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Figure 1: AMR rendering comparison using ExaBricks [WZU∗21] vs. our extended framework. Top-left: original “sci-vis style” rendering
(old) with ray marching, local shading with on-the-fly gradients, and a delta light source. Bottom-right: volumetric path tracing (new) with
multi scattering, isotropic phase function and ambient lighting. The original software used two RTX 8000 GPUs to render a convergence
frame with all quality settings set to maximum at 4 frames/sec.; our framework, with the best combination of optimizations discussed in this
paper, renders path-traced convergence frames with global illumination and significantly better image quality at 16 frames/sec. on a single
GeForce RTX 4090 GPU.

Abstract
Adaptive Mesh Refinement (AMR) is becoming a prevalent data representation for HPC, and thus also for scientific visualiza-
tion. AMR data is usually cell centric (which imposes numerous challenges), complex, and generally hard to render. Recent
work on GPU-accelerated AMR rendering has made much progress towards real-time volume and isosurface rendering of such
data, but so far this work has focused exclusively on ray marching, with simple lighting models and without scattering events or
global illumination. True high-quality rendering requires a modified approach that is able to trace arbitrary incoherent paths;
but this may not be a perfect fit for the types of data structures recently developed for ray marching. In this paper, we describe a
novel approach to high-quality path tracing of complex AMR data, with a specific focus on analyzing and comparing different
data structures and algorithms to achieve this goal.

1. Introduction

Adaptive Mesh Refinement (AMR) data is currently emerging as
one of the most prevalent and important types of data that any
visualization-focused renderer needs to be able to handle. Unfor-
tunately, from a rendering point of view AMR data comes with
several challenges: first, AMR data can come in many forms,
from octree-AMR [BWG11] to various forms of block-structured
AMR [CGL∗00]. Second, for rendering AMR data one requires a
sample reconstruction method to be defined over the AMR cells’
scalar values; and how this is defined can have a huge influence
on the images that the renderer produces. Third, most AMR data
is highly non-uniform in nature, requiring the renderer to be able
to concentrate its sampling effort where it matters most. Fourth,

rendering AMR data is expensive partly because of the aforemen-
tioned issue of non-uniformity of the signal, and partly because of
the hierarchical nature of the data. This means that each sample
typically requires some form of hierarchical data structure traver-
sal. Fifth, the recent advances in real-time ray- and path-tracing
have raised the stakes for sci-vis rendering, too. While arguably,
effects such as indirect illumination or soft shadows and ambient
lighting are most important for photorealism, demand for high-
quality Monte Carlo rendering is gradually becoming the de facto
for sci-vis rendering as well. Particularly, this change in paradigm
has been initiated by industry-quality tools like OSPRay [WJA∗17]
or OpenVKL [KJM21], which are readily available to sci-vis users
through ParaView or VisIt plugins [WUP∗18].
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We explore the problem of high-quality path traced rendering of
non-trivial AMR data sets (cf. Fig. 1). For that we start with the
ExaBricks AMR rendering framework by Wald et al. [WZU∗21],
and look at what is required to extend this to volumetric path trac-
ing. ExaBricks is both a framework and an acceleration data struc-
ture, similar to what kd-trees and BVHs are for surface ray tracing,
and while fundamentally, there is no reason this acceleration data
structure should not work with volumetric path tracing, it was not
originally optimized for that. It is an open research question if this
data structure optimized for sci-vis style volume ray marching can
be easily adapted to support the fundamentally different operation
of computing transmittance estimates as performed by a volumetric
path tracer.

In contrast to ray marching, the dominating operation in volume
path tracing is computing free-flight distances, which require an up-
per bound estimate for the extinction of the volume density, called
majorant. Though the method is correct irrespective of how much
that upper bound over-shoots the real value, too high a difference
between conservative majorant and actual extinction that varies in
space causes unnecessary samples to be taken, so that key to accel-
erating volume path tracing is finding majorants that vary in space
themselves and then form an acceleration structure.

In sci-vis, however–and in particular, for the type of data we are
looking at in this paper–computing good majorants is hard: one fac-
tor is that actual extinction at any point in space depends on a trans-
fer function that can map any data value to any extinction value,
and which can—and typically will—undergo radical changes as the
user explores the volume. A second factor is that the original AMR
structure wants to adapt to the data, so that even if we were hypo-
thetically allowed to relax the real-time requirement, finding good
alpha-mapped majorants is a hard problem in itself.

Building upon these challenges in AMR visualization, the key
contributions of this paper are the following:

• We extend the AMR framework ExaBricks by replacing alpha-
composited ray marching with volumetric path tracing, giving
rise to significantly improved time to image for sci-vis render-
ing, plus the possibility to interactively create images with much
better visual fidelity by using full global illumination.

• We investigate the question how efficient the existing ExaBricks
data structure is by systematically identifying and implementing
all of the most obvious alternative variations of that approach.

• We thoroughly analyze and compare the different alternatives
and discuss their technical implications. This includes a com-
parison to a hypothetical (and due to its construction times im-
practical) reference data structure that is allowed to perform near
unlimited preprocessing.

2. Related Work

Volume rendering is important for both scientific visualization (sci-
vis) and production rendering, but opposing goals regarding visual
fidelity on the one hand, and interactivity on the other hand, have
led the two fields to take largely orthogonal approaches. Even early
production rendering systems used scattering and virtual point
lights [LSK∗07] and have since transitioned to full global illumi-
nation with multi scattering and hundreds of bounces [FHP∗18].

Scientific visualization has traditionally focused on interactive ex-
ploration [HKRs∗06] based on ray marching [Lev88] with absorp-
tion and emission [Max95]. Rendering with this lighting model
can still be found in common scientific visualization systems like
VisIt [CBW∗12] or ParaView [AGL05].

Exposure renderer [KPB12] is one of the first examples to use
volumetric path tracing for sci-vis. It supports multi-scattering and
can produce highly realistic images [MB17,IZM17]. However, vol-
umetric path tracing only started to gain more attention from the
community recently when optimized software and hardware ray
tracing frameworks became widely available [WJA∗17, IGMM22].
Sci-vis renderers use simple isotropic phase functions covering the
whole medium, RGB albedo from color lookup tables as opposed
to full spectral rendering, and simple lighting models. Common
techniques to compute free-flight distance estimates—the stochas-
tic distance a photon travels without colliding with a particle from
the density—are unbiased, which is attractive also for scientific vi-
sualization [MSG∗23].

A number of techniques exist to compute free-flight distances
and transmittance estimates using stochastic sampling. Woodcock
(or delta-) tracking [WMPT65] is one of the oldest methods and
virtually “homogenizes” the volume by introducing fictitious par-
ticles that produce null collisions where the ray is extended with-
out a change in direction. Other estimators include decomposition
tracking [KHLN17], residual ratio tracking [NSJ14], or unbiased
ray marching using power series expansion [KDPN21].

Combined with spatially varying local majorants [NSJ14], un-
biased transmittance and radiance estimates can be found much
faster than with quadrature techniques, which is attractive for in-
teractive exploration. In this sense, local majorants allow for the
equivalent of empty space skipping and adaptive sampling, which
are popular acceleration techniques in scientific volume render-
ing [ZSL19, ZSL21, WZM21]. In contrast to approaches that ap-
proximate the local frequency using the number of local cells and
their sizes [MUWP19], majorants directly account for the actual
frequency, which is represented by the volume density in the local
region.

Commonly used data structures that allow for traversal with lo-
cal majorants are kd-trees [YIC∗10] as well as uniform macrocell
grids that are traversed using the 3D digital differential analyzer
(DDA) algorithm [SKTM11]. Bounding volume hierarchies (BVH)
have received less attention as direct volume rendering accelera-
tors, as the predominant techniques in sci-vis traditionally required
ordered traversal. Morrical et al. [MSG∗23] used BVHs to acceler-
ate an interactive volume path tracer, but concluded that a simple
DDA grid implementation was more efficient. Approaches using
BVHs as empty space skipping accelerators for volume rendering
with front-to-back alpha compositing required the bounding boxes
at the leaf nodes to not overlap [ZHL19]. The OpenVDB data struc-
ture that is popular in production rendering uses a hierarchical grid
and DDA traversal with a fixed hierarchy size [Mus13]. Hofmann
et al. [HE21] also provide a recent summarization of multi-level
DDA traversal for volumetric path tracing on GPUs.

The term adaptive mesh refinement (AMR) was originally
coined by Berger and Collela [BO84, BC89] at NASA. It refers
to simulation codes that hierarchically subdivide a (often uniform)
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grid, both in space and in time, in regions where the simulation
domain is more interesting than in others. Subdivision schemes
include octrees [BWG11], or block-structured AMR [CGL∗00]
where the rectangular regions are allowed to be irregular.

Virtually all existing AMR simulation codes (e.g.,
FLASH [DFG∗08], Lava [KBH∗14], etc.) output data that is
cell-centric and results in T-junctions at odd level boundaries.
Work by Wald et al. [WBUK17] and by Wang et al. [WWW∗19]
has proposed interpolators that are continuous even at level bound-
aries, which is important for artifact-free visualization. These
interpolators use sampling routines that perform neighbor queries
by traversing tree data structures. If not carefully designed they
require traversing those data structures per sample taken, resulting
in non-trivial reconstruction costs infeasible for GPUs. ExaBricks
by Wald et al. [WZU∗21], which is explained in more detail in
Section 3.2, provides an acceleration structure to accomplish fast
AMR cell location on GPUs.

For rendering octree-based AMR specifically, Wang et
al. [WMU∗20] developed high-quality reconstruction filters for di-
rect ray tracing. Other authors have also focused on large-scale
out-of-core AMR rendering, such as the interactive streaming and
caching framework proposed by Wu et al. [WDM22] targeted at
CPU rendering, or the framework by Zellmann et al. [ZWS∗22],
who proposed a similar method for AMR streaming and rendering
on GPUs, but focused on time-varying data.

GPU path tracing native AMR data, to our knowledge, has
not been proposed by the literature yet. Closest to this are
OpenVKL [KJM21] that can path trace on the CPU but does not
use any of the optimizations necessary for GPUs, and the frame-
work proposed by Zellmann et al. [ZWMW23] that renders the
AMR data by converting it to an unstructured mesh with voxels.

3. Background and Method Overview

In this section we discuss how to integrate volumetric path tracing
(VPT) into a framework like Wald et al.’s ExaBricks [WZU∗21],
which can render AMR data natively. A key requirement of our
method is that VPT is compatible with RGBα transfer functions
that contribute albedo and extinction coefficients.

3.1. Scientific Visualization and Volumetric Path Tracing

In scientific visualization (sci-vis), volume renderers traditionally
use the absorption plus emission model [Max95], often imple-
mented with ray marching [Lev88], where for each screen space
sample the volume is sampled at positions with uniform step size
dt. At each position an indirect RGBα transfer function lookup pro-
vides color and opacity. Final colors for the screen space sample are
obtained via alpha compositing [PD84].

Rendering with volumetric path tracing (VPT) is fundamentally
different in that opacity sampling and compositing are replaced
with stochastically sampling the transmittance of light along a ray
segment. The light then possibly (but not necessarily) bounces. Fi-
nal screen space samples are averaged in the accumulation buffer
instead of using alpha compositing. Despite (or probably even be-
cause of) those differences, the approach has merits also for sci-vis
where it so far has not gained much attention yet.

Algorithm 1 Delta tracking over the range (tmin, tmax), which is
subdivided into segments ⟨t0i, t1i, µ̄i⟩ that have local majorants µ̄i.

1: function DELTATRACKING(o, ω, tmin, tmax)
2: t = tmin
3: for all segments ⟨t0i, t1i, µ̄i⟩ ∈ range(tmin, tmax) do
4: do
5: tcurr = max(t, t0i)
6: ζ = RAND()
7: tcurr = tcurr − log (1−ζ)

µ̄i
8: if tcurr ≥ t1i then
9: break

10: end if
11: ξ = RAND()
12: while ξ >

µ(o+tcurr∗ω)
µ̄i

13: if tcurr < t1i then
14: t = min(t, tcurr)
15: end if
16: end for
17: return t
18: end function

The most notable advantage is that transmittance estimates are
computed with much fewer volume samples than with ray march-
ing. This comes at the cost of Monte Carlo noise, which however
tends to converge over a few samples. Where the fast transmittance
estimates pay off particularly is shadow computation: with a ray
marcher, marching another volume ray towards the light source
at each sample position is infeasible. With VPT a shadow ray is
traced only when a collision occurs. This happens when (stochasti-
cally) the light is fully extinct and the free-flight distance reached.
Another advantage is that VPT is unbiased, which can give better
correctness guarantees. Finally, it is perfectly viable to implement
the absorption plus emission model based on the transmittance es-
timate routine used in VPT, and by that improving the time to (first)
image, yet at the cost of introducing some noise.

We add VPT to the ExaBricks framework [WZU∗21]. A key
change necessary is replacing the ray marcher used by ExaBricks
with a tracking estimator that computes stochastic free-flight
distances that light passes through the volume without being
blocked. Considering the Woodcock (also delta-) tracking algo-
rithm [WMPT65] (cf. Algorithm 1) as an example, this estima-
tor employs two stochastic processes–rejection and inversion sam-
pling; rejection sampling depends on the so called majorant extinc-
tion coefficient for a region of space (in the following called µ̄, or
µ̄i if multiple majorants are encountered along a ray segment).

In Algorithm 1 a ray, given by its origin o, direction ω, and range
[tmin, tmax], is traversed through the volume. Rejection sampling de-
cides if a null collision occurred; in that case, if the ray is still in-
side the tested segment, traversal continues in the same direction
and another sample must be taken. This decision is made in line 12
of Algorithm 1. The closer the majorant µ̄i matches the actual den-
sity µ(x) at the sample position x ∈R3, the less often the do...while
loop is executed, and the less often the volume is sampled.

This gives rise to acceleration data structures over regions of
space—or groups of objects—to find majorants that tightly bound
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the local density. This is indicated in Algorithm 1 by the outer for
loop over all segments ⟨t0i, t1i, µ̄i⟩ that the range [tmin, tmax] is di-
vided into; in practice, those segments are provided by a spatial
accelerator like a grid or kd-tree, or by a bounding volume hier-
archy (BVH). Below we explain in more detail how to implement
such acceleration structures.

A requirement of sci-vis is that the volumes are color-mapped us-
ing RGBα transfer functions; then α becomes the extinction coef-
ficient µ(x) from Algorithm 1. RGB is interpreted as albedo, which
gets evaluated during shading. Since µ(x) now depends on the alpha
transfer function, indirectly, so do the majorants µ̄i. When spatially
varying majorants are used as an acceleration data structure, hence,
it is required that majorants can be recomputed interactively when
the RGBα map changes. However, naïvely iterating over every cell
of the volume to recompute the majorants is infeasible for typical
sci-vis data set sizes.

Instead, we pre-process the data and store the min/max ranges
with the accelerator leaves, as suggested by Knoll et al. [KWPH06].
When the RGBα map changes, this allows us to iterate over the ac-
celerator leaf nodes and use the min/max ranges as indices into the
RGBα map. The majorant for the accelerator leaf is the maximum
α value the RGBα map takes on inside that range. In this paper, we
assume that majorants are computed indirectly to maintain inter-
activity when updating transfer functions, but also seek to answer
the question how much worse this is compared to a hypothetical
pre-classified data structure without this restriction.

3.2. Extending the ExaBricks Framework

The ExaBricks framework and data structure have been explained
in detail by prior works [WZU∗21, ZSM∗22, ZWS∗22]. We refer
the reader to these for details. ExaBricks is a native AMR data
structure, i.e., it does not resample or transform the AMR subgrids
to unstructured elements, but samples the given cells directly. In its
original form, ExaBricks was optimized to perform ray marching
on GPUs. We extend this data structure to support volumetric path
tracing. To our knowledge, volumetric path tracing using a native
AMR sampling structure has not yet been proposed by the litera-
ture.

ExaBricks first generates bricks of same-level cells in the spirit
of Kähler et al. [KSH03] so the builtin ray marcher can traverse rel-
atively large coherent regions of space without requiring hierarchy
traversals. Those bricks are much bigger in size than the original
octree leaf nodes or block-structured AMR subgrids.

At the level boundaries, the bricks overlap by half a cell, to
support reconstruction with tent-shaped basis functions. In the re-
sulting overlap regions, filtered data values are obtained as a lin-
ear combination of the overlapping cell values. To make the non-
convex overlap regions more rendering-friendly, Wald et al. subdi-
vide them using a kd-tree. The domain boxes of the kd-tree leaves
form what the authors call the active brick regions (ABRs).

An OptiX BVH is used to traverse the ABRs in hardware. Empty
ABRs are culled when the alpha transfer function changes; adaptive
sampling is achieved by adjusting the marcher’s step size to the size
of the finest cell covered by the ABR. We extend the data structure
to support VPT. For that we need to be able to support ray segment

Figure 2: Visualization of active brick regions (ABRs) for the
LANL impact data set. Top left: volume rendering. Top right: the
extinction of the ABRs is set to their majorant extinction, the RGB
albedo is derived from the ABR ID. Bottom: the two insets from
above; ABRs vary in size and shape, and so do their majorants.

traversal as in Algorithm 1, to obtain local majorants µ̄i that tightly
bound the density along those segments, and support for point loca-
tion queries to compute the local density and extinction coefficients
µ(x) using an AMR reconstruction filter.

The differences between a volume ray marcher and volumetric
path tracer, and the challenges regarding memory access patterns
are illustrated in Fig. 3. In the paper we explore different accel-
eration structures, including directly using the ABRs for segment
traversal and sample reconstruction, but also evaluate alternative
strategies. As in surface ray tracing, the quality of the acceleration
structure has a large influence on performance, and it is unclear
if the ABRs serve that purpose well. An example visualization of
majorants obtained from ABRs is shown in Fig. 2.

We use CUDA and OptiX 7 to implement our extensions as this
is the software framework also used by ExaBricks. We try to make
use of hardware ray tracing where possible to accelerate segment
traversal and sampling the AMR data structure.

4. Sci-Vis Volumetric Path Tracer

We implement volumetric path tracing (VPT) with OptiX 7. We
support three visualization modes with different quality settings:
absorption plus emission, realized with Woodcock tracking; single
scattering, where an additional bounce to a light source chosen at
random is performed to compute volumetric shadows; and multi
scattering using a global phase function that allows the light to
bounce arbitrarily. The different quality settings can have a tremen-
dous impact on visual fidelity, as can be seen in Fig. 4.

Inside the OptiX ray generation program, we generate camera

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



S. Zellmann et al. / Beyond ExaBricks: GPU Volume Path Tracing of AMR Data 5 of 12

Real Interaction
Null Collision
AMR Cell lookups

(a) (b)

Figure 3: Traversal and cell location with ray marching and with
Woodcock tracking. (a) A marcher amortizes traversal costs when
all rays in a GPU thread group take multiple samples from the same
ABR or brick. (b) A path tracer often traverses the ABRs or bricks,
only takes a single sample, and then leaves the region again due to
scattering, or due to non-uniform steps taken due to null collisions.

Figure 4: AMR volumetric path tracing with different quality set-
tings. Top: exajet vorticity field, bottom: LANL Impact, t=46112.
Left: absorption plus emission (lighting model used by sci-vis ray
marchers). Middle: path traced single scattering with point light
source. Right: full global illumination using multi scattering.

rays with random jitter to compute screen space samples. For the
tracking estimator implementation, the rays traverse an acceleration
structure (as previously described); at each sampling position they
compute the extinction coefficient µ(x) by first sampling into the
volume (using an AMR sample acceleration structure), and then
post-classifying the sample using the RGBα transfer function.

Given those two operations, which are described and evaluated in
detail below—segment traversal and volume sampling—free-flight
distances are computed that are required by all three visualization
modes. For the absorption and emission model, the sample color is
proportional to the albedo from the transfer function at the position
where the collision occurred. The single scattering estimator casts
a shadow feeler towards a randomly chosen light source, and the
albedo gets weighted by the transmission between sample position
and light source that we compute using ratio tracking [NSJ14]. In
the case of multi scattering we evaluate a Henyey Greenstein phase
function and perform bounces in a while loop inside the ray gen-
eration program. Based on the throughput, we terminate paths at
random using Russian roulette.

Since we interpret the RGB component of the RGBα trans-
fer function as albedo, the path throughput is an RGB tuple as
well—and so is the final screen space sample. We accumulate the
screen space samples in a device-side accumulation buffer using a
weighted average. Using an interactive prototypical viewer, when-
ever the camera changes, we reset accumulation. The accumula-
tion buffer content is periodically presented as sRGB color tone
mapped and drawn into an OpenGL pixelbuffer object mapped us-
ing CUDA/GL interop.

We describe how to implement the two core routines for VPT—
ray segment traversal and AMR data sampling—in the following
sections. The most obvious way to implement those operations is
by using the existing ABRs (cf. Section 3.2). In the following sec-
tions, we explain the computation of ABR majorants and introduce
alternative methods for spatial and object subdivision, which facil-
itate traversal and sampling of the AMR data structure.

5. Acceleration Structures for Traversal and Sampling

Volume acceleration data structures partition the ray into segments
[t0i, t1i] that each have their own majorant µ̄i. Inside the segments,
the rays are sampled. In this section we describe different strategies
to implement those two operations. A restriction of hardware ray
tracing is that when a ray traverses a BVH and the intersection or
hit program is called, tracing rays against another hardware BVH
is not permitted. It is thus not valid to use one BVH to traverse
segments, and while integrating a segment traversing another BVH
for sample reconstruction.

Alternatives to using two different hardware accelerated BVHs
are using software acceleration structures for either of the opera-
tions; using the same acceleration structure for traversal and sam-
pling; or halting the (outer) ray segment traversal for traversal, and
then restarting it by setting the ray’s tmin parameter to the previous
segment’s tmax. Each strategy we propose implements one of those
alternatives.

5.1. Ray Segment Traversal Data Structures

In this subsection we discuss acceleration structures for ray seg-
ment traversal. Sampling data structures are discussed in Sec-
tion 5.2. To facilitate interactive transfer function updates, all
traversal accelerators (except the non-interactive reference de-
scribed in Section 5.1.4) maintain two lists for each leaf node or
leaf cell: one list with min/max ranges representing the actual data,
and a list of majorants that is updated when the transfer function
changes, by iterating over the list of ranges. The non-interactive
reference stores the list of majorants only and does not support in-
teractive transfer function updates.

5.1.1. Active Brick Region Traversal

One way to extend ExaBricks to obtain local majorants is to use the
ABRs directly. The ABR extents are precomputed when the data set
is loaded, and so is the list of min/max value ranges. One advan-
tage of this mode is that it utilizes the same acceleration structure
for both segment provisioning (⟨t0i, t1i, µ̄i⟩) and sampling, as the
ABRs also store the overlapping brick IDs and with that all the in-
formation necessary for sample reconstruction (cf. Section 5.2.1);
additional BVH traversal is hence not required.

© 2024 The Authors.
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(a) (b) (c) (d)

Figure 5: Computing min/max data ranges for ABRs. (a) Level 2
(blue) and level 0 (red) bricks. ABRs for the two bricks are shown
at the bottom. (b) Min/max’s of the ABRs whose tent basis func-
tion domains overlap the cells from the level 2 brick exclusively.
Dashed lines show the basis domains. (c) Min/max computation
for the ABRs that overlap cells from both levels. (d) Min/max com-
putation for the level 0 cells only. The min/max ranges are later
used as indices into the alpha transfer function to obtain majorants
on-the-fly.

(a) (b) (c)
Figure 6: Computing min/max data ranges for direct brick traver-
sal. (a) Level 2 brick (blue) and level 0 brick (red) at the top, with
the respective basis function domains (dashed outlines) shown at
the bottom. (b) All cells whose basis domains overlap the brick do-
mains of the level 2 brick contribute their data value. (c) Cells that
contribute their data value to the data range of the level 0 brick.
Compared to ABR data ranges (cf. Fig. 5), we obtain fewer spa-
tial/object regions where cells overlap, but their data ranges are
much more conservative, and so are the majorants that are com-
puted from those data ranges on-the-fly.

How min/max ranges for ABRs are computed is shown in Fig. 5.
Given the two bricks at the top, we show the ABRs resulting at the
bottom of Fig. 5a. Fig. 5b–d illustrates how the cells of the two
bricks project to the ABRs based on their basis function domains.

5.1.2. Direct Brick Traversal

Another data structure that is directly available to us (although we
usually do not maintain a traversal data structure for that) are the
(Exa-)bricks themselves. While the default mode traverses ABRs,
and bricks are only indirectly accessed during ABR traversal, it is
also possible to traverse the bricks directly using an OptiX BVH.

We show min/max data range computation for bricks in Fig. 6.
Every cell that overlaps a brick’s domain contributes its data value
to the min/max range of that brick. We observe that the subdivision
with bricks is much coarser than the ABR subdivision (cf. Fig. 5),
so that a single overlapping cell can easily “infect” the whole brick
with its value. A brick that would otherwise have been empty can
now become “active” only due to that single cell—where the ABR

...

...

(a) (b) (c) (d)

Figure 7: Projecting cell values to the min/max data ranges of the
macrocells of a uniform grid. (a) Level 2 (blue) and level 0 (red)
brick (top) and the uniform grid to construct (bottom). (b-d) Three
macrocells, and how their value range is affected by overlapping
AMR cells and their basis function domains.

subdivision would effectively have split only the region of overlap
off and assigned it its own min/max range.

Bricks can be traversed in two different ways—either via their
bounds (solid lines at the bottom of Fig. 6a–c) or via their domains
(dashed lines at the bottom of Fig. 6a–c). The primary trade-off
is that bounds traversal results in less overlap and potentially less
costly BVH traversal. Domains are, however, later also used for
sampling (cf. Section 5.2.2), while the bounds cannot be used for
sampling directly; i.e., by traversing domains, we can save a costly
cell location operation that involves a restart and another BVH
traversal. Besides, we can save memory by storing a single data
structure for traversal and sampling.

5.1.3. Traversal Using a Uniform Grid

The third option we consider is using a uniform grid with macro-
cells; effectively, this is the same method proposed by Szirmay-
Kalos et al. [SKTM11]. Only with AMR, it is debatable if
macrocell is a good description because coarse AMR cells can eas-
ily be several integer factors bigger in size than the macrocell itself.
It is thus also not that simple to derive a good grid spacing from
just the dimensions of the AMR grid; as a rule of thumb a good cell
spacing is one where a macrocell spans many finest-level cells (a
quantitative evaluation can also be found in Section 6).

When constructing the grids and min/max data ranges, we thus
have to be careful to compute the real union of the AMR cells’ basis
function domains with all their overlapping macrocells. We imple-
ment this by running a CUDA kernel over all the AMR cells. Each
thread computes the domain of its cell and splats the value range
onto the overlapping macrocells in a loop. The resulting mapping
is exemplarily shown for three macrocells in Fig. 7.

The resulting uniform grid can either be traversed in software
using DDA, as proposed by Szirmay-Kalos [SKTM11], or using
OptiX: for that we first cull all the empty macrocells (subject to
the alpha transfer function), and construct axis-aligned box user
primitives from the non-empty macrocells, using the same value
range/majorant logic as before. This mode allows us to traverse the
macrocells in hardware, but requires more memory to accommo-
date the grid itself (which is dominated by the range and majorant
lists), plus the OptiX BVH.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



S. Zellmann et al. / Beyond ExaBricks: GPU Volume Path Tracing of AMR Data 7 of 12

5.1.4. Non-Interactive Traversal Structure

An interesting question we seek to answer is how bad such inter-
active data structures would perform compared to a data structure
that can be fully pre-computed, given a single, hand-picked alpha
transfer function. Interactive transfer functions add additional chal-
lenges, yet we note that even without that, finding good majorants
for AMR data given a single transfer function is far from trivial.
However one decides to build the accelerator, one will either guide
the construction by using the cells, which represent a whole set of
spatial arrangements, or the (hand-picked) transfer function, which
represents a potentially different arrangement, but optimizing the
accelerator for both is generally hard.

As a compromise that we believe should result in relatively high-
quality accelerators we implemented a kd-tree builder that pre-
applies the RGBα transfer function to the volume data, then com-
putes splits based on the knowledge of how the spatial arrange-
ment turns out after transfer function application. This process is
guided by a binned surface area heuristic (SAH) as proposed by
Fong et al. [FWKH17]. Split plane placement is no longer guided
by the AMR grid, but by the pre-classified data values.

We use binning [ZSL21] with seven split candidates per axis, and
a priority queue-based builder to obtain a desired, pre-configurable
number of leaf nodes (for the later benchmarks empirically de-
termined as the one giving optimal frames/sec. per benchmark).
We only keep the leaf nodes and feed them into the OptiX BVH
builder so we can traverse them in hardware. This kd-tree needs to
be fully rebuilt per transfer function change, and depending on the
configuration can take on the order of several hours and longer. As
such, this is an idealized benchmark telling us what performance
we could achieve if the transfer function was known a priori.

In addition to the challenges discussed above, we found that even
with prior knowledge of the transfer function, finding optimal ma-
jorant splits is non-trivial. First, for large volumes it is likely that
the upper level split candidates have the same majorants on each
side, in which case an arbitrary split must be chosen (the heuris-
tic by Fong et al. [FWKH17] biases the split position towards the
spatial median). Second, pre-classifying the AMR cells only at the
known data points is not enough to give correct majorants; rather,
when interpolating between two adjacent cells, again, any of the
alpha values in the voxel range can be assumed, so that it is again
necessary to conservatively classify with the transfer function in-
side the whole value range and not just the discrete cell values.

We observed that our biased heuristic will often generate spatial
median splits, and only generates SAH-optimized, yet still quite
conservative majorants near the leaf level. We believe that an op-
timal kd-tree builder would at least be guided by the AMR cell
sizes, as are the brick and ABR builders; since interactive transfer
function updates are an important objective of ours, further investi-
gation of this is interesting future work but not within the scope of
our paper.

5.2. Sample Reconstruction Data Structures

Given a ray segment to integrate, the next operation that requires
an acceleration structure is sample reconstruction. We resort to two

10
2

10
4

10
6

10
8

# Macro Cells

0

5

10

15

20

fra
m

es
/s

ec

cloud

DDA
RTX

10
2

10
4

10
6

10
8

# Macro Cells

0

8

16

24

32

fra
m

es
/s

ec

meteor-20k

DDA
RTX

10
2

10
4

10
6

10
8

# Macro Cells

0

6

12

18

24

fra
m

es
/s

ec

meteor-46k

DDA
RTX

10
2

10
4

10
6

10
8

# Macro Cells

0

3

6

9

12

fra
m

es
/s

ec

gear

DDA
RTX

10
2

10
4

10
6

10
8

# Macro Cells

0

4

8

12

16

fra
m

es
/s

ec

exajet-wing

DDA
RTX

10
2

10
4

10
6

10
8

# Macro Cells

0.0

2.5

5.0

7.5

10.0

fra
m

es
/s

ec

exajet-rear

DDA
RTX

Figure 8: Performance (frames/sec.) for different uniform grid
sizes. Optima are reached at around 1283 (cloud), 128× 128× 64
(meteor-20k, meteor-46k), 1024×1024×256 (gear), and between
512×256×256 and 5123 (exajet) macrocells.

different methods for this purpose. Both use an OptiX BVH to
perform cell location with zero-length rays [MUWP19, ZSM∗22]
whose origins align with the sampling positions. The ultimate goal
is to find all the cells that overlap the sampling position, allowing
us to compute the reconstructed value using tent basis functions.
The basis functions are evaluated on-the-fly within an OptiX in-
tersection program. We explore two options to obtain the overlap
regions for that, namely, using the ABRs, and using brick domains
to compute overlap regions on-the-fly.

5.2.1. Option 1: Sample Reconstruction via ABRs

The first option we propose is to locate cells with OptiX using the
ABR BVH. Note that the implementation is mostly orthogonal to
which traversal method is used, so we can, e.g., use the ABR BVH
for sampling, but use a grid or brick subdivision for traversal. If the
traversal method also employs ABRs, then point location traver-
sal can be expedited by directly iterating over the ABR’s brick list.
Otherwise a zero-length ray must be traced to locate the cells nec-
essary to reconstruct the value at x.

5.2.2. Option 2: Extended (Exa-)Brick Sampling

An alternative to using ABRs is to instead perform cell location
over the bricks that the ABRs are based off. The bricks’ bounding
boxes form a spatial decomposition without overlap, so we cannot
use them directly. Instead, we extend the brick domains to include
the reconstruction filter overlap, by padding them by a half cell in
each direction. Note that this is the same data structure also used
for segment traversal illustrated in Fig. 6. Again, if both traversal
and sampling use the same acceleration structure, the segment inte-
grated over can be sampled directly. When implementing sampling
this way, in overlap regions, the OptiX intersection program will
encounter multiple overlapping brick domains, though in contrast
to ABRs, there is no explicit adjacency list so the bricks are only
considered adjacent because they are visited one after another using
the sampling ray. This approach essentially computes the overlap
regions dynamically, in contrast to the pre-computed method used
with ABRs.

6. Evaluation

For the evaluation we concentrate on runtime and memory per-
formance of the different combinations of acceleration structures.

© 2024 The Authors.
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Rendering (“spiky”) Rendering (“foggy”) ABR Majorants Brick Majorants Grid Majorants Preclass. Majorants

Data set: TAC Molecular Cloud (“cloud”), 102 M cells

Data set: LANL Impact at t=20060 (“meteor-20k”), 158 M cells

Data set: LANL Impact at t=46112 (“meteor-46k”), 283 M cells

Data set: NASA Landing Gear (“gear”), 262 M cells

Data set: NASA Exajet, wing view (“exajet-wing”), 1.31 B cells

Data set: NASA Exajet, rear view (“exajet-rear”), 1.31 B cells

Table 1: Data sets used for the evaluation, and majorants for the traversal data structures from Section 5.1. Black images indicate that the
camera origin falls inside the density, which happens for the landing gear (also see Fig. 9 for a zoomed-out visualization of that data set).

Our goal is to compare the performance of two segment traver-
sal structures: one adaptable to transfer function changes (sections
Section 5.1.1, Section 5.1.2, Section 5.1.3), and one optimized for
a single transfer function (Section 5.1.4). Another question we ex-
plore is if spatial acceleration structures (grids, kd-trees) have an

advantage over object structures (BVHs)—or the other way around,
when being used for ray segment traversal; we are also interested in
if, for this kind of volume data it is beneficial to use the same accel-
eration structures for traversal and sampling. And finally, we want
to explore if a universal combination of acceleration structures ex-

© 2024 The Authors.
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trav. samp. cloud meteor-20k meteor-46k gear exajet-rear exajet-wing

spiky foggy spiky foggy spiky foggy spiky foggy spiky foggy spiky foggy

ABR ABR 19.99 57.39 26.60 32.08 14.45 21.29 5.93 42.45 10.40 24.39 12.44 26.41
ext.brick 14.67 41.40 21.12 28.16 12.31 19.68 4.41 25.57 9.45 20.62 11.30 22.65

grid+DDA ABR 20.78 62.13 35.88 82.31 24.28 66.80 8.84 27.86 8.15 14.23 10.45 21.29
ext.brick 20.20 62.10 34.46 81.22 24.01 66.75 7.98 27.26 8.06 14.40 10.54 21.64

grid+RTX ABR 18.14 36.59 30.07 55.88 19.13 40.53 13.40 66.82 11.12 20.84 15.01 32.14
ext.brick 18.37 37.68 29.47 56.50 19.20 40.87 12.30 61.14 11.12 21.04 15.52 32.66

brick.bound ABR 15.27 57.13 31.58 66.26 13.87 42.67 3.24 21.51 10.54 31.44 11.68 34.84
ext.brick 14.26 55.29 30.52 66.13 13.76 42.46 2.10 14.08 10.44 31.31 11.83 35.05

ext.brick ABR 15.12 55.50 27.51 52.88 12.89 35.23 3.24 21.44 10.07 28.89 11.35 32.26
ext.brick 14.30 54.66 27.43 53.99 13.01 35.65 2.11 14.07 10.14 29.30 11.63 33.02

preclass. ABR 21.84 48.45 30.42 40.69 20.33 34.61 24.20 74.37 9.87 11.74 18.58 25.87
ext.brick 21.99 49.75 30.18 40.96 20.45 34.59 23.72 72.94 9.92 11.84 19.10 26.23

Table 2: Performance (frames/sec.) for all the data sets and different combinations of spatial subdivisions (ABR,grid,bricks) and sampling
modes (BVH over ABRs vs. BVH over brick bounds vs. BVH over extended bricks). (Color codes and font faces to highlight the three best
and the worst-performing options, respectively.)

trav. samp. cloud meteor-20k meteor-46k gear exajet-rear exajet-wing

spiky foggy spiky foggy spiky foggy spiky foggy spiky foggy spiky foggy

ABR ABR 2.4 (2.3) 2.3 (2.3) 13.1 (6.7) 14.0 (6.7) 11.9 (6.6) 12.3 (6.6) 3.1 (3.1) 3.1 (3.1) 19.1 (12.0) 20.4 (12.0) 19.9 (12.1) 19.1 (12.1)
ext.brick 2.4 (2.3) 2.3 (2.3) 14.4 (6.7) 13.7 (6.7) 12.0 (6.6) 12.8 (6.6) 3.2 (3.1) 3.2 (3.1) 19.7 (12.0) 20.1 (12.0) 20.1 (12.1) 20.1 (12.1)

grid+DDA ABR 2.3 (2.3) 2.3 (2.3) 14.0 (6.7) 14.0 (6.7) 13.0 (6.6) 12.3 (6.6) 3.9 (3.9) 3.9 (3.9) 19.8 (12.7) 21.1 (12.7) 20.6 (12.8) 19.8 (12.8)
ext.brick 2.3 (2.3) 2.3 (2.3) 2.6 (2.6) 2.6 (2.6) 3.2 (3.1) 3.2 (3.1) 3.8 (3.8) 3.9 (3.8) 9.2 (8.8) 9.0 (8.8) 9.1 (8.8) 9.2 (8.8)

grid+RTX ABR 2.5 (2.3) 2.6 (2.3) 13.1 (6.7) 14.0 (6.7) 13.0 (6.6) 13.0 (6.6) 13.7 (4.4) 13.1 (4.4) 20.9 (13.1) 21.4 (13.1) 22.2 (13.2) 20.9 (13.2)
ext.brick 2.5 (2.3) 2.5 (2.3) 2.7 (2.6) 2.8 (2.6) 3.2 (3.1) 3.1 (3.1) 13.6 (4.4) 13.2 (4.4) 16.1 (9.2) 16.8 (9.2) 16.8 (9.2) 16.6 (9.2)

brick.bound ABR 2.4 (2.3) 2.3 (2.3) 14.4 (6.7) 14.0 (6.7) 12.8 (6.6) 12.8 (6.6) 3.1 (3.1) 3.1 (3.1) 19.2 (12.0) 19.7 (12.0) 19.2 (12.1) 20.5 (12.1)
ext.brick 2.2 (2.2) 2.2 (2.2) 2.8 (2.6) 2.7 (2.6) 3.1 (3.1) 3.2 (3.1) 3.0 (3.0) 3.0 (3.0) 8.5 (8.1) 8.5 (8.1) 8.5 (8.1) 8.5 (8.1)

ext.brick ABR 2.3 (2.3) 2.3 (2.3) 14.4 (6.7) 14.0 (6.7) 12.3 (6.6) 12.0 (6.6) 3.2 (3.1) 3.1 (3.1) 19.2 (12.0) 19.7 (12.0) 19.7 (12.1) 19.2 (12.1)
ext.brick 2.2 (2.2) 2.2 (2.2) 2.8 (2.6) 2.7 (2.6) 3.2 (3.1) 3.2 (3.1) 3.0 (3.0) 3.0 (3.0) 8.1 (8.1) 8.1 (8.1) 8.5 (8.1) 8.4 (8.1)

preclass. ABR 2.3 (2.3) 2.3 (2.3) 14.5 (6.8) 13.2 (6.8) 12.8 (6.7) 12.4 (6.7) 3.4 (3.3) 3.4 (3.3) 20.0 (12.8) 21.2 (12.8) 20.8 (12.9) 20.6 (12.9)
ext.brick 2.3 (2.3) 2.3 (2.3) 2.8 (2.7) 2.8 (2.7) 3.2 (3.2) 3.2 (3.2) 3.6 (3.3) 3.8 (3.3) 8.9 (8.8) 9.2 (8.8) 9.1 (8.8) 9.2 (8.8)

Table 3: GPU memory consumption in GB for all the data sets and different combinations of spatial subdivisions (ABR,grid,bricks), traver-
sal implementations (RTX vs. CUDA), and sampling modes (BVH over ABRs vs. BVH over extended bricks). Results are sorted by peak
memory consumption; we report the total memory consumption (lower number, usually achieved after acceleration structure construction)
in parentheses. (Color codes and font faces to highlight the three best and the worst-performing options, respectively.)

ists, or if the choice is predominantly dependent on the data set and
transfer function.

We compare the various combinations of sampling methods
(ABR BVH vs. extended brick BVH), spatial subdivion/majorant
traversal data structures (extended bricks, brick bounds, macrocell
grid), and implementation using ray tracing hardware (RTX BVH)
vs. software DDA, against the baseline of using ABRs for both
traversal and sampling. We use the data sets from Table 1, which
also shows majorants for the acceleration structures.

Our target system for the performance evaluation is a GPU work-
station with an NVIDIA GeForce RTX 4090 GPU (24 GB GDDR
memory) and an Intel i7-6800K CPU and 128 GB main memory
on the host. Our evaluation concentrates on memory consumption
and rendering performance. We compute full global illumination
with multi-scattering (isotropic phase function, Russian roulette
path termination, ambient light surrounding the whole scene). We
use two transfer functions—one that generates a high-opacity vi-
sualization (cf. first column in Table 1, “spiky”), and a second that
results in a more translucent appearance (“foggy”). For the grid
benchmark, we first empirically determined optimal grid dimen-
sions, the result of which is presented in Fig. 8. Based on that
we chose 1283 (cloud), 128×128×64 (meteor-20k, meteor-46k),

512× 512× 256 (gear), and 512× 256× 384 (exajet) for the re-
maining experiments. The performance results in frames/sec. can
be found in Table 2. We also report peak GPU memory consump-
tion and the total memory consumption (i.e., during rendering,
when acceleration structures were built and temporary memory has
been freed) in Table 3.

Our results allow for multiple observations. One observation is
that data structures with overlap (ABRs, bricks, brick domains) can
suffer from the aforementioned problem of single cells infecting
large regions with their contribution. This can also be seen in Ta-
ble 1, where the majorant regions for ABRs or bricks sometimes
appear excessively coarse. This observation suggests that spatial
data structures should be preferred to object data structures as this
problem is easier to control. However, it is well-known that grids
suffer from the “teapot in a stadium” problem. To illustrate this we
include the landing gear data set whose cells are contained within
a large boundary of coarser cells that do not contribute important
features (cf. Fig. 9). Apart from this extreme case, we however note
that the proposed traversal and sampling methods come close to and
often even outperform the majorants of a laborously pre-computed
kd-tree.

We also observed a fixed cost associated with using software

© 2024 The Authors.
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(a) (b) (c)

(d) (e)

Figure 9: Landing gear AMR model complexity. (a) The zoomed-in
camera position we use in the paper; triangle mesh colors assigned
by primID. (b-c) Different zooms of the same visualization in (a).
(d-e) ABRs for the zoomed-out views in (b) and (c); the extinction
of the whole ABR is set to its majorant extinction, the RGB albedo
is derived from the ABR ID.

traversal with DDA, which we suspect is due to register pressure
(OptiX however does not allow us to exactly determine per-kernel
register usage). This becomes obvious in the comparison between
DDA and RTX grid traversal for small grid sizes (e.g., ≤ 103

macrocells, cf. Fig. 8). We however also note that the memory
consumption for this option can become quite high; in the special
case of a transfer function without empty space, we have to build
a full BVH over the grid, which substantially limits the number of
grid cells we can use.

7. Discussion and Conclusion

We have shown how to modify a visualization framework targeted
at large-scale AMR data to support volumetric path tracing. The
base operation performed by a volumetric path tracer, namely, free-
flight distance tracking, requires routines to obtain extinction and
majorant estimates for local regions. The local majorant extinc-
tions to traverse the volume with the minimum number of samples
usually have an irregular spatial arrangement. AMR hierarchies al-
ready focus their less uniform structures in regions where the en-
tropy of the data is high and consequently the extinction varies a
lot. One might therefore intuitively assume that the AMR hierar-
chy would be the best possible majorant traversal data structure.
However, our experiments show that the task of finding majorants
for this kind of data is more complicated.

We find it hard to give a general recommendation as of the best
combination of acceleration structures for traversal and sampling,
yet we observe a tendency for object order data structures to do a
bad job in this case because their overlap allows small regions from
neighboring structures to “infect” other structures that are other-
wise homogeneous or even empty. Notably, both combinations that
use the same acceleration structure for traversal and sampling gen-
erally do not outperform the other alternatives.

In fact, grids often present a viable alternative; in this case the
outer loop traversal over ray segments is implemented in software

and the inner loop uses hardware ray tracing. We find that using
hardware ray tracing to traverse the grid’s macrocells pays off for
large grids, though this is quite memory intensive, restricting the
maximum grid size one can use.

The solutions we focus on allow us to update RGBα transfer
functions interactively, even for our largest data sets. The alterna-
tive to this is using pre-classified data structures, which due to the
nature of how extinction is computed via alpha transfer function
lookups often even results in inferior acceleration structures, and
can take hours to build even when using optimizations such as pri-
ority queues and binning.

Another observation we made is that transfer functions that con-
tain high frequencies—as is often the case when extracting ISO-
surface like features—can result in extreme performance degreda-
tions. Adjusting the slope of “alpha peaks” can lead to extremely
“spiky” transfer functions, causing high sample counts and signifi-
cant frame rate reductions.

Another point important to discuss is that our solution accounts
for the (pre-tabulated) albedo by multiplying it to the result of the
evaluated phase function. Because of that we cannot use residual
tracking methods [KHLN17, NSJ14] as the control variates cannot
vary in space, and reconstructing the correct albedo for a control
variate sample is impossible. To this end, the solution employed in
production rendering would be to have individual majorants plus
control volumes for each R,G, and B channel of the volume. In our
case, this would limit memory availability even further, so we opt
to use larger grids, or deeper hierarchies with more leaves, in favor
of residual tracking algorithms, which we believe gives us better
overall performance. A more thorough investigation of this would
however be interesting future work.

In conclusion, we have presented how to extend a sci-vis volume
renderer with non-trivial sampling structures to support volumet-
ric path tracing. Volumetric path tracing can significantly improve
visual fidelity, but even with standard sci-vis lighting models has
several advantages, such as better sample placement—and result-
ing from that faster time to image—as well as unbiasedness and
fewer sampling artifacts. We have evaluated multiple alternatives
to implement this by proposing extensions to the ExaBricks data
structure; our experiments show that computing majorant extinc-
tions for this kind of data is not trivial—not even in the case where a
single hand-picked transfer function is used, and even less so when
transfer functions are allowed to change interactively. Our results
indicate a slight performance advantage for spatial over object data
structures. Overall we have presented numerous different strategies
to accelerate traversal and sampling that allow for interactive trans-
fer function updates and demonstrated that these do not perform
significantly worse—and sometimes even outperform—the offline
reference.
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