently
to obtain an illumination that is consistent with the visible volume.

2.3. Viewpoint Optimization

As scientific data sets increase in resolution quickly, the automatic
generation of meaningful preview images or animation paths be-
came early on a research interest. By decomposing a volume data
set into a set of components and by using isosurface properties as
feature descriptor, a globally optimal viewpoint has been searched
for as a compromise between locally optimal viewpoints for each
component [TFTN05]. Another optimization target was an even
opacity distribution, an even distribution of salient features, and
more perceived curvatures [SJ06]. The opacity entropy [SJ06] has
later been applied in a differentiable volume renderer to find best
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viewpoints [WW22]. To balance between global structures or local
details two descriptors were introduced [TLB∗09]: a shape view
descriptor which evaluates the overall feature orientation, and a
detail view descriptor which measures the amount of visible de-
tails on boundary structures by estimating variances. A first infor-
mation theoretic approach based on entropy measures accounted
for the transfer function, the data distribution, the voxel visibil-
ity, view-likelihood and view-stability [BS05]. Several following
methods likewise expressed the quality of a viewpoint based on
information theoretic measures [CJ10], including multi-scale en-
tropy [VMN08]. The information theoretic approach was also ap-
plied to judge the image quality after a streamline generation in flow
visualization [XLS10, LMSC11, TMWS13]. To guide users towards
viewpoints that were chosen by experts, image similarity metrics
have been evaluated by majority voting [TWC∗16] and have been
estimated by deep learning [YLLY19]. In this paper, we optimize
for the extinction in the volume by measuring the amount of visible
important information, as given by the user, and we select a suitable
viewpoint simultaneously. None of the methods above attempted to
address both problems at the same time.

2.4. Direct Volume Rendering

Direct volume rendering is a popular approach for the visualization
of three-dimensional scalar fields [JSYR14]. For this, the scalar
field s(x) :D→ R, which is defined in a spatial domain D ⊆ R3, is
mapped via transfer functions to optical properties. Based on those,
a participating medium is constructed, which can be rendered from
a given viewpoint using light transport simulation methods [Jar08].
These computer graphics techniques may include illumination ef-
fects such as reflections and shadows to improve the spatial per-
ception. The volume rendering equation determines the radiance
L(x0← ω) seen at point x0 coming in from direction ω:

L(x0← ω) =
∫ x1

x0

T (x0↔ x) ·µs(x) ·Li(x← ω) dx (1)

The radiance is collected along the view ray x(t) = x0 + t ·ω, con-
sisting of three terms: the view ray transmittance T (x0 ← x), the
scattering coefficient µs(x), and the incident radiance Li(x← ω).
The subscript i in Li distinguishes the incident radiance from emitted
radiance Le, which is introduced later.

Transmittance T (x1 ↔ x2) describes the fraction of light that
begins its journey at point x1 and reaches point x2 without scattering:

T (x1↔ x2) = e−
∫ x2

x1
µt (x) dx (2)

The extinction coefficient µt(x) = µs(x)+ µa(x) probabilistically
describes the fraction of light that is either scattered (µs) or absorbed
(µa) per unit distance. It is therefore a number that depends on the
extent of the data set. This coefficient is used to define the optical
thickness of a medium, i.e., setting a small value makes a voxel
invisible, while a high value makes it appear opaque.

Scattering Coefficient µs(x) determines the visual appearance of
a location in a participating medium by defining the fraction of
photons that scatter per unit distance. In direct volume rendering, it
is common to apply phenomenological scattering models [JSYR14]:

µs(x) = µt(x) · c(x) (3)

x0

x

xL

T (x0↔ x)

T (x↔ xL)

Figure 2: Single-scattering light transport accumulates all incoming
light that gets reflected along the view ray towards the camera. The
camera is place at x0, the light source at xL and one exemplary
scattering point x is shown. The fraction of light arriving from the
light source at the scattering point is the transmittance T (x↔ xL)
and the fraction of light reaching the camera from the scattering
point is denoted by the transmittance T (x0↔ x).

where the color c(x) : D → [0,1]3 specifies per color channel the
fraction of extinct light that is lost due to scattering (µs/µt). A
low value means that light is absorbed (black), while a high value
indicates scattering.

Incident Radiance Li(x← ω) determines the amount of light in-
coming at point x and that is scattered in direction ω. We apply a
single-scattering model, which directly connects the scattering point
x to a light source at point xL that emits a radiance Le:

Li(x← ω) = f (x,ωL→ ω) ·T (x↔ xL) ·Le (4)

where the light ray transmittance T (x↔ xL) denotes the fraction of
light reaching the scattering point from the light source. Thus, as
shown in Fig. 2, two transmittance terms are considered: one from
the camera in Eq. (1) and one from the light source in Eq. (4). The
phase function f (x,ωL→ ω) describes how much incoming light
from direction ωL is being scattered into the outgoing direction ω.
We apply a shading similar to Ament et al. [AZD17], which con-
tains in our case normalized Blinn-Phong shading fs(x,ωL,ω) and
Henyey-Greenstein forward-scattering fv(x,ωL,ω) (with anisotropy
a = 0.6) [HG41].

f (x,ωL→ ω) = kv(x) · fv(x,ωL,ω)

+ ks(x) · fs(x,ωL,ω) · (ωL ·n(x))+
(5)

with the normal n(x) = ∇µ(x)
∥∇µ(x)∥ and a clamping of negative values

to zero (·)+. Following Ament et al. [AZD17], we later set kv(x) = 1
and ks(x) = ∥∇µ(x)∥.

Differentiable Volume Rendering. Inverse rendering refers to the
reconstruction of scene parameters from a given image [KBM∗20,
RRN∗20], which can be phrased as an optimization problem to
which iterative gradient-based solvers can be applied. It is therefore
necessary to determine how much a perturbation of a scene parame-
ter affects the final image, i.e., a gradient of the output image with re-
spect to the scene parameters is needed. In the field of direct volume
rendering, reverse automatic differentiation with analytic inversion
of blending functions has been proposed [WW22] and generative
networks have been trained [BLL19]. For global illumination simu-
lations, differentiable Monte Carlo renderers [NDVZJ19] have been
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proposed that approximate gradients [ZSGJ21] or calculate them
in two passes [VSJ21]. To address visibility discontinuities, edge
sampling towards silhouettes [LADL18], a bidirectional generation
of boundary paths that connect sensors and emitters [ZMY∗20],
and a transformation from boundary to area integrals [BLD20] have
been proposed. The path space formulation has recently been ex-
tended to optimize the boundary geometry of translucent volumetric
objects [YZM∗23]. In this paper, we model single-scattering light
transport on differentiable scalar fields s(x), which allows us to
compute the necessary derivatives symbolically.

3. Method

In volume visualization, visibility optimization of relevant informa-
tion is a long-standing problem [VG05, CWM∗09, CM11, AZD17].
In this paper, we introduce a concurrent optimization of the extinc-
tion field and the camera viewpoint to clear the view onto relevant
structures. To assess the visibility of relevant information, we mea-
sure the transmittance of relevant objects in the scene directly. In
the following section, we first formally introduce the variational
formulation that is used to derive the required partial derivatives.

3.1. Problem Statement

Given is a 3D scalar field s(x) :D→R in the spatial domainD⊆R3

that we want to visualize. Further, a differentiable 3D importance
field g(x) : D → [0,1] defines how important each region in the
domain is. Lastly, transfer functions are provided to compute color
c(x) :D→ [0,1]3 and base extinction µt(x) :D→ [0, µ̃t ] from the
scalar field s(x) with µ̃t being the majorant extinction, i.e., the
highest possible extinction coefficient. The base extinction µt(x) is
the extinction coefficient that our optimization will strive towards
if a voxel does not occlude any relevant information. Thus, if no
notion of relevance is given, our approach becomes a standard direct
volume rendering with µt(x) being the extinction coefficient.

Our goal is to find a new extinction field µt(x) : D → [0, µ̃t ] as
well as a perspective camera transformation gV (x) :D→Y , which
maps from world space D to view space Y , such that both together
produce a direct volume visualization with single-scattering light
transport in which the important regions are shown. This entails
the adaption of the extinction to reveal important structures and an
optimization of the camera position.

Differentiable Volume Rendering. In order to optimize for the un-
known functions µt(x) and gV (x), a differentiable volume renderer
is needed. Inserting Eqs. (3)–(4) into the volume rendering equation
in Eq. (1) gives a single-scattering radiance integral, which is dif-
ferentiable and contains both unknowns, the extinction coefficient
µt(x) and the camera transformation gV (x):

L =
∫ x1

x0

µt(x) · c(x) ·TV (gV (x)) · f (x,ωL→ ω) ·TL(gL(x)) ·Le dx

(6)

In this formulation, x0 and x1 are the entry and exit of a view ray.
The maps gV (x) : D → Y and gL(x) : D → Z define perspective
transformations from world space D into view space Y and light

space Z , respectively. Later, we introduce the view space trans-
mittance TV (y) = T (x0 ↔ g−1

V (y)) and light space transmittance
TL(z) = T (g−1

L (y)↔ xL), which depend on the extinction µt(x).

Variational Approach. We express the search for the optimal ex-
tinction coefficient µt(x) and the camera transformation gV (x) as
variational minimization problem. Variational calculus is a math-
ematical toolbox that allows for the optimization of functionals,
i.e., functions which receive other functions as input [GF63]. The
functional F that we will optimize later integrates a Lagrangian L
over the world space domain D:

F [µt(x),gV (x)] =
∫
D
L
(

x,µt(x),gV (x),
∂µt(x)

∂x
,

∂gV (x)
∂x

)
dx

(7)

In general, a necessary condition for the minimium of such func-
tional is given by the Euler-Lagrange equations [GF63]:

δF
δµt(x)

=
∂L

∂µt(x)
−

3

∑
j=1

∂

∂x j

 ∂L
∂

∂µt (x)
∂x j

= 0 (8)

δF
δgV (x)

=
∂L

∂gV (x)
−

3

∑
j=1

∂

∂x j

 ∂L
∂

∂gV (x)
∂x j

= 0 (9)

with x = (x1,x2,x3). These differential equations hold for every
point in the domain. Note that δF

δµt (x) in Eq. (8) is scalar-valued and

that δF
δgV (x) in Eq. (9) is vector-valued. In the following, we describe

the ingredients needed to define the functional that we minimize.

3.2. Camera Transformation

The first unknown of our optimization is the camera transformation
gV (x). In the following, we describe its degrees of freedom and
provide partial derivatives with respect to the degrees of freedoms.

Degrees of Freedom. For the efficient generation of view rays,
a camera transformation is often defined by three basis vectors
u,v,w ∈ R3 and by a camera location o ∈ D in world space,
as shown in Fig. 3. Instead of optimizing these vectors, we set
the camera to a fixed location and apply a world space rotation
R(α1,α2) ∈ SO(3) to the scene, which contains the unknown az-
imuthal and polar angles α1 and α2, keeping the camera upright:

R(α1,α2) =

 cos(α1) sin(α1)sin(α2) sin(α1)cos(α2)
0 cos(α2) −sin(α2)

−sin(α1) cos(α1)sin(α2) cos(α1) cos(α2)


(10)

Thus, the camera position is restricted to a sphere that encloses the
data set. Without loss of generality, the pivot point around which the
camera rotates is set to the origin of the world coordinate system.
During volume rendering, view rays are cast through the image
coordinates (y1,y2) ∈ [−1,1]2 via:

x(t) = R ·
(

u · y1 +v · y2 +w
∥u · y1 +v · y2 +w∥ t +o

)
(11)
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o
u

v

w

α1

α2

Figure 3: The camera orientation is defined by a u, v, w frame, and
the camera position is o. When optimizing for the optimal viewpoint,
we rotate the world space by the azimuthal and polar angles α1, α2.

Perspective Mapping. The perspective mapping gV (x) transforms
a world space coordinate x ∈ D to the camera space y ∈ Y =
[−1,1]× [−1,1]× [0,1] as follows:

gV (x) =
(
(v×w)Tk, (w×u)Tk, (u×v)T(RTx−o−w·zn)

(u×v)Tw·(z f −zn)

)T

(12)

with k = RTx−o
(u×v)T(RTx−o) . Under this perspective mapping, the world

space depth range [zn,z f ] along the w axis is mapped to a linear
depth in [0,1]. The inverse transformation g−1

V (y) is:

g−1
V (y) = R ·

(
(u · y1 +v · y2 +w) · (zn +(z f − zn) · y3)+o

)
(13)

Similarly, the transformation to the light space is given by a per-
spective mapping gL(x) :D→Z . We chose to model a point light,
although directional lights would be easily supported, as well.

Derivatives. The partial derivative of the transformation gV (x) with
respect to the rotation angles αi is computed symbolically:

∂gV (x)
∂αi

=

(
(v×w)T ∂k

∂αi
, (w×u)T ∂k

∂αi
,

(u×v)( ∂R
∂αi

Tx)
(u×v)Tw·(z f −zn))

)
(14)

with ∂k
∂αi

=
( ∂R

∂αi

Tx)·(u×v)T(RTx−o)−(RTx−o)·(u×v)T( ∂R
∂αi

Tx)
∥(u×v)T(RTx−o)∥2 . Using this

derivative, we can express how much the camera transformation
changes when varying the azimuthal and polar angle of the rotation.

3.3. View Space and Light Space Quantities

The second unknown is the extinction µt(x), which appears in the
transmittance in Eq. (2). The volume rendering equation in Eq. (6)
contains two transmittance terms: one is measured along view rays
(TV ), the other along light rays (TL). To accelerate computations we
discretize both onto perspective grids, as shown in Fig. 4.

Transmittance. We describe the view space transmittance TV (y) :
Y → [0,1] and the light space transmittance TL(z) : Z → [0,1] in
their respective view space and light space coordinates using the
view space transformation gV (x) :D→Y and the light space trans-
formation gL(x) :D→Z:

TV (y) = e−
∫ y

y0
µt (g−1

V (y′)) dy′ (15)

TL(z) = e−
∫ z

z0
µt (g−1

L (z′)) dz′ (16)

y0

y
y1

TV

GV

z0

z

z1

TL

GL

Figure 4: To efficiently sample the transmittance up to a certain
point and the amount of visible information behind that point, we
discretize the transmittance and visibility integrals onto perspective
grids, shown here for the view space (left) and the light space (right).

with the camera being placed at y0 and the light source being placed
at z0. The fields are discretized onto perspective grids with a resolu-
tion of X×Y ×Z by looping once over each ray:

TV (yi, j,k)≈
k−1

∏
k′=1

e−µt (g−1
V (yi, j,k′ ))·h (17)

TL(zi, j,k)≈
k−1

∏
k′=1

e−µt (g−1
L (zi, j,k′ ))·h (18)

where h is the grid spacing in view direction. Afterwards, the trans-
mittance can be looked up in world space by transforming to the
grid coordinates and by trilinearly interpolating the transmittance
value. For light rays, this is known as a shadow volume [AZD17].
In computer graphics, the exponential is often first-order Taylor
approximated, i.e., e−µt (xi)·h = e−αi ≈ 1−αi, which results in the
common alpha blending equations [BM08].

Visibility Integrals. How much an individual voxel strives to be
seen depends on the amount of relevant visible information behind
it. Visibility is thereby characterized by high extinction and transmit-
tance. Thus, we compute visibility-weighted importance integrals
behind a given point in view space (GV ) and light space (GL) as:

GV (y) =
∫ y1

y
g(g−1

V (y′)) ·µt(g−1
V (y′)) ·TV (y′) dy′ (19)

GL(z) =
∫ z1

z
g(g−1

L (z′)) ·µt(g−1
V (z′)) ·TL(z′) dz′ (20)

which are computed on a X ×Y × Z grid by traversing the rays
back-to-front, whenever the camera changes its position.

GV (yi, j,k)≈
Z

∑
k′=k+1

g(g−1
V (yi, j,k′)) ·µt(g−1

V (yi, j,k′)) ·TV (yi, j,k′) ·h

GL(zi, j,k)≈
Z

∑
k′=k+1

g(g−1
L (z′i, j,k′)) ·µt(g−1

L (zi, j,k′)) ·TL(zi, j,k′) ·h

with h being again the step size. With this, the amount of occluded
relevant information can be looked up at any world space position.

© 2024 The Authors.
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3.4. Optimization

Now we have all the ingredients needed to define the functional
that we aim to minimize. Afterwards, we provide its functional
derivatives and a gradient descent update for the optimization.

Energy. Similar to the opacity optimization energy [AZD17,
GTG17], we decompose our variational energy into multiple terms:

F [µt(x),gV (x)] = Fp +Fq +Fr (21)

with each individual term serving a specific task:

Fp =
p
2

∫
D
(µt(x)−µt(x))

2 dx (22)

Fq =−q
∫
D

g(x) ·µt(x) ·TV (gV (x)) dx (23)

Fr =−r
∫
D

g(x) ·µt(x) ·TL(gL(x)) dx (24)

where the extinction µt(x) is subject to the constraint:

0≤ µt(x)≤ µ̃t : ∀x ∈ D (25)

Fp in Eq. (22) is a regularization term that – in the absence of all
other terms – makes the unknown extinction µt(x) become equal to
the given base extinction µt(x). Thus, if no extinction optimization
is applied, we obtain a regular volume rendering.

Fq in Eq. (23) maximizes the extinction µt(x) of important struc-
tures (g(x) is high) such that they scatter more light and the transmit-
tance TV (x) is kept high, which makes sure that no object occludes
the view up to x. Phrased as a minimization, the term is negated.

Fr in Eq. (24) does the same from the perspective of the light
source. This ensures that light is reaching the relevant structures.

Since µt(x) in Eqs. (23)–(24) is unbounded, the constraint in
Eq. (25) is added. We set the upper bound µ̃t to the maximum
extinction that is present in the transfer function that produced µt(x).
Thereby, the volume does not become more optically dense than the
base volume rendering.

We set the same energy weights in all data sets p = 10−3, q = 10,
r = 1 unless mentioned otherwise. A parameter study is presented
in the supplemental material, where other choices are demonstrated.

With our approach it is possible to optimize for a single extinc-
tion field µt(x) that fulfills its visibility constraints from both the
camera and light perspective. Alternatively, we may also optimize
for two separate extinction fields: one for the camera constraint, and
one for the light constraint. The latter approach follows Ament et
al. [AZD17], which, however, may lead to an inconsistent lighting.
Later, in Section 4.2, we demonstrate and compare both approaches.

Partial Derivatives. Differentiation of Eqs. (22)–(24) according to
the Euler-Lagrange equation in Eq. (8) with respect to the extinction
µt(x) results in the following functional derivatives:

δFp

δµt
= p · (µt(x)−µt(x)) (26)

δFq

δµt
= q · (GV (gV (x))−g(x) ·TV (gV (x))) (27)

δFr

δµt
= r · (GL(gL(x))−g(x) ·TL(gL(x))) (28)

previous view 0s 1s 2s converged

Figure 5: To reach interactivity, the extinction optimization is car-
ried out over the course of multiple frames. Here, the delay of the
visibility adjustment after interactive camera adjustment is shown.
The grid resolution is adapted automatically to support interactivity.

Since only Fq depends on the camera transformation gV (x), and
thus the angles αi, there is only one functional derivative for the
camera optimization:

δFq

δαi
=−q

∫
D

g(x) ·µt(x) ·
δTV (gV (x))

δαi
dx (29)

Using µt(x) from the extinction optimization in Eq. (29) results in
a coupled optimization, for which the convergence requires care-
ful balancing of learning rates. Using a view-independent proxy
µt(x) := µ̃t ·g(x) in Eq. (29) instead is more stable and empirically
gave similar optimal camera positions. The functional derivatives are
derived in the additional material. We estimate the energy derivative
δFq
δαi

with second-order central differences.

Gradient Descent. To compute the extinction field µt(x) that ful-
fills the Euler-Lagrange equation in Eq. (8), we discretize the field
onto a world space grid with extinction values µt,i, which are opti-

mized via gradient descent, starting at an initial guess µ(0)t,i := µt(xi).
Thus, if the optimization is disabled (q = r = 0), we already see
the regular volume rendering. Likewise, to find the camera rotation
angles αi that fulfill the Euler-Lagrange equation in Eq. (9), we
apply the chain rule using Eq. (14), integrate contributions from all
points in the domain, and perform a gradient descent with step size
h, starting from an initial guess α

(0)
i = 0:

µ(n+1)
t,i ≈ µ(n)t,i −h · δF

δµt(x)
(30)

α
(n+1)
i ≈ α

(n)
i −h · δFq

δαi
(31)

To satisfy the constraint in Eq. (25), the extinctions µt,i are clamped
to the valid range after each gradient descent step. Since our func-
tional is non-linear, the result depends on the initial condition, which
is discussed later in Section 4.6.

3.5. Visualization System

We implemented our extinction and viewpoint optimization using
CUDA on the GPU, setting ourselves the following requirements:

(R1): Support camera navigation during extinction optimization.
(R2): Provide feedback on how much relevant information is seen.

Interactivity. When disabling the viewpoint optimization, the user
is able to change the camera transformation interactively in order
to explore the data set. To reach interactive frame rates (R1), the
iteration in Eq. (30) is deferred over multiple frames. Thus, during

© 2024 The Authors.
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S = 0.06 S = 0.37

Figure 6: To judge the visibility of relevant structures, we introduce
a visibility score S. Here, we see the improvement achieved over
direct volume rendering (left) compared to our method (right).

interactive camera navigation the optimization needs a few seconds
to adjust the visibility to the new viewpoint, see Fig. 5, which was
similarly the case in early optimization algorithms [GRT13].

Feedback. Our visibility optimizations incorporate the transmit-
tance of each object. To convey how much relevant information is
seen (R2), we accumulate a visibility score S ∈R+ over the domain:

S =
∫
D

g(x) ·µt(x) ·TV (gV (x)) dx (32)

The score is high if a voxel is important (g(x) is high), the voxel is
scattering light (µt(x) is high), and no other objects occluded the
view (TV (gV (x)) is high). Fig. 6 shows quantitative measurements
of the visibility score for different views.

Multi-Resolution Solver on GPU. To meet the above require-
ments, we implemented the gradient-based optimization with a
multi-resolution update of the grids of Section 3.3 on the GPU. Fol-
lowing 32 iterations on quarter resolution, the result is upscaled to
half resolution, and after 64 iterations, the result is upscaled to the
full resolution. The number of iterations per resolution level were
chosen empirically. Each optimization step includes the following:

1. calculate derivatives of energies with respect to the unknowns
2. gradient step on extinction field and on camera parameters
3. recalculate the view space and light space grids, cf. Section 3.3
4. calculate energies and metrics after the optimization step

The gradient descent steps are carried out with adaptive estimates
of lower-order moments by using the Adam method [KB17]. The
lower resolution grids that we start the optimization from do not
need additional memory, since they are stored at every second or
fourth grid point in the full resolution grid. Upscaling to a higher
resolution thereby becomes a simple interpolation problem.

4. Results

In the following, we apply our algorithm to a number of data sets
from fluid dynamics, geophysics, and medicine. After introducing
the data sets, we discuss the separate and joint extinction optimiza-
tion, we compare with previous work, study the impact of the grid
resolutions, provide performance measurements, and discuss limi-
tations. We refer to the supplemental material for an informal user
study, a parameter study of the weights q and r, as well as additional
comparisons with related work for a different camera view.

4.1. Test Data

The ROTATING MIXER contains a numerical simulation of a liquid
in a cylindrical container that is stirred into motion by three rotating
paddles. We show the vorticity [GT18] of this flow, highlighting
regions with exceptionally high vortical motion.

The EARTH MANTLE simulation resolves the sinking of cold,
dense material from the crust, and the rising of hot plumes from the
core [GBT21]. We visualize the temperature anomaly, which shows
the difference in temperature to the average temperature at a certain
depth and we highlight cold slabs with high importance.

The VISIBLE HUMAN data set (version 2.0) contains high-
resolution CT and MR scans of the head and neck of a male hu-
man [RHGJ03]. We visualize the CT data set and assigned bone
structures a high importance.

The HEPTANE FLAME data set contains a single time step from a
combustion simulation of a jet of heptane gas. The importance is set
to reproduce the visualizations of Ament et al. [AZD17].

4.2. Separate vs Joint Extinction Optimization

When minimizing Eqs. (22)–(24), we may either solve for one ex-
tinction grid µt(x) that clears the view from the camera and the
light, or we solve for two separate extinction grids by once setting
q = 0 and once setting r = 0. A joint solver has a lighting that is
consistent with the visible extinction field. In contrast, the separate
solution displays the context around the region of interest indepen-
dent of the illumination direction. Results for both approaches can
be seen in Fig. 7, where the nose and forehead have been removed
in the joint optimization to clear the path for the light. Unlike Ament
et al. [AZD17], we have the freedom to choose between the two
options, while they had to solve for both views separately.

4.3. Comparisons

Extinction Optimization. We compare our approach with three
extinction optimization algorithms in Fig. 8. Methods that do not
optimize the shadows are compared without rendering shadows, i.e.,
TL = 1. Viola et al. [VKG04] segmented the domain into multiple
objects and determined per object a sparseness level, which allows
for a smooth transition from fully transparent to fully opaque ob-
ject representations. We compare with their cylindrical maximum
importance projection, which determines along the ray the most
relevant object and then clips everything in front of this object. In
our reimplementation, we consider objects to be determined by the
g(x) = 0.5 level set, and start the regular ray marching at the first
level set intersection of the object with highest value along the view
ray. Being based on a maximum intensity projection, the algorithm
cannot retain depth information. This is particularly noticeable in
the VISIBLE HUMAN data set. Marchesin et al. [MMD10] com-
puted an importance-weighted color average of samples along the
view ray. Accordingly, the visibility score was equal-weighted along
the ray. We determined the transmittance for the blending with the
background by calculating the transmittance of the base extinction
field µ(x). Due to the order-independence of the compositing, depth
information cannot be maintained. While adding detail in some
regions, less relevant structures receive too much weight, which is
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DVR of scalar field DVR of importance field separate extinction optimization joint extinction optimization

Figure 7: With our approach we can either optimize for two separate extinction fields for the view from the camera and from the light, which
preserves more context, or the two views are optimized jointly, which produces a more consistent shadowing, but removes nose and forehead.

standard DVR importance [VKG04] [MMD10] [AZD17] our method [AZD17]∗ our method∗

S = 0.08 S = 0.17 S = 0.21 S = 0.002 S = 0.22 S = 0.26 S = 0.22 S = 0.26

S = 0.18 S = 0.53 S = 0.71 S = 0.004 S = 0.72 S = 0.86 S = 0.72 S = 0.86

S = 0.05 S = 0.23 S = 0.30 S = 0.002 S = 0.31 S = 0.37 S = 0.31 S = 0.37

S = 0.01 S = 0.03 S = 0.04 S = 0.0004 S = 0.04 S = 0.05 S = 0.04 S = 0.05
Figure 8: Comparison of extinction optimization methods on the EARTH MANTLE, VISIBLE HUMAN, HEPTANE FLAME, and ROTATING

MIXER data set. Viola et al. [VKG04] and Marchesin et al. [MMD10] did not include shadow optimizations and are therefore compared without
shadowing. Two additional columns (marked by ∗) compare Ament et al. [AZD17] with our method. Previous approaches [VKG04, MMD10]
provide limited depth perception. Ament et al. [AZD17] has global parameters, making it difficult to bring out differently important structures
throughout the domain. Some parts might even be lost entirely. In contrast, our method maximizes the visibility successfully everywhere.

particularly noticeable in the HEPTANE FLAME data set, as well as
in some parts of the EARTH MANTLE. Lastly, we compare with the
extinction optimized volume illumination by Ament et al. [AZD17],
which adjusts the extinction of each sample point by considering the
integral of squared importance in front and behind the sample point.

Here, the results are shown with and without shadowing. Ament
et al. has global parameters that bring out structures with different
importance, depending on how the weights are tuned. Some parts
of the neck are missing in the VISIBLE HUMAN and some vortex
structures in the wake of the paddles are missing in the ROTATING
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Figure 9: Visualization of the visibility score S for different viewing directions in the HEPTANE FLAME and EARTH MANTLE data set,
sampled on the Northern and Southern hemisphere (blue is best, red is worst). In addition, the best and worst camera perspective are shown.

MIXER. We reported the visibility scores S that were obtained by
the various methods by sampling them to world space. Since we
optimize towards this metric, our approach consistently reached the
highest score and showed details not only in high importance ranges.

Viewpoint Optimization. In our search for the optimal viewpoint,
the candidates are restricted to a sphere. In Fig. 9, we sampled the
sphere of possible viewing directions to convey the smoothness of
the objective function. We visualize the visibility score S of Eq. (32)
on the Northern and Southern hemisphere, showing that there are
distinct viewing directions that are significantly better or worse
than others. Further, the best and worst view are shown to convey
the expressiveness of the metric. In the best views, the HEPTANE

FLAME and the EARTH MANTLE utilize the screen space well,
while the worst views are those with the most occlusion.

4.4. Grid Resolution

We discretize the transmittance integrals TV (y), TL(z) and the vis-
ibility integrals GV (y), GL(z) in both view space and light space,
and we discretize the unknown extinction field µt(x) in world space.
In Fig. 10, we analyze the impact of different grid resolutions on
the obtained visual quality. Lowering the resolution of the world
space grid results in noticeable voxel artifacts. In comparison, low-
ering the resolution of the view space grids is less noticeable. A too
strong reduction shows grid artifacts in the shadows. As previously
discussed in Section 3.5, we use a multi-resolution optimization that
progresses along the diagonal of Fig. 10 from low to high resolution.

25
6
×

25
6
×

Z

76×76×76

Step: 57 ms

152×152×152

Step: 76 ms

304×304×304

Step: 189 ms

51
2
×

51
2
×

Z

Step: 77 ms Step: 127 ms Step: 281 ms

10
24
×

10
24
×

Z

Step: 175 ms Step: 319 ms Step: 678 ms

Figure 10: Here, we systematically vary the resolution of the world
space grid for the extinction µ(x) (in the columns) and the resolution
of the view space grid and light space grids for transmittance TV (y),
TL(z) and visibility integrals GV (y), GL(z) (in the rows). Hereby, Z
is the value of the world space resolution times two.
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Data Set World Space View Space Grid Updates Optimization Rendering VRAM Usage
ROTATING MIXER 256×256×256 1024×1024×512 447 ms 63 ms 47 ms 9.2GB
EARTH MANTLE 256×256×256 1024×1024×512 448 ms 65 ms 43 ms 9.2GB
VISIBLE HUMAN 472×472×472 984×984×984 793 ms 371 ms 65 ms 21.2GB
HEPTANE FLAME 304×304×304 1024×1024×608 530 ms 104 ms 44 ms 11.2GB

Table 1: Performance measurements for our method. All measurements were taken with an image resolution of 1024×1024.

4.5. Performance

In the following, we report on the performance measurements and
the memory consumption of our GPU implementation. All perfor-
mance measures were taken on a workstation that is equipped with
an AMD Ryzen 9 7950X CPU and an NVIDIA RTX 4090 GPU.
We list the timings for the update of the view space and light space
grids, a single optimization step, and the rendering time per frame
in Table 1 for all data sets at a viewport resolution of 1024×1024
pixels. The reported resolution of the world space and view space
grids are the ones used for all images throughout the paper, unless
mentioned otherwise. While the rendering is possible at interactive
rates (about 15 fps), the optimization process takes at full resolution
several seconds, since a single frame takes about half a second,
including the grid updates. To achieve interactivity, the view is opti-
mized and rendered at lower resolution when moving and continues
at full resolution when the camera is standing still, as demonstrated
earlier in Fig. 5. The current video memory consumption of up to
21 GB leaves opportunities for further research in the future.

4.6. Discussion

Non-Linearity. In contrast to previous methods [AZD17, GTG17],
our non-linear extinction optimization is not guaranteed to have a
unique solution. By further adding the viewpoint optimization on
top, the problem becomes even harder to solve. Similar to Weiss and
Westermann [WW22], the problem can be approached by starting
multiple optimizations from different initial conditions, which re-
sults in a sampling problem. In Fig. 9, we visualized the visibility
score of the visibility optimization on a sphere, showing that the
objective function is smooth enough for a gradient-based solver.

Memory Consumption. Currently, we discretize the transmittance
fields, the importance integrals, and the unknown extinction field
onto dense grids. The maximal resolution is thereby constraint by
the available GPU memory. To circumvent this limitation, several
approaches are imaginable, including sparse or hierarchical repre-
sentations, compression algorithms, or approximations by projection
into a different function basis [BRGG20].

Light Source Optimization. In this paper, we optimized the posi-
tion of the camera to find the best view. Likewise, it is imaginable
to optimize the light source position. This would, however, result in
a trivial but unwanted solution. Since the same energy is minimized
from the camera and light direction, cf. Eqs. (23)–(24), while the
term in Eq. (22) has comparatively low weight, the light source
would likely be placed at the camera location, resulting in a head-
light that minimizes shadowing. Headlights, however, are known to
have poor spatial perception. Instead, lateral lighting is preferable,
which would have to be phrased in an energy term. We consider this
an interesting direction for future research.

Perceptual Quality Metric. Our quality metric does not con-
sider the human perception. For example, our metric is invari-
ant to changes in the emitted radiance Le. From a perceptual
point of view, the quality metric should depend on the emitted
radiance, since human perception depends on the luminance. In
the future, it would be interesting to apply visual quality metrics
that include or agree with aspects of the human visual percep-
tion [CWM∗09, WQC∗10, BRB∗13].

5. Conclusions

Given a scalar-valued importance field, we proposed a variational
formulation for the concurrent optimization of an extinction field
and the camera viewpoint for direct volume rendering of three-
dimensional scalar fields. For this, we measured the contribution
of a voxel to the final pixel color directly by considering extinc-
tion and transmittance. We derived the necessary condition for an
optimal extinction field and for an optimal camera transformation.
The required functional derivatives that need to vanish have been
calculated analytically. We employed an iterative multi-resolution
gradient descent to find an optimum. The method has been applied
to scalar fields from fluid dynamics, geophysics, and medicine.

In the future, it would be interesting to further investigate how
the light source could be optimized, such that the visibility and
the perception are maximized. At present, our formulation requires
the scalar field and the importance field to be differentiable. Sup-
porting non-differentiable scenes would be an interesting avenue
for future research. So far, we discretized the unknown extinction
field onto a grid, which simplified the optimization. Other function
representations could be explored to reduce the required memory
footprint. Further, it is imaginable that more specialized numerical
solvers might help to accelerate the performance even further. It is
imaginable to combine our approach with existing smart visibility
techniques [VG05, AZD17] to provide interactive feedback during
navigation. Further, varying levels of sparseness [VKG05] could
add depth cues that anchor the important objects in the scene. Lastly,
finding camera paths that view relevant structures in time-dependent
data would be an interesting challenge.
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