
© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

Eurographics Conference on Visualization (EuroVis) 2024
W. Aigner, D. Archambault, and R. Bujack
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 3

AVA: Towards Autonomous Visualization Agents through Visual
Perception-Driven Decision-Making

S. Liu1 H. Miao 1 Z. Li 2 M. Olson 1 V. Pascucci 2 and P-T. Bremer1,2

1Lawrence Livermore National Laboratory, USA
2University of Utah, USA

Figure 1: Overview of Autonomous Visualization Agents (AVAs): By leveraging the latest development of multi-modal LLM (a) AVAs can
not only understand natural language instructions but also control and adjust a visualization system by processing its visual outputs to
accomplish user-specified goals.
We demonstrate the broad applicability of the proposed paradigm in multiple distinct scenarios including scatterplot opacity selection (b),
volume rendering (c), and hyperparameter tuning for nonlinear dimensionality reduction (d).

Abstract
With recent advances in multi-modal foundation models, the previously text-only large language models (LLM) have evolved
to incorporate visual input, opening up unprecedented opportunities for various applications in visualization. Compared to
existing work on LLM-based visualization works that generate and control visualization with textual input and output only,
the proposed approach explores the utilization of the visual processing ability of multi-modal LLMs to develop Autonomous
Visualization Agents (AVAs) that can evaluate the generated visualization and iterate on the result to accomplish user-defined
objectives defined through natural language. We propose the first framework for the design of AVAs and present several us-
age scenarios intended to demonstrate the general applicability of the proposed paradigm. Our preliminary exploration and
proof-of-concept agents suggest that this approach can be widely applicable whenever the choices of appropriate visualization
parameters require the interpretation of previous visual output. Our study indicates that AVAs represent a general paradigm for
designing intelligent visualization systems that can achieve high-level visualization goals, which pave the way for developing
expert-level visualization agents in the future.

1. Introduction

Recently, large language models (LLMs) have been widely
adapted to solve a variety of tasks [WXJ∗23, WBZ∗23, SWW∗23,
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WMF∗23]. In the visualization domain, LLMs have been used to
produce visualizations [DD19, Dib23] either through visual gram-
mars like Vegalit [SMWH17], or directly generating visualization
code (e.g., in Matplotlib [Hun07], VTK [SK19]). However, due
to the inherently visual nature of these systems, purely language-
based models have limited capability to make sense of their output.
This significantly hampers or even prevents the analysis of the re-
sults and thus severely limits the opportunity for iterative interac-
tions with the given visualization systems. The recent introduction
of multimodal LLMs, such as GPT-4V, has the potential to address
this fundamental limitation by filling the visual understanding gap,
which opens many possibilities for new paradigms of interaction
between existing visualization tools and human users.

One particularly interesting and powerful usage is the adoption
of an Autonomous Visualization Agent (AVA) that can act as the
medium between domain experts and visualization tools to facil-
itate and enrich user interaction (see Figure 1(a)). Here, the AVA
is defined as an entity that can understand high-level instructions
(i.e., natural language) and autonomously carry out a sequence of
actions in a visualization system. More specifically, given the abil-
ity to perceive the visualization output an AVA can adjust and refine
the parameters to meet the initial user-specified goal. Such an agent
will not only be able to relieve the user from potentially tedious
and repetitive tasks but will also haven the potential to accomplish
non-trivial visualization goals by iterative refining the existing vi-
sualization through visual feedback (following the visualization ->
perception -> action paradigm, just as a visualization expert would
do).

Figure 2: The design space of AVAs. On one end, we explicitly
encode heuristics on how to update the visualization parameter,
i.e., how a transfer function should be changed, which is driven by
a high-level objective specified through language, i.e., "does this
show the structure of interest". Alternatively, we can aim for a fully
self-directed system with no explicit guidance on its action beyond
the initial instruction (prompt).

In this work, we aim to take the first step towards making AVAs
a reality by exploring their design space and demonstrating their
initial capability for solving various visualization tasks and provide
an assessment of their feasibility in terms of stability, consistency,
and speed. The key power of AVAs derives from their ability to
detect visual features associated with natural language instruction.
Consequently, they can evaluate complex objectives that cannot be
easily expressed algorithmically, i.e., is there a particular shaped
structure in the rendering results? or does overplotting exist in the
given scatterplot? Despite its power, visual perception capabilities
are only part of an agent. Once we obtain the visual understanding,
the agent needs to plan its actions to achieve the goal. As illustrated

in Figure 2, this presents a range of possible designs. On one end
(i.e., more explicit control), we can rely on user-defined heuristics
to dictate the response. This is achieved by encoding our prior do-
main knowledge into decision rules. Alternatively, we can rely on
the LLM and its prior knowledge to process the observations and
plan the next action in a fully self-directed fashion.

To design an effective AVA, we first need to understand the ca-
pability and limitation of visual perception of the state-of-the-art
multimodal LLMs (we use GPT4-Vision in all of our studies). We
carried out a preliminary exploration of a few perception tasks re-
lated to common visualization outputs, including volume render-
ing, scatterplots, parallel coordinate plots, and graphs. Leveraging
what we learned from these simple benchmarks, we avoid areas
of visualization where the visual perception of the current mod-
els is performing less accurately (e.g., graph, parallel coordinate).
To demonstrate the feasibility and broad applicability of the pro-
posed scheme, we intentionally select a distinctive set of applica-
tions, ranging from scientific/medical visualization to information
visualization and dimensionality reduction. Our key contributions
are:

• Introduce AVAs, a new paradigm that leverages the visual per-
ception capability of a machine learning model for autonomous
decision-making in visualization. Make the first step toward
building visualization agents that can act as virtual visualization
experts;

• Provide a preliminary exploration of state-of-the-art multimodal
LLM’s visual perception ability for interpreting different visual-
ization outputs, including, scatterplots, parallel coordinate plots,
graphs, volume rendering outputs, etc.

• Demonstrate AVA’s feasibility and adaptability on several dis-
tinct visualization applications.

2. Related Works

2.1. Visualization Generation and Recommendation

Several existing tools explore how to generate visualizations based
on user instructions. Data2vis [DD19] utilizes a recurrent net-
work to generate code for visualization. The NL4DV [NSS20]
approach turns visualization queries into visualization descriptors
within the Vega-lite grammar [SMWH17], and the work by Mi-
tra et al. [MNES22], explores the back and forth interaction with
such visualizations using a natural language interface. LLMs have
been adopted for a similar role in LIDA [Dib23]. VOICE [JIS∗23]
employs text-only LLM agents that can turn voice commands into
instructions for generating interactive visualization. The KG4Vis
work [LWZ∗21] adopts knowledge graphs to produce visualization
recommendations. Besides just generating the visualization, several
methods explore utilizing machine learning (ML) to help explain
the rationale behind why a given visualization is recommended. For
example, AdaVis [ZWLQ23] adopts an attention-based model for
explainable visualization recommendation, whereas the follow-up
work leverages LLMs [WZW∗23] to achieve a similar goal. Chen
et al. [CZW∗23] evaluate LLMs for solving visualization course-
work by directly feeding them assignment descriptions. Apart from
generating code that produces visual output, LLMs are ideal for
text description generation. Zong et al. [ZLL∗22] utilize LLMs to
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generate descriptions of visualization for visually impaired users to
understand and navigate the visualization. Compared to these pre-
vious works, our primary goal is to develop an agent that can inter-
pret visual output and refine visualization iteratively to accomplish
specific tasks rather than generate visualization.

2.2. LLM-based Autonomous Agents

With recent advances in LLM, there has been an explosive interest
in developing LLM-based autonomous agents. Compared to tra-
ditional reinforcement learning agents that often need to develop
world understanding from scratch, LLM’s in-depth prior knowl-
edge and information processing capability make them more adap-
tive to complex environments and solving intricate tasks. Voy-
ager [WXJ∗23] introduces an LLM-powered embodied agent in
Minecraft that can continuously explore the world and achieve
milestones in the game world that were not possible with previ-
ous reinforcement learning approaches. Due to the vast literature
in this space and relevance to the current work, we refer readers to
a comprehensive survey on LLM-based agents [WMF∗23]. In the
following discussion, we will focus on vision task agents-related
works. Even though most LLM models are not designed from the
ground up for processing visual inputs, many recent works try to
incorporate external vision model [SMV23] or develop auxiliary
components and fine-tune the model to provide additional vision
capability [FZF∗23, ZSC∗23]. These adaptions often focus on spe-
cific tasks and are trained on smaller-scale data, therefore are not
designed for more general capabilities. This changes with the re-
cent introduction of the GPT4-V (vision) [Ope23] model by Ope-
nAI, which added visual perception to one of the largest and most
capable LLM models. A detailed evaluation of a broad spectrum
of visual understanding tasks is discussed in the “The Dawn of
LMM” work [YLL∗23]. Compared to the more general evaluation
task in [YLL∗23], we try to explore the GPT4-V model’s visual
perception capabilities on a specially designed set of visualization
tasks, and eventually design an agent that is capable of refining and
improving visualization output autonomously.

3. Preliminary Exploration of Multimodal-LLM for Static
Visualization Perception

Before we can design an effective visualization agent that relies
on visual input for decision-making, it is crucial to obtain some
basic understanding regarding its capabilities and limitations for
perceiving various types of visualization output. It is important to
note that this is not intended to be a rigorous and systematic
evaluation of multi-modal LLM ability, as an in-depth study will
require substantial resources and effort that is beyond the scope of
this work. We hope this assessment can help illustrate what type of
visualization agents we can realistically design and what would be
the ideal tasks for such agents.

Volume Rendering. We begin with evaluating the LMM’s abil-
ity to recognize structures of interest within direct volume render-
ing images. Unlike photo-realistic images, that was explored by
the work of Yang et al. [YLL∗23], the outputs of volume render-
ing are subject to additional complexity (i.e., varying transparen-
cies) introduced by the underlying transfer function. To assess the

model’s capability, we present the model with the task of examining
a screenshot and determining whether a specific object or structure
of interest is ’recognizable’ or ’not recognizable’. We define the as-
sessments for the prompt as follows: recognizable: The structure
of interest and its shape can be discerned in the screenshot. not
recognizable: The structure of interest cannot be identified in the
image, even if another structure is recognizable. Moreover, for the
iterative refinement discussed in later sections, we include an ad-
ditional clear assessment, as a strict stopping criterion for the op-
timization, which denotes that the structure of interest is distinctly
visible without any other structures occluding it.

(a) 90% (b) 40% (c) 20% (d) 5%

Figure 3: The Boston Teapot dataset volume rendered using the
same color map but at varying opacity levels. Structure of inter-
est: the teapot. The response from the LLM model was 3a: ’not
recognizable’, 3b: ’recognizable’, 3c: ’recognizable’, and 3d: ’not
recognizable’

We assess the model on two datasets, the Boston Teapot [TIH] ,
and a downsampled version of the Visible Male [SASW96]. The
reason why the Boston Teapot was selected for this experiment
is because there is another structure, a lobster, located inside the
teapot. As illustrated in Figures 3, we maintained fixed rendering
parameters, including viewpoint and colormap, while introducing
variations solely in the opacity transfer function. To maintain uni-
formity across experiments, we employed a fixed-width (1/10th of
the value range) triangular function for the opacity transfer func-
tion, altering only the peak value in the center of the window. As
shown in the Figure, the model consistently provided accurate as-
sessments in all cases. More details on the experiment and other
assessments for other datasets can be found in the supplementary
material.

Scatterplot. Compared to volume rendering images, in which vi-
sual recognition is a simple binary task, i.e., object recognition,
the assessment of visual structure in scatter plots is more nuanced.
Here, we design five basic visualization tasks: cluster recognition,
cluster counting, outlier detection, outlier counting, and correla-
tion detection to evaluate its performance. The evaluation result is
displayed in Table 1. For cluster recognition, our experiments show
that the model can easily tell the plot has clusters (100% success
rate). However, for the counting task, the success rate of the model
is only at 60%. Similarly, we also separate the outlier tasks into
recognition and counting. The final result aligns with the cluster
recognition task. The model performs well on the outlier recogni-
tion task which has a 100% success rate, but has medium perfor-
mance on the outlier counting task. In the correlation detection task,
the model has a 100% success rate.

The experiment results show that the model has a decent ability
to understand and analyze the scatter plot. However, in the experi-
ment, most of the visualizations have clear signals to tell whether
certain features exist. This raises another question of whether the
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model is able to identify ambiguous cases. We perform another
simple experiment in which a scatter plot has two clusters but with
different point spreads. From the result of Fig 4, we can tell that
except for the last one which it is hard for humans to tell whether it
has two clusters or not, the LLM model is able to identify the rest
of the example accurately.

Yes Yes NoYes

Figure 4: The ability of GPT4-V to identify clusters in the scatter
plot with different levels of ambiguity.

Tasks scatter plot(success rate) parallel coordinates
cluster 100% 100%

cluster count 60% 20%
outlier 100% 90%

outlier count 60% 80%
correlation 100% 20%

Table 1: The performance of GPT4-V on a scatter plot and parallel
coordinate tasks. GPT4-V can identify outliers and cluster well in
both visualizations. However, its ability for object counting is com-
paratively poor. Meanwhile, the correlation detection in parallel
coordinates plots is also limited.

Parallel Coordinates Plot. We examine parallel coordinate plots
with the same tasks as the scatter plot. Both experiments have a
similar setup on cluster and outlier tasks, except the number of di-
mensions in each dataset will change from 2D to 5D. The overall
results are a bit worse than the model’s performance on scatterplot
visualization. In cluster and outlier recognition tasks, the model
performs well. In the cluster counting task, parallel coordinates per-
form badly with a 20% success rate but in the outlier counting task,
the GPT4-V model performs well. Opposite to the correlation task,
the parallel coordinate makes it hard to identify correlation rela-
tionships.

Tasks node count find node connection neighbor
success % 50% 100% 70% 10%

Table 2: The performance of GPT4-V on common graph tasks.

Graph. To assess GPT4-V’s visual understanding of graphs, we
choose the classic graph visualization technique node-link diagram
and adjacency matrix. In our experiment, we use the basic graph
exploration task [GFC04] to evaluate the performance of the LLM.
Instead of performing all tasks, we pick four tasks that are easy
to perform without interactions. The overall result is displayed in
Table 2. From the evaluation, we can tell that LLM can easily find
a node in the graph visualization. However, it is difficult to tell the
neighbor of the selected node. The connection tells whether two
nodes are connected (directly or indirectly through other nodes),
and the final result shows sub-optimal performance. Finally, the

node count ability has a 50% success rate which shows that the
model again has poor performance on the counting tasks.

Despite the relatively limited exploration, our experiment
demonstrates the model’s capability to discern structures and ob-
jects in volume rendering results. Among the information tasks, the
model achieves better performance on scatterplots compared to par-
allel coordinate plots or graphs. Therefore, to leverage the strength
of the system, in our case study (see section 5), we focus on volume
rendering and scatterplot-related applications.

4. Autonomous Visualization Agent (AVA)

We define AVA as a paradigm for designing AI-driven agents that
serve as a medium between a specialized visualization tool and a
domain user. The key principle of AVA involves the utilization of
machine vision for decision-making. It takes user instruction in nat-
ural language and achieves the user-specified goal by operating the
visualization tool autonomously based on the visual understanding
of visualization outputs. And we refer to the concrete implementa-
tion of AVA as AVAs.

4.1. Key Components of AVAs

To achieve its design goal, the AVAs need to accurately perceive vi-
sual input and make plans on what action to take based on current
visualization results and do so by following user natural language
instructions. As illustrated in Figure 5, AVAs need to contain at
least three key components, namely visual perception, action plan-
ning, and memory.

Visual Perception the visual perception is at the center of the
AVAs’ capabilities, and what distinguishes them from existing
LLM applications in visualization. There is some similarity be-
tween AVA and an embodied agent [ZDS∗23] in robotic research,
where an agent will take action based on sensory input (e.g., vi-
sion) and observe the impact of the action in the environment. Sim-
ilarly, for AVAs, the sensory input is the visualized image, and the
action corresponds to changes in the visualization setting (e.g., up-
date parameters), and the impact of the action is a new visualization
output.

Action Planning In order to make autonomous decisions and re-
spond to the “sensory” input, the AVAs need an action planning
component as the “brain” of the system. Here we have a range
of choices for its design. As illustrated in Figure 2, we can either
rely more on heuristics to drive the action planning or let the LLM
do everything on its own, which corresponds to two distinct ap-
proaches to the action planning design.

• Heuristic-Centric: infuse our existing domain knowledge into
heuristics for how to update the visualization tool based on as-
sessment from the visual perception component. Their action
plan is defined explicitly. In such a scenario, the visual percep-
tion and assessment essentially act as a loss function for a pre-
defined optimization procedure.

• LLM-Centric: LLMs have innate knowledge and understanding
of various topics, which can be leveraged to guide the explo-
ration of the action space. Such prior knowledge can be com-
bined with the initial prompt feed to the system to guide the ac-
tion planning process without explicitly defining heuristics.
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Figure 5: The breakdown of the components of the AVA. The capability of the AVAs hinged on their visual perception, and the visual un-
derstanding can then be utilized by the action planning system to modify/steer the visualization tool. In order for AVAs to make informed
decisions and the ability to understand context, they also need a memory component that both visual perception and action planning compo-
nents can easily access.

One important thing to note is that both approaches will provide
autonomous decision-making based on visual perception, so from
the user’s perspective there may be little difference. The distinction
between them comes from whether we want to rely explicitly on
rules that are derived from our domain knowledge or we hope to
leverage the pretrained LLM’s knowledge base for planning and
suggestion.

Memory Beside the visual perception, and action planning compo-
nents, the other essential part of AVA that both of these components
need is memory of the previous actions or the visualization outputs
it observed before. In order to make complex and well-informed de-
cisions, we often need to refer back to or compare with previously
examined results or conclusions. The same is true for AVAs.

Visualization-Perception-Action Loop Besides the three key
components, one essential aspect of AVA, and its key capability,
is associated with the autonomous visualization loop, i.e., from vi-
sualization to perception and then to action. The process is boot-
strapped by the specific high-level task given by the user and starts
with a default visualization setup, and then the system:

• Generating visualization output by executing API calls to the vi-
sualization tool based on the given parameter.

• Leveraging the visual perception component to comprehend se-
mantics and structure in the current visualization.

• Provide assessments of whether the visualization achieves the
user-set goal, and the action planning component makes deci-
sions on what visualization parameters it should use next.

The agent will iterate through these steps until the visualiza-
tion goal is achieved. This methodological framework forms the
foundation of AVAs, enabling us to utilize the visual perception of
the multimodal LLM, as well as the planning capability of LLMs
or user-defined heuristics to interact with visualization tools effec-
tively. It draws the blueprint for how future autonomous agents can
potentially navigate complex visualization tasks with precision and
adaptability.

4.2. Implementation

So far, we have discussed the conceptual idea of how AVA works.
In this section, we provide practical guidance on their implementa-
tion. Our implementation utilizes the GPT-4 Vision model [Ope23]
for visual perception and action planning (for LLM-centric sce-
nario), harnessing its natural language understanding capabilities
alongside a visual perception engine. However, other alternatives
such as Gemini [TAB∗23] can be also be adopted.

To establish a flexible and reusable foundation for our AVAs, we
have created an abstract class that acts as the basis for any specific
type of agent. It contains several core functionalities: 1) a unified
interface for accessing LLM APIs for visual perception or action
planning tasks; 2) a basic blueprint on how an agent should inter-
face with the visualization tool; 3) configuration functionality that
helps define the agent, e.g., prompts template; 4) capability to parse
and extract visual assessment results, parameter, and function call
information from the language response. For specific types of ap-
plications, AVAs can be developed as concrete classes that inherit
the base one, and in the new class, application-specific logic, e.g.,
heuristics-centric action planning, can be implemented. Each of the
concrete classes will also have an associated JSON configuration
file, prompts or part of prompts are organized in a structured fash-
ion. Our AVA implementation is in Python. We designed a straight-
forward layout for the interface, with the control and conversation
history on the left panel and the visualization of interests on the
right.

Agent Initialization To initiate an AVA’s functionality, we estab-
lish a context by prompting the Large Language Model (LLM)
with the assumed role of the agent. This definition typically en-
compasses several elements: scenario, visualization task, goal, ap-
proach, and constraints. The content of the prompt can be divided
into three major parts: 1) the overall template and common func-
tionality (layout the general rule such as output format), 2) the de-
tailed guidance for a specific type of task (e.g., action planning for
opacity optimization volume rendering), and 3) the user-specific
feature of interests (e.g., object to highlight such as lobster). Craft-
ing effective prompts for 1), and 2) is essential for defining the
agent’s role and specifying the approach to achieving the visualiza-
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tion task, it is part of the agent design process. However, from the
user’s point of view, they only need to provide 3) for a given subject
of interest.

Connection Between AVA and Visualization Tool The AVA can
either directly call the API, provided both the agent and the visual-
ization run in the same application/context. However, to maximize
the flexibility and support complex external tools (e.g., GPU accel-
erated direct volume rendering), we also include support for a more
generic solution with inter-process communication (IPC) mecha-
nisms to facilitate seamless data exchange between the agent and
the visualization tool. In our implementation, we utilize the RPyC
(Remote Python Call) [Fil13] to facilitate the IPC. All the output of
the LLMs will be in text format. To carry out API/function calls, we
need to extract the relevant command and information (the current
vision model does not support the default GPT function calling ca-
pability, which comes with its own limitation). One way to handle
the challenge is through generating structured output (e.g., JSON
format, or data array string, however, the LLM output may not al-
ways be valid so a format validation is needed to prevent runtime
error and improve the stability of the system.

5. Case Studies

5.1. Opacity Transfer Function for Volume Rendering

In this case study, we focus on the opacity transfer function de-
sign process—a crucial task in volume rendering, where structures
of interest must be appropriately depicted within the opaque range
of the opacity transfer function. We test the agents with a dataset
of a head [hea], which is a 3T Time-of-flight Magnetic Resonance
Angiography and contains part of the portion around the height of
the eyes where the brain arteries are located. It contains skin, soft
tissues, the skull, and the vascular structure inside. The most inter-
esting structure inside this dataset is the arterial blood supply of the
brain, called the circle of Willis.

To facilitate a comprehensive discussion of AVA behavior, we
implemented two different agents. A heuristic-centric agent re-
ceives the action plan as a heuristic defined by the user, while the
LLM-centric agent utilizes the model’s knowledge about the opac-
ity transfer function design in order to devise a strategy. For both
agents, the opacity function remained a triangle function with the
peak value positioned between the start and endpoints. The view-
point and color map were also fixed. Once the AVA recognizes the
user-defined structure of interest, it will provide the recognizable
assessment. We let the agent continue to further refine the opacity
function for a clear assessment until occluding noise is removed if
possible.

Heuristic-Centric: In this setup, the agent provides assessments,
but the opacity transfer function adjustments are defined by the
agent designer. For a proof-of-concept, we utilize a simple linear
search-based approach that shifts the window of the opaque range
towards higher values, while the function always assumes a trian-
gle shape. For these tests, we selected parameters to separate the
value range into 10 bins, where the window width is one bin wide.
We shift the window one bin with each iteration. We also added a
fine-tune parameter, where we reduce the speed when the structure
of interest is "recognizable’ but it is not yet ’clear’. In that case,

the window shifts only by half of its width. The only information
the domain user needs to provide here is the structure of interest
(the circle of Willis, a vascular structure in the brain) and the value
range.

In general, this action plan can be implemented in two ways, de-
pending on the scenario. This heuristic can be added as code, such
as a plugin integrated into the visualization code. To elucidate the
agent’s behavior in alignment with the heuristic described above,
the agent initially employs a triangle function at the far left end of
the value range and incrementally moves upward. It continues this
process until it can confidently recognize the structure of interest,
in this case, the circle of Willis. As the agent recognizes the vas-
cular structure, it takes half a step to make smaller adjustments to
the opacity transfer function until it can fully discern the circle of
Willis. While we used a linear search strategy in this demonstra-
tion, other more sophisticated approaches can also be employed
and implemented in a similar fashion.

LLM-Centric: This AVA is not limited to a user-defined heuris-
tic for adjusting the opacity function. Instead, it can leverage the
prior knowledge of transfer function design inherent in the LLM
to facilitate the design process. However, it remains constrained to
providing a triangle function as the opacity transfer function. We
provided the agent with the acquisition modality and the histogram
to provide it with similar information as a human user would have.
As depicted in Figure 6, the agent explores various opacity ranges
until it successfully generates the function for the circle of Willis.
Notably, in this case, the agent operates with a greater degree of
autonomy, employs a strategic approach, and reflects on past deci-
sions as explained in its "reasoning" and "plan" as shown in Figure
6. Interestingly, it immediately devised a plan, where it starts with a
range higher than the first peak in the histogram, which it correctly
assumes is the background.

We further tested the AVA’s capabilities on structures that are
more challenging to find an appropriate opacity function. Specif-
ically, we utilized the Boston Teapot dataset discussed in Section
4, which contains a lobster inside the teapot. The lobster in this
dataset can be only partially visualized due to the low resolution of
the data. This presented a more difficult scenario compared to the
circle of Willis. Additionally, the lobster is relatively small within
the dataset, resulting in its representation by a very low bin in
the histogram. Despite these challenges, as demonstrated in Fig-
ure 7, the agent successfully determined the correct opacity trans-
fer function within a few steps when tasked with identifying the
lobster structure of interest. Following the reasoning in each step
reveals its action-planning capabilities. To provide a comparison,
we also tested the agent on another dataset, containing a Lobster
in Resin (301x324x56, uint8, Courtesy of VolVis distribution of
SUNY Stony Brook, NY, USA.). In both cases, the model reasoned
that the second histogram peak might be the structure of interest,
however in the Boston Teapot dataset, it found the teapot instead of
the lobster. Remarkably, the LLM-centric agent moved on and tried
different value ranges and found the lobster in just a few steps, even
though the lobster is harder to recognize due to the low resolution.
In comparison, in the Lobster in Resin dataset, the lobster was re-
vealed together with the resin in the first iteration and then the agent
fine-tuned the opacity in Step 3 until no resin is visible anymore.
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Figure 6: The results from the heuristic-centric and LLM-centric AVAs. The screenshots are generated from the proposed opacity transfer
function. The response includes (R)easoning, (P)lan, and (A)ssessment by the agent, and based on this, the agent suggests a new pair of
values to construct the triangle-shaped opacity transfer function. Each agent converged towards an opacity function rendering the structure
of interest.

Figure 7: The results from the LLM-centric AVA for the Boston Teapot and the Lobster in Resin datasets. The structure of interest is
the lobster [kla] in both cases. The rendered images are generated from the proposed opacity transfer function. The response includes
(R)easoning, (P)lan, and (A)ssessment by the agent. In the top row, the agent suggested the first opacity transfer function that revealed the
teapot instead of a lobster and it moved on higher value ranges and successfully detected the lobster, even at a low resolution. In the bottom
row, AVA found the lobster, which has higher resolution and occupies a larger space in the volume, and immediately and fine-tuned the result
until almost no resin was visible in the visualization output.

This successful demonstration illustrates the agent’s robustness in
handling challenging scenarios and its ability to swiftly adapt to
different datasets and structures of interest. The detailed results of
these agents and their responses are provided in the supplementary
material.

5.2. Scatterplot Opacity Optimization

Apart from rendering output, from our initial assessment (section
3) the GPT-V has better visual perception for scatterplot compared
to all other common information visualization encodings (e.g., par-
allel coordinate, graph). Therefore, we focus the rest of the case
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studies on the scatterplot type of visual output. In this section, we
examine the optimization of opacity value for scatterplot points to
mitigate the occlusion effects from overplotting.

The perceptual base opacity optimization has been explored
in the visualization domain [MAF15, MPOW17], either through
a data-driven modeling perspective based on user preferences
[MAF15] or through a visual perception modeling approach by
designing a cost function that captures relevant aspects of the hu-
man visual response [MPOW17]. Here we do not aim to directly
compare with these existing methods, as a meaningful compari-
son requires an extensive and controlled study. We hope to use this
case study to illustrate how a fundamentally different approach to
address the opacity optimization challenge can be obtained by a
straightforward adoption of the AVA framework. From the exist-
ing study on user preference [MAF15], the relationship between
the point opacity and assessment of overplotting level follows an
inverse logarithmic relationship, i.e., overplotting only gets better
when point opacity gets much lower in the [0.0, 1.0] range. This is
crucial prior knowledge that should be incorporated into the design
of the agent. Therefore, we adopted the heuristic-centric approach
outlined in Section 4, where we encode the logarithmic relationship
into our search procedure. At the start of the optimization, we set
the initial opacity O = 1.0. The floor opacity, i.e., lowest allowable
opacity O f = 0.0. For each step, we will update the new opacity as
O′ = O f +(O−O f )/2, essentially half the opacity value different
between the current opacity and the floor opacity. By providing the
model with scatterplot images generated with opacity O′ and O, we
then evaluate which opacity is better suited for the given data. If the
new opacity is deemed too low, we then set it as the new floor opac-
ity O f . We continue to iterate to narrow down the selection until
the opacity different threshold is reached. For the comparison cri-
teria we use the following prompts: “the chosen opacity allows the
viewer to obtain a better understanding of the overall distribution
of the underlying data while does not have a serious overplotting
issue that can obscure the structure of interest”.

Figure 8: Scatterplot opacity optimization results. The left column
shows the original plots with severe overplotting, the middle col-
umn shows the agent optimization results, and the right column
shows independent manual selection results, there are some minor
differences, but the overall results are comparable.

As shown in Figure 8, each row indicates a different dataset,
namely Diamond data [kag], and the Out5D data [xmd]. The first
column includes the original scatterplots with the overplotting issue

when opacity is 1.0, the middle row is the AVA opacity-optimized
scatterplots, and the last row is the human user reference obtained
independently from the optimization interface. As we can see, the
AVA-generated scatterplot closely matched the user preference.

5.3. Dimension Reduction Hyperparameter Tuning

The choice of hyperparameters can greatly impact t-SNE
[VdMH08] and UMAP [MHSG18] results. Inappropriate hyper-
parameters may lead to misleading interpretations of the high-
dimensional structure, and they often need to be tuned for a given
dataset. Here, we utilize AVA to perform automatic hyperparame-
ter tunning for identifying more suitable hyperparameters, for both
single-hyperparameter and multi-hyperparameter cases. Consider-
ing the prior knowledge the LLM is likely to have on these com-
mon methods, we opt for LLM-centric action planning, where the
LLM directly suggests hyperparameters. In Figure 9, we show the
single parameter optimization result, where we only optimize the
most sensitive parameter for each method, i.e., perplexity for t-
SNE, and the neighborhood size for UMAP. We withheld the class
label from the agent to use as the ground truth for evaluation. For
the t-SNE evaluation criteria (UMAP can be defined in a similar
fashion), we use the following prompt: “better embedding can be
defined by having good cluster patterns, and a lack of common ar-
tifacts due to unsuitable perplexity value.” All plots are generated
from the data RNA sequence data [TYG∗18] with 20 classes. As
we can see for the UMAP embedding, the default parameter gives
a small number of stringy clusters (a), whereas, in the optimized
embedding (b), several classes that were linked together are now
separated. For the t-SNE case, there is a less clear advantage for
the optimized embedding in terms of cluster separability, however,
it does show more compact clusters.
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Figure 9: Hyperparameter optimization results. For UMAP, the op-
timized hyperparameter (b) shows greater class separation com-
pared to the default (a). For t-SNE, (d) shows a similar class sepa-
ration but with more compact clusters.

Our experiment with the multi-hyperparameter(up to 5) agent
case, however, is largely unsuccessful. As we see the suggested hy-
perparameters bounce back and forth during the optimization pro-
cess. This indicates the potential challenge for the agent to explore
higher dimensional action space (see more detail in Section 7).

6. Feasibility Assessment

One of the major objectives of this work is assessing the feasibility
of the proposed paradigm and understanding its robustness and po-
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Table 3: Summary of repeated experiments, including, convergence rate (CR), number of steps for convergence (Steps), average spend per
step (Step Time), and final output opacity functions lower and high ranges (L,H), the means and standard deviations are shown.

Dataset Structure of interest CR(Recognizable) CR(Clear) Steps Step Time (s) Opacity L,H

Head Circle of Willis 100 % 90 % 4.2 13.1 182±84,248±73
Boston Teapot Lobster 60 % 40 % 6.3 12.61 80±37,103±45
Boston Teapot Teapot 100 % 100 % 2.2 10.96 52±27,106±57

Lobster Lobster 100 % 70 % 5.2 15.7 52±28,100±53
Tooth Tooth 100 % 70 % 5.4 12.3 98±35,121±45

Engine Two Metal Rings 100 % 40 % 7.4 12.3 189±36,223±35

tential modes of failure. In this section, we plan to approach the as-
sessment challenges: 1) in terms of low-level mechanism and their
consistency and responsiveness, and 2) on the potential usage sce-
narios of the higher-level scheme from the perspectives of experts
in various domains.

6.1. Consistency and Interactivity

As the proposed approach utilizes LLMs in a fashion that is quite
different from most existing approaches, i.e., involves iteration and
refinement, it may not be easy to grasp the basic mechanism of the
system with respect to its consistency and interactivity. The LLM
API has inherent randomness in its inference process, which means
we will likely have slightly different output each time. Therefore,
we must investigate the consistency of the overall pipeline in light
of the limitations of the existing multi-modal LLMs. As illustrated
in Table 3, we performed a systematic evaluation of the agents
across multiple datasets (including additional datasets that is not
presented in the result section) and conducted a series of ten trials
per task as outlined. Here we focus on the volume rendering exam-
ple as it provides more objective evaluation criteria as described in
Section 5, the recognizable indicates the agent is able to find the
structure of interests, whereas clear is defined as a strict condition
in which no visual occlusion remains. We terminated the agent if
it did not reach clear within 10 iterations. The agents demonstrated
a high convergence rate in pinpointing opacity functions that ren-
dered the target structures recognizable. In instances of strict clear
assessment criteria, convergence rates are lower, suggesting that
the final triangular opacity function shape might not align perfectly
with actual data intensity profiles, leaving residual noise. This was
particularly pronounced when in the task of finding the Lobster in
the Boston Teapot, where the structure is not fully resolved in the
data, making it more difficult to recognize it as a lobster. When
achieving ‘recognizable’ outcomes, agents required on average 4-
6 iterations, with each taking approximately 12 seconds. For each
step, the assessment and planned action will be generated as text
output alongside suggested parameters, and visualization will be
updated with these new parameters. The variation of the output only
indicates the value ranges rather than the visual difference, as we
note sometimes the rendered images look very similar even though
the opacity function ranges are different. So the visual variation is
smaller than what is indicated by the statistics.

6.2. Experts Feedback on AVA

Beside the assessment of the feasibility of AVAs on the mechani-
cal level, we also want to understand the potential of the general

paradigm and the associated limitations. Given that we did not tar-
get a specific application area, we chose to gather informal feed-
back from experts in key domains. Our feedback collection process
involved two senior AI researchers, a professor in medical visu-
alization, and a professor who heads an Institute for Radiological
Diagnostics and Intervention. The latter two were selected due to
their daily workflow experience with volumetric data and general
visualization tasks. For all the feedback sessions, we first demon-
strated the use cases of AVAs as described in Section 5, and then
conducted unstructured interviews with the experts. While the dis-
cussions were mostly open-ended, we did inquire about their over-
all feedback on how such visualization agents might impact their
workflow, and where the potential benefits and limitations of this
paradigm are.

The medical visualization expert said: “Their ability to com-
prehend visual elements and identify structures is indeed impres-
sive, laying a solid foundation for the future development of such
agents. With this substantial potential at hand, the utilization of
these agents now lies in the hands of visualization researchers, who
have the opportunity to harness their capabilities for innovative
applications.” She extended the discussion by suggesting the cre-
ation of a generic workflow that can incorporate how visualization
experts use the volume rendering tool into the agent prompts to
enhance their capabilities.

The head of the radiology institute said: “I’m impressed with the
semantic understanding, reasoning capabilities, and high auton-
omy exhibited by the agents. There is exciting potential to replace
trivial visualization tasks that until today require a radiologist.”
He envisioned the use of these agents for double reading in radiol-
ogy, where two independent radiology reports could be generated
to cross-validate diagnoses. However, he remained skeptical about
whether the recognition could go beyond simple shapes, for exam-
ple actually perceiving differences between arteries and veins, as
well as extending the visual perception capability to make assess-
ments based on multiple image modalities.

The senior AI researchers said: “1: This can be a very general
approach. One additional application I can see this working is for
finding more informative views for 3D plots, which I always have
trouble with.” “2: The AVA setup can be easily extended to other
types of user interfaces beyond just visualization. One thing I am
interested to know is how well it handles a larger action space,
will the search fail or converge?” The AI experts believe this is a
fundamentally different way to think about data visualization prob-
lems and see the connection with embodied agent research. One
potential concern they mentioned is whether the action planning



© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

10 of 12 S. Liu, H. Miao, Z. Li, M. Olson, V. Pascucci & P-T. Bremer / AVA: Towards Autonomous Visualization Agents

can work with a much bigger action space. As a response to their
feedback, we extend our dimensionality reduction case studies to
include additional experiments with up to 5D space. Overall, the
feedback from all the experts underscores the transformative po-
tential of AVA.

7. Limitation and Future Work

Despite demonstrating AVA’s feasibility through our case studies,
it is also essential to discussion the various potential limitations.

Visual Understanding Capability. The current model likely
works best for natural images and is not optimized for visualiza-
tion output and particularly detailed and localized structures (as re-
vealed by our preliminary evaluation in Section 3). However, even
with its limitation, the first available multi-modal LLM still demon-
strates strong recognition capabilities, we believe fine-tuning a
model that focuses on visualization output or a more capable fu-
ture multi-modal model can alleviate some of the current concerns.

The Persistency of Server-based LLM API. Since we access the
capabilities of GPT-4’s API through web-API, we have limited con-
trol regarding the actual implementation on the server side. The
change in their inference algorithm and the specific version of the
model used could have a direct impact on the usability of the tool,
i.e., modify the expected and default behavior without our knowl-
edge. Such risk can be mitigated by utilizing local and self-hosted
models so that we can control the entire inference pipeline.

Prompts Engineering and Natural Language. With the flexibil-
ity and usability of natural language, it also brings certain limi-
tations. The precision of AVAs relies on the choice of the prompt.
Currently, devising an effective prompt can be a trial-and-error pro-
cess that lacks a principled paradigm. Moreover, the prompt can
also be sensitive with respect to the change in model, i.e., after
major model updates, the prompt may need to be adjusted. Ad-
ditionally, natural language may also have limited expressiveness
for describing visualization structures, therefore, the best approach
likely needs to combine the advantages of both image and lan-
guage modalities. This challenge can be partially mitigated through
heuristic-centric action planning through explicitly coded search
logic, nevertheless, the visual perception still relies on prompts to
convey the assessment objectives.

Large Action Space and Mult-Step Tasks. The action planning
component of AVA is essentially doing an exploration of a po-
tentially high-dimensional action space. The search is guided by
the visual assessment, which theoretically can be considered as the
loss in a zeroth order optimization scenario [SM22]. Beyond a sin-
gle action planning step, more complex tasks may require multiple
sub-goals to be achieved in a multi-step setup. The generalization
to more complex tasks and tools likely requires such capability. We
can potentially utilize LLM for decomposing complex tasks into in-
dividual steps, however, more research is required for such agents
to reach their full potential.

Future Directions. Our plan for future work involves a more ex-
tensive evaluation of the current models’ capabilities in understand-
ing visualization output, expanding on the foundation laid in Sec-
tion 4. This will be a more general and comprehensive evaluation

of multimodal LLM’s capabilities on a wide range of visualiza-
tion perception tasks, which is necessarily a direct evaluation of
AVA framework, but on what AVA framework can potentially be
applied to. Additionally, we plan to explore different agent setups,
including increasing the number of agents and increasing the inter-
activity of the agent. By implementing multiple independent agents
with slightly different definitions, we can offer a means of cross-
validation for applications with low error tolerances. So far, we
have demonstrated agents employing a closed-loop optimization
strategy with intermittent communication with the user. By tun-
ing the level of interactivity, as in a chatbot, we could create an
even tighter symbiosis between a human expert and an AI for a
joint visualization task. For additional application scenarios. There
are many possibilities, as mentioned by one expert we interviewed,
adjusting the viewpoint to avoid visual occlusion in 3D visualiza-
tion or 3D plots can be a great use case. Other use cases include
aesthetic optimization [LWG∗22]. Lastly, the model’s ability for
scatterplot understanding can also be utilized to design customized
diagnostics metrics for exploratory data analysis.

8. Conclusion

The primary objective of this work is to investigate the feasibility
of autonomous visualization agents by leveraging the latest devel-
opment of multi-modal LLM that is capable of visual input. We
have demonstrated that we can design robust agents that achieve
specific user-defined natural language visualization goals through
a visualization-perception-action loop. As multi-modal foundation
models continue to advance in capabilities and sophistication, we
anticipate a corresponding increase in the capabilities of such
agents and generalization for more complex scenarios. In many
ways, we are speculating on how the ongoing development of Large
Language Models (LLMs) can reshape the landscape of visual-
ization research. With further development, we believe AVAs can
eventually serve as “co-experts” alongside the non-expert users to
streamline the visualization tool usage. The goal is not to replace
the need for visual exploration but rather to enhance the experi-
ence and provide alternative avenues to non-experts who may have
trouble operating the tool on their own. In conclusion, our research
opens exciting possibilities for the future of visualization tool de-
sign that aims at the collaboration between humans and AI-driven
agents. The fusion of image understanding and language under-
standing within these multi-modal foundation models holds the po-
tential to fundamentally transform the way we think about visual-
ization and user interaction.
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