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Abstract
Analyzing the preference of route choice not only facilitates the understanding of individuals’ decision-making behavior, but also
provides valuable information for improving traffic management strategies. As the layout of the road network, the variability
of individual preferences and the spatial distribution of origins and destinations all play a role in route choice, it is a great
challenge to reveal the interplay of such numerous complex factors. In this paper, we propose RouteVis, an interactive visual
analytics system that enables traffic analysts to gain insight into what factors drive individuals to choose a specific route.
To uncover the relationship between route choice and influencing factors, we design a quantitative analytical framework that
supports analysts in conducting closed-loop analysis of various factors, i.e., data preprocessing, route identification, and the
quantification of influence and contribution. Furthermore, given the multidimensional and spatio-temporal characteristics of
the analysis results, we customize a set of coordinated views and visual designs to provide an intuitive presentation of the factors
affecting people’s travels, thus freeing analysts from tedious repetitive tasks and significantly enhancing work efficiency. Two
typical usage scenarios and expert feedback on the system’s functionality demonstrate that RouteVis can greatly enhance the
capabilities of understanding the travel status.

CCS Concepts
• Human-centered computing → Visual analytics; Geospatial Data; Information visualization;

1. Introduction

Driven by the rapid advancements in urban transportation infras-
tructure, the accessibility between regions has been greatly im-
proved, resulting in a diversity of route choice behavior when trav-
elling from a specific origin to a destination. Route choice refer-
s to the process of people choosing the most suitable route from
many accessible options and analyzes the factors that affect the
decision [BZA17]. Quantitatively analyzing factors that influence
route choice in urban transportation is of paramount importance
due to its direct implications for rational urban planning and the op-
timization of traffic conditions. For instance, multiple routes lead-
ing to the central business district in a certain region are experi-
encing congestion issues. Through quantitative analysis, it may be
revealed that factors such as travel time and road capacity signifi-
cantly influence commuters’ route choices. Armed with this infor-
mation, urban planners can enhance public transportation, or im-
plement intelligent signal control strategies to alleviate congestion
and improve overall traffic flow.

The human-centered statement preference survey [ABWL98]

† Huijie Zhang (zhanghj167@nenu.edu.cn) is the corresponding author.

supports the exploration of the factors influencing route choice
from an empirical perspective. However, the collected data is ac-
companied by subjective cognitive bias, which leads to the dif-
ference between claimed and observed behaviors. Compared with
surveys, trajectories that record travel spatio-temporal information
can discover more realistic human movements, which provides un-
precedented opportunities for the effective and accurate analysis
of route choice behavior [LSD18]. Considerable efforts have been
made to analyze the authentic factors affecting route choice with
trajectory data, such as using mixed path size logit method to mod-
el taxi trajectories [TWH∗20]. Since route choice behavior is in-
herently a multifaceted decision-making process, analyzing the re-
spective effects of different factors on it becomes quite complex.
On the one hand, the diversity of influencing factors increases the
complexity of determining the extent to which they affect route
choice, as there may be nonlinearities, interactions, and feedback
loops between these factors. Generally, route choice is influenced
by route attributes and individual characteristics (e.g., congestion
on roads and departure time) [DS17]. In this case, analysts may
have trouble discovering which factors are most important and
which can be ignored. On the other hand, route choice behavior is
closely associated with the spatio-temporal context, which mean-
s that even for the same person, the determinants of route choice
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behavior may vary when faced with different travel contexts, such
as going to work or to the station. Therefore, it is a crucial task for
traffic analysts to develop a flexible and versatile analytical method.

For the purpose of providing a systematic approach to analyz-
ing route choice, we propose a quantitative analytical framework
that allows traffic analysts to gain comprehensive insight into the
underlying factors behind decisions. The framework integrates di-
verse machine learning methods (e.g., k-Gram, Ranking SVM) to
realize step-by-step in-depth analysis of trajectory data, including
route identification, pattern extraction, and influencing factor anal-
ysis. A typical learning-to-rank method, Ranking SVM [CXL∗06],
is introduced to explore the reasons why some factors are more im-
portant than others without requiring assumptions to be made about
the data in advance. Given the intuitive expression and rich interac-
tions of visual analytics, we propose a visual analytics system with
multiple coordinated views to display travel information (e.g., dis-
tribution of departure time and travel patterns) from different per-
spectives and to support interactive exploration and comparison of
what factors influence route choice in a specific context. RouteVis
is equipped with flexible interactions that allow customized travel
scenarios to obtain analysis results, eliminating the need to examine
extensive data tables and reducing the time spent on data analysis.
The multi-factor exploration view summarizes and compares the
factors that affect route choice at three levels of detail: the overall
weight, contribution to individual route, and raw values. The main
contributions of this paper are as follows:

• We proposed a quantitative analytical framework that identifies
critical routes in massive trajectories and reveals the weights of
various factors on route choice.
• We proposed RouteVis, an interactive visual analytics system

that utilizes rich visual elements and interactions to intuitively
understand people’s route choice behavior.
• We evaluated the effectiveness of the proposed methods with two

usage scenarios and expert interviews demonstrating that Route-
Vis improves productivity of traffic analysts.

2. Related Work

2.1. Analysis of Route Choice

Analyzing route choice not only facilitates an understanding of
people’s preferred travel method and route, but also enables the
prediction of future traffic conditions [Pra09]. Existing method-
s for exploring route choice can be divided into two categories:
route choice modeling and visual analysis. Wardrop [War52] made
the first attempt to research route choice behavior and proposed
Wardrop equilibrium theory, which laid a solid foundation for sub-
sequent research such as stochastic user equilibrium [DS77], path
size logic [BAB99], cumulative prospect theory [XZX11], and so
on. Scott et al. [SLB21] and Alivand et al. [AHS15] successfully
applied the path size logic model to deduce the factors affecting
the choice of shared bicycle and scenic routes, respectively. Fur-
thermore, Cho et al. [CK22] devised a mixed path size correction
logit model, an improvement on path size logic, to explore the route
choice behavior of different traveler groups. From another perspec-
tive, Sun et al. [SZZ∗14] introduced a regression method to de-
termine whether there is a clear quantitative relationship between

route choice and other factors. Papinski et al. [PS11] deployed an
analysis tool that used ArcGIS to reveal the influence of forty vari-
ables on route decisions. Yao et al. [YB20] proposed a novel ap-
proach combining random forest and a discrete choice model to
explain the route choice behavior of individuals.

With the mature development of visualization and visual analy-
sis technology, Lu et al. [LWY15] proposed a visual analysis ap-
proach to explore route choice behavior through trajectory ranking,
providing insights into the travel characteristics of taxis. This work
was further extended so that multiple routes could be analyzed at
a time [LLY∗17]. Recently, Shin et al. [SJK∗23] designed a visual
analytics system with exploration, modeling, and reasoning stages
to support interactive route choice modeling analysis.

Most of the state-of-the-art research (e.g. Cho et al. [CK22], Shin
et al. [SJK∗23], etc.) focuses on using the route utility information
to infer the impact of route choice. Considering the confidentiality
of data, obtaining such utility value is often challenging, thereby
limiting the scalability of the aforementioned methods. Lu et al.
[LWY15] attempted to explore route choice without utility, which
provides inspiration for the workflow of this work. They studied
travel behavior along a single route, whereas we the simultaneous
analysis of multiple routes, which extends their work.

2.2. Visual Exploration of Traffic Data

Transportation is one of the most important components in smart
cities [CZKZ22] and plays a vital role in promoting the econom-
ic development and social progress. Many systematic surveys have
been conducted [CGW15, ZWC∗16, AAC∗17, MSL∗19], showing
that transportation-related visual analytics studies can be grouped
into two categories, namely, the visual analysis of trajectories and
the perception of travel patterns. Large-scale trajectory data can re-
flect the status of traffic and the movement of people, thus providing
a basis for high-quality urban services such as billboard location s-
election [LWL∗17], traffic congestion management [PYSJ21], and
identification of urban functional areas [ZWC∗18]. In terms of
the exploration of trajectories, Zhu et al. [ZCX∗19] proposed a
situation-aware representation approach to enable the visual analy-
sis of human mobility. AL-Dohuki et al. [ADKZ∗17] made a break-
through in using a text search engine to manage and query taxi tra-
jectories. Likewise, Huang et al. [HZC∗20] combined natural lan-
guage processing and visual analysis to effectively solve the prob-
lem of uncertain trajectory queries. In addition, some researchers
have been working on data abstraction [ZMT∗19] and pattern ex-
traction of origin-destination trajectories [ZFA∗16].

Since visualization has an excellent ability to gain valuable in-
formation, and it is widely used to perceive and summarize inher-
ent patterns (e.g. interchange patterns [ZFAQ13], travel pattern-
s [HMK∗20]). With respect to the exploration of mobility patterns,
Qi et al. [QHGF19] proposed a multi-step methodology which an-
alyzes and predicts mobility patterns by integrating non-negative
tensor factorization and artificial neural networks. Recently, Bai et
al. [BZQ∗21] proposed a visual analytics system (called FGVis) to
support the understanding of the relationship between urban areas.

Regarding the pattern extraction of trajectories, the tradition-
al partition-based and density-based methods are not appropriate
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for the case of feature vectors with inconsistent lengths, emerging
in the proposed quantitative analytical framework. Distinguishing
from existing work, our approach adopts a unified feature repre-
sentation from the perspective of road sequences, enhancing the
scalability of route identification. Furthermore, the visual design
and interaction within the developed visual analytics systems (e.g,
FGVis [BZQ∗21] and SmartAdP [LWL∗17]) for traffic data pro-
vided valuable references for the customization of RouteVis.

3. System Overview

3.1. Data Description and Concepts

The trajectory dataset is downloaded from Didi Chuxing GAIA Ini-
tiative, covering longitude from 104.0478◦E to 104.138◦E and lat-
itude from 30.658◦N to 30.734◦N from November 1 to November
30, 2016. The dataset consists of 5,137,861 records, each of which
includes an order ID, origin coordinates, destination coordinates,
timestamp, and location point. The data can reflect people’s trav-
el characteristics at different times of the month. We explain the
relevant concepts in detail (shown in Figure 1), which can better
facilitate the understanding of proposed framework.

Figure 1: Illustration of concepts.

Trajectory: A trajectory consists of several locations (Figure
1(A)), denoted as Tri = {p1, p2, · · · , pl}, where pl is a triple with
longitude, latitude and timestamp; l is the number of locations.

Road sequence: We transform the location pl to a road ID based
on its geographic coordinate, which can provide a higher level of
geolocation information to understand the behavior of moving ob-
jects in spatial context. Hence, road sequence is an ordered collec-
tion of road IDs (Figure 1(B)), expressed as Si = {s1,s2, · · · ,sm},
where sm is a road ID and m represents the number of roads. Due
to the short sampling time (usually 3 to 5 seconds), multiple points
in the trajectory may be mapped to the same road, and we keep just
one road ID.

Route: A route typically refers to a way of getting from one
place to another, and is denoted as Ru = {S1,S2, · · · ,Sz}, where z
represents the number of road sequences (Figure 1(C)). To alle-
viate the analyst’s workload and discover common influencing fac-
tors, we merge similar road sequences into a route with overlapping
passing roads.

Table 1: Detailed description of influencing factors.

Object Factor Description

Trajectory

Departure
Time

The timestamp of the trajectory
departure: dawn (0 : 00∼ 6 : 00),
morning (6 : 00∼ 12 : 00), after-
noon (12 : 00∼ 18 : 00), evening
(18 : 00∼ 0 : 00).

Travel
Cost

The duration from one place to another.

Travel
Distance

Distance between origin and destination.

Road

Road
Importance

Average of road level (derived from
OpenStreetMap†).

Intersection
Number

Number of intersections passed.

Congestion
Degree

There are four types of congestion: heavy
(less than 20km/h), mild ([20,30)km/h),
congested ([30,40)km/h), smooth (more
than 40km/h) [11520].

Travel pattern: The travel pattern summarizes the regularity
of travel and can be described by the continuous segment of the
road sequence (Figure 1(D), e.g., passing through "Li Hua Street-
Shan Xi Street-Jun Ping Street"). The formal representation is
Pv =< sq, · · · ,sq+θ >, where sq and sq+θ are the beginning and end
of the road sequence and θ is the length.

Influencing factors: Influencing factors are quantitative in-
dicators that affect route choice (Figure 1(E)), defined as
F = { f1, · · · , fd}, where fd = 1

|z| ∑
|z|
j=1 f j

d represents a factor,
whose value is the average of all trajectories. z represents the num-
ber of road sequences. The influencing factors are summarized in
Table 1, which is distilled from literature and a preliminary ques-
tionnaire conducted among the general public.

Figure 2: Pipeline of quantitative analytical framework.

3.2. The Pipeline of Analysis

We propose a quantitative analytical framework to quantitative-
ly analyze the factors affecting route choice, which consists of

† https://www.openstreetmap.org.
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Figure 3: Workflow for quantitative analysis of influencing factors.

three modules: route identification, factor analysis and visualiza-
tion (shown in Figure 2). The route identification module is pri-
marily responsible for obtaining routes through integrated repre-
sentation, clustering, and pattern mining. The factor analysis mod-
ule applies Ranking SVM to derive the respective weights of fac-
tors and further utilizes simple average weighting to obtain the
corresponding contributions, while allowing the custom modifica-
tion of the desired weight. The visualization module comprises
five coordinated multiple views to intuitively present the result-
s of the analysis, which are implemented using Django, Vue.js
and D3.js. The source code of RouteVis is available at http-
s://github.com/mmccc/RouteVis.git.

4. Perceiving the Preference of Route Choice

4.1. Identification of Critical Route

Data preprocessing and representation. To ensure the accuracy
and reliability of the result, three criteria are leveraged to filter the
trajectories: 1) origin and destination within the scope of study;
2) the average speed of adjacent locations below 120km/h; 3) the
time interval of adjacent locations less than 30 seconds. To gen-
erate road sequences, we further map the trajectory to the road
network in OpenStreetMap using ST-Matching, which consider-
s spatio-temporal constraints to map trajectory points with near-
by roads. Due to the flexibility of travel, the transformed road se-
quence suffers from the inherent problem of inconsistent length. To
this end, we compute the normalized frequency of the subsequence
as a uniform representation of any two road sequences based on
the idea of k-Gram. Compared to dynamic time warping, a method
for calculating the similarity of unequal-length sequences, dividing
the subsequence overwhelmingly reduces the runtime when dealing
with a large number of trajectories (see Appendix A for the results).
After many trials and error, we set the length of the subsequence to
four by default, which can be modified through system interaction.

Route identification. We employ polar distance and hierarchi-
cal clustering to group similar sequences, considering them as a
critical route. We conduct comparative experiments on different
clustering methods. The results show that hierarchical clustering
outperforms other methods (see Appendix B for the results) and
is adopted in this work. This approach offers a distinct advantage
in handling sparse vectors and eliminates the need for pre-defined
cluster numbers. Because road network structure has a significant
impact on travelling, we introduce the sequence identity metric to
evaluate the clustering effect by measuring the overlap of routes.

For a single route, the objective is to maximize the matching score
through Equation 1 when traversing a pair of road sequences, with
ms(si

α,s
j
β
) = Ea for an equal road, ms(si

α,s
j
β
) = Eb for a non-equal

road and ms(si
α,s

j
β
) = Ec for inserting a gap to ignore a road, where

Ea, Eb, Ec are constant terms. As a result, the sequence identity is
the average of the percentage of roads that are identical.

argmax
ms

m1

∑
α=1

m2

∑
β=1

ms(si
α,s

j
β
) (1)

Pattern extraction. Given the road sequence of a route, we use
the vertical maximum sequence pattern to identify typical travel
patterns (i.e., road subsequence that frequently passed). Different
from other methods, it only traverses the data once, significantly
saving the cost of scanning data. After a trade-off between pattern
coverage and execution time, we set the minimum support to half
the number of trajectories by default.

4.2. Quantitative Analysis of Influencing Factors

Figure 3 illustrates the process of exploring influencing factors. The
Ranking SVM model is trained to learn a function g(X ;W ) (i.e.,
hyperplane) that separates the positive and negative instance. Uti-
lizing Ranking SVM transforms the quantification of influencing
factors into a ranking problem, addressing the issue of insufficient
route utility information.

Derivation of preference. As described in Section 4.1, we ex-
tract multiple routes and use the influencing factors calculated in
Section 3.1 as their feature. The input of Ranking SVM compris-
es a set of training instances X , where each instance consists of a
pairwise difference vector of factor (xe = FRi −FR j ) and a label in-
dicating the relative order (ye ∈ [1,−1]). Initially, routes are ranked
according to their popularity (i.e., the number of trajectories). Let
the label be 1 if one route is more popular than the other, other-
wise -1. Next, we feed X into the model and generate an optimized
marginal function through Equation 2. Where, ‖∗‖2 denotes the L2
paradigm; η is the coefficient; ∀λe > 0 denotes the slack variable;
(a,b) denotes the dot product of elements and J denotes the num-
ber of extracted routes. Once the model is trained, we can get the
weight of different factors on route choice from an overall perspec-
tive, that is, W = {w1, · · · .,wd}.

min
W,λ

1
2‖W‖

2 +η∑
J(J−1)
e=1 λe

s.t. ye(xe,W )≥ 1−λe

(2)
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Figure 4: Visual interface of RouteVis. (A) Parameter panel is used to configure algorithm parameters. (B)Temporal summary view overviews
the temporal information of the trajectory. (C) Geospatial map view shows the real status of people’s travels with trajectory detail (C1) and
interactions. (D) Route cluster view presents the result of the identified routes and evaluation metrics. (E) Radar view and (F) multi-factor
exploration view supports the analysis and comparison of the influencing factors on route choice. (F) Travel pattern view reveals the road
subsequence where people travel frequently.

To help analysts understand and compare the role of factors in
guiding route choice, we use a simple additive weighting method
with excellent interpretability. According to Equation 3, the contri-
bution is the product of weight and raw value with respect to the
largest ones, where, f Ru

d denotes the value of the dth factor in route
Ru; wd is the corresponding weight and max

d′
( f Ru

d′ ·wd′) is the max-

imum value of the product for normalization.

Con(wd , f Ru
d ) =

f Ru
d ·wd

max
d′

( f Ru
d′ ·wd′)

(3)

5. Visual Design

5.1. Design Requirements

Based on a questionnaire survey of 55 participants from different
social groups (see Appendix C for the details), we summarize the
following four design requirements.

R1: Generating a visual overview of the trajectory. The tra-
jectory data involves spatio-temporal information, reflecting peo-
ple’s daily travel patterns and route choice preferences. When ex-
ploring massive trajectories, it is necessary to provide a holis-
tic overview, which not only follows the analysis principle of
"overview first, zoom and filter, then details on demand [Shn96]",
but also provides visual clues for users to drill down and select in-
teresting trajectories for in-depth analysis.

R2: Clustering routes based on characteristics. There may be

many alternative routes to travel from a specific origin to a destina-
tion. It is not practical to consider all trajectories during analysis,
as it is a time-consuming and labor-intensive process. For allevi-
ating the cognitive burden of analysts, the system should have the
capability to group similar trajectories, which can assist the sum-
marization of travel patterns.

R3: Quantifying the effect of different factors on route
choice. The route choice process can be influenced by a variety
of factors and changes with different times and travel scenarios.
Therefore, the visual representation should provide valuable in-
sights into how people make travel decisions, which can inform
transportation planning and policy-making.

R4: Enabling the flexible exploration of route choice for dif-
ferent travel contexts. A common scenario is that a person com-
muting to work during peak hour may prioritize the fastest route,
however when traveling for leisure, the same person may prefer
a scenic or non-congested route. Aiming to capture these differ-
ences, the system should provide sufficient interaction to analyze
route choice in different contexts.

5.2. Temporal Summary View

The goal of the temporal summary view is to assist traffic analyst-
s gain a holistic picture of daily travel, which serves as a foun-
dation for data analysis (R1). Radial layouts excel at visualizing
multidimensional information, whereas bar charts are well-suited
for presenting discrete data. Therefore, we use these two charts to
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Figure 5: Temporal summary view. (A) Visual encoding of daily
travel information. (B) Multi-level glyph. (C) Alternative design.

visualize the processed trajectory data. Each row represents a day
and consists of a multi-level glyph (Figure. 5(A1)) and a subview
(Figure. 5(A2)). All elements in the subview are arranged from left
to right, which represents one hour between 0:00 and 24:00. The
texture of each subview encodes the type of day, where the color
saturation of each diamond and the height of each bar shows the
abnormal score and the number of trajectories per hour. The abnor-
mal score is measured by the number of trajectories per day or hour
using the Isolation Forest algorithm. A multi-level glyph (Figure
5(B)) provides analysts with the status of daily travel, which facil-
itates the selection of the date. In the tailored glyph, three kinds of
information are encoded, that is, the height of the outer ring shows
the average distance per hour (B1); the area of the middle pie rep-
resents the number of trajectories at each stage (B2); the color sat-
uration of the inner circle shows the abnormal score (B3).

Alternative. Figure 5(C) shows an early prototype of our design,
where the length of the arc indicates the number of trajectories in
each stage and the color saturation of the outermost circle encodes
the abnormal score. However, the length of the arc is dependent on
the radius, which can cause discrepancies and misinterpretations
when expressing the same value. As a result, it is discarded.

5.3. Geospatial Map View

The spatial context is crucial for analysts because it enhances the
perception of people’s actual movements. To this end, a geospatial
map view is used to display the geographic distribution of travel,
while providing sufficient information to brush areas worth study-
ing (R1, R2). Analysts can investigate regions of interest in two
ways: 1) they can brush any area within a specific radius using the
circle; 2) they can directly click on two functional areas in the map.
As shown in Figure 6(A), if the analyst brushes or clicks the ori-
gin and destination, the system marks them with green and yellow,
respectively. By default, all trajectories are dynamically displayed
with blue lines accompanied by white dots. When the fifth button
is clicked, each identified critical route is mapped with a qualitative
color scheme. To alleviate visual clutter, we only mark the repre-
sentative route (i.e., trajectory with the highest sequence identity
score). In addition, we provide thirteen interactions (Figure 6(A1))
to support analysts in getting different aspects of information. Due
to the high density of origins or destinations, we utilize a heatmap
to visually encode them from red to blue, thereby overcoming the

Figure 6: Geospatial map view. (A) Visual design and Interactions.
(B) Heatmap of origin or destination. (C) Distribution of functional
areas. (D) Detail of trajectories.

obstacle caused by point overlap. As shown in Figure 6(B), loca-
tions with more trajectories are represented in a deeper red.

Division of traffic functional area. The traffic functional area
is a crucial component of the urban transportation network, and it-
s layout and characteristics also affect route choices. Hence, we
exploit Mini Batch K-Means to cluster the origin and destination,
and determine the functionality according to the maximum num-
ber of points of interest. As a result, Cheng Du can be divided into
63 functional areas, represented in different shades of gray (Fig-
ure 6(C)), including 3 accommodation facilities, 9 corporations, 1
transportation center, 38 malls, 4 living services, and 8 food outlets.

Details of trajectory. The statistical results of departure time
and influencing factors are temporal and discrete data, respective-
ly. We design variants of bar charts for an intuitive visual repre-
sentation (Figure 6(D)). In the first row, the dashed box at the top
shows the total number of trajectories within the brushed area. In
the second row, a stacked bar chart shows the distribution of the
number of trajectories at each departure time, where the x-axis and
y-axis indicate hour and the number of trajectories. If the analyst is
interested in a certain departure time, further investigation can be
done by clicking on the corresponding bar. In the last row, horizon-
tal bars are designed to understand the characteristics of the influ-
encing factors for each trajectory. We express their average values
explicitly at the top, while drawing a horizontal whisker plot to dis-
play the statistical information. The length of the bar represents the
normalized value of each factor.

5.4. Route Cluster View

It is a common method to analyze the clustering results by using
the scatterplot with color. Based on this experience, we design a
route cluster view (Figure 4(D), R2) which includes the evaluation
(top) and the clustering results (bottom). The matrix shows the rela-
tionship between multiple variables in a grid format, which is ideal
for the many-to-many relationship in the evaluation results. In the
figure, each row represents a metric, and each column represents
the total number of clusters formed. To facilitate a comparison, the
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same metrics are normalized and encoded with the color satura-
tion of a matrix cell. Additionally, analysts can click on the cross
at the top of each column to interactively check the result of clus-
tering. Aiming to reduce the cost of learning, the clustering result
is integrated with a typical scatterplot and donut chart. A data point
located inside represents a trajectory and is colored depending on
the route to which it belongs. Note that the color scheme is consis-
tent with the geospatial map view. The layout of the scatterplot is
obtained through multidimensional scaling of polar distance. Final-
ly, we summarize the number of trajectories contained in the route
drawn as a donut chart. Each slice represents a route, and the size
of the slice corresponds to its proportion of the whole. Analysts can
click on each slice to hide alternative routes in geospatial map view
and highlight the specific route of interest for tracking.

5.5. Multi-Factor Exploration View

After exploring the data using the proposed quantitative analytical
framework, the results of analysis exhibit characteristics of multi-
variate (i.e., multiple influencing factors) and multi-level (i.e., the
overall weight, contribution to individual route, and raw values) na-
ture. Considering the learning curve for analysts, the multi-factor
exploration view (Figure 4 F) provides a wealth of valuable infor-
mation by ingeniously using simple visual elements such as line,
circle, and color (R3, R4). Concretely, the length of the bar (Figure
7(A1)) describes the weights of the influencing factors, where green
means negative and orange means positive. If the derived weights
do not coincide with the analyst’s prior knowledge, a plus/minus
button is provided at the bottom of the parameters for modification.
In the middle of this view (Figure 7(A2)), we visualize the multi-
variate information (i.e., the average of raw influencing factors) of
the route in the form of an egocentric network arranged in a clock-
wise direction. Besides, the dashed circle in the center represents
the route itself. The larger the radius of the circle, the larger its
value. On the basis of ensuring information integrity and a concise
user interface, the system provides mouse hovering, enabling ana-
lysts to quickly grasp the implicit meaning of each circle along with
its corresponding actual numerical values (Figure 7(A5)). Further-
more, we depict the contribution of influencing factors through a
tailored visualization that integrates the idea of matrix and parallel
coordinates. Overall, each row represents a route, where the trans-
parency of the gray background indicates the number of trajectories
it contains, and each column indicates a factor (Figure 7(A3)). The
radius of the circle indicates the contribution value, where the color
is consistent with that in Figure 7(A1). Similar to the parallel coor-
dinates, a line in each row illustrates the distribution of a trajectory
over different factors, providing an intuitive overview.

Comparison of route. The analyst can select any two routes for
comparison by clicking on the square in front of the route (Figure
4(E)). The radar chart is particularly useful when multiple variables
need to be presented and compared simultaneously. Thus, we rep-
resent each factor as a separate axis in a clockwise manner and
connect the data points of each route with a line, which enables the
analyst to assess the relative differences at a glance.

Alternative. To facilitate visual perception, the initial scheme
uses a superimposed matrix to display the data value and contribu-
tion (Figure 7(B)), where the row and column represent route and

factor, respectively. For any factor, the transparency of the back-
ground cell indicates the data value (i.e., the darker the color, the
greater the value), while the size of the foreground cell indicates
the contribution (i.e., the larger the cell, the greater the contribu-
tion). If the foreground cell completely covers the background cell,
it difficult to identify the value accurately. For this reason, we make
an improvement that uses the line to represent the data values.

5.6. Travel Pattern View

The travel pattern view, comprising a series of cards (Figure 4(G,
G1)), presents the analysts with typical road subsequences mined
form diverse trajectories by the vertical maximum sequence pat-
tern algorithm (R2). To preserve the travel information, we still
show the trajectory with a blue line on the mini-map. A row on the
right represents a pattern consisting of support count and road sub-
sequence. We visualize the subsequence with horizontally stacked
rectangles, where the number maps the road ID and the transparen-
cy is determined by the road importance. Constrained by space, we
provide a scrollbar to access content that exceeds the visible area.

5.7. Interactions

A collection of interactions (e.g. ranking, hovering, clicking, and
brushing) is available for analysts to explore the dataset efficiently.
A circular brush and functional area selection are provided on the
geospatial map view and the trajectories that are not within the s-
cope of the research are automatically filtered. In the multi-factor
exploration view, RouteVis defaults to rank the factors by numeri-
cal magnitude, while providing rank by absolute value.

6. Evaluation and Discussion

6.1. Usage Scenario

Consider a traffic analyst whose routine is to report on the state of
traffic at the end of the year. We describe how the proposed ap-
proach helps traffic analysts perform their duties by envisioning
two typical examples.

Case1: Which route do people travel most often? (R1, R2,
R3) Understanding the critical route helps transportation planner-
s gain insights into vital roads within a traffic network, which can
inform long-term planning efforts. The following examples demon-
strate the effectiveness of the proposed method in extracting routes.

We initially observe daily travel information through the tem-
poral summary view, as shown in Figure 4(B). A remarkable phe-
nomenon is that the color of the leftmost bar is lighter and becomes
darker from 7:00, reaching a peak at 13:00 or 14:00, which coin-
cides with daily life. Ranked by the volume of the trajectory, we
can see that the trajectories on November 18th are the most nu-
merous, with a total of 187,912. Then, we select that day in the
parameter panel (Figure 4(A)) for further exploration, and switch
to the heatmap of origin to observe the spatial distribution. Rela-
tive to other areas, the QingYang District (blue rectangle in Figure
6(B)) has higher traffic volumes.

We take Evergrande Central Plaza and QingYang Government
as the origin and destination (Figure 6(A)) to explore how people
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Figure 7: Visualization of influencing factors. (A) Multi-factor exploration view. (B) Alternative design.

travel. After setting the exploration radius to 500 meters in the con-
trol panel, we brush the aforementioned areas with the lasso tool.
It can be seen from the Figure 6(D) that there are 29 trajectories in
total, with peaks at 12:00, 13:00, and 18:00 (red rectangles). Ob-
serving the characteristics of the influencing factors, it can be seen
that most of them set off in the third stage (i.e., 12:00 18:00), while
the distance and duration are short, at 2792 meters and 661 seconds.
It is notable that the average congestion is 3 (i.e., mildly congested
with a speed between 20km/h and 30km/h).

In the route cluster view, the system automatically identifies 10
critical routes because of the highest sequence identity score. Since
the silhouette coefficient is the largest in 6, we believe that identify-
ing 6 routes is more suitable. Intuitively, from the scatterplot of the
route cluster view (Figure 4(D)) we can see that Route 1 (colored
in brown) and Route 2 (colored in orange) are the more popular
routes, each with 10 trajectories. Additionally, the geospatial map
view visually displays that all the routes pass through Shun Cheng
Avenue, except for Route 1 which passes along Xin Hua Boulevard
(red arrow in Figure 6(b)). Obviously, the routes traveling in this
area form two junctions and one divergence marked with a red cir-
cle in Figure 6(A), which provide clues as to how to optimize traffic
flow. It is interesting that Route 4 takes a detour to the destination
at Shu Du Boulevard. Further, in the travel pattern view (Figure
4(G)), we note that the color of the mined frequent patterns is dark
blue, which indicates that people usually choose to travel on trunk,
while Road 36,089 and Road 51,246 have more traffic.

Case2: Why do people prefer a particular route? The route on
which people choose to travel can depend on various factors such
as location and time, which poses a challenge for traffic analysts.
We verify how the system reveals the preferences of people’s route
choice for different times and travel purposes.

Comparison of different travel time (R4). For the aforemen-
tioned areas, we subsequently observe the weights of the influenc-
ing factors derived from the Ranking SVM model in the multi-
factor exploration view. Overall, the length of travel distance, trav-
el cost, and intersection number is larger, meaning they have the
greatest influence on route choice. Specifically, travel distance has
a negative effect (-1.24, Figure 4(F1)), suggesting that people prior-
itize routers with a shorter distance, which coincides with our dai-
ly observations. The weight of the intersection number is positive
(1.52, Figure 4(F1)), presumably due to the fact that these vehicles

travel in busy urban centers. This phenomenon is also supported by
the travel cost, whose weight is positive, implying that people trav-
el for a long duration, despite the short distance. Further research
is needed to explore whether this is caused by congestion or unrea-
sonable signal control.

Next, we inspect the contribution of each factor to route in detail.
We can see that Route 1 is the best route, followed by Route 4 and
3 (Figure 4(F2)). Consistently, the radius of the circle on the left
is larger with respect to travel cost, intersection number, and travel
distance, indicating a greater contribution. Upon further inspection,
it turns out that the high ranking of Route 1 is mainly attributed
to the intersection number, although its average travel distance is
much larger compared to other routes. Since there are also 10 tra-
jectories in Route 2, we click on the square of Route 1 and Route
2 to perform a one-to-one comparison in the radar chart (Figure
4(E)). Both have an equal value in terms of intersection number,
while the difference in travel distance, congestion degree, and de-
parture time ultimately results in Route 1 being ranked ahead.

To understand the differences in influencing factors over time,
we continue to analyze the six identified route on November 19th.
As shown in the multi-factor exploration view, the obvious differ-
ence is that the intersection number has the greatest negative impact
(-1.87), which is the opposite of November 18th (Figure 7(A1)).
We believe that people prefer a route with fewer intersection num-
ber, but pay little consideration to congestion degree and departure
time. We also note that travel cost is still a more important positive
factor (Figure 7(B1)), in other words, the duration of the commute
between Evergrande Central Plaza and QingYang Government is
longer at any time. Traffic managers can implement adaptive signal
control systems, as well as upgrade and expand road infrastructure
to reduce travel duration and improve the travel experience.

Differences in the purpose of travel (R4). An individual’s pur-
pose of traveling from one place to another can influence their pri-
orities and preferences when selecting a route. We compare and an-
alyze three typical scenarios (namely travelling from accommoda-
tion to a corporation, a mall, and a transportation center) to demon-
strate that the proposed system supports the exploration of route
choices in various contexts.

In the geospatial map view, we switch to the functional area by
clicking the FA button. Taking the Xi Hua Men Community as the
origin, we study the travel to the Province City Government Affairs
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Figure 8: Exploration and comparative analysis of influencing factors in different contexts.

Center (corporation), Evergrande Central Plaza (mall) and Cheng
Du Railway Station (transportation center), respectively. In gener-
al, these travels are strongly influenced by road importance, inter-
section number, travel distance, and travel cost, as the length of the
corresponding bar in Figure 8(A1, B1, C1) is longer. Furthermore,
the influence of departure time and congestion degree is relatively
weak, so the circles on them is also fewer and smaller (red dashed-
line rectangle in Figure 8(A3, B3, C3)).

Note that there are several differences as well. Firstly, people
are more concerned about the convenience and efficiency of trav-
el from their accommodation to a corporation and a transportation
center. As shown in Figure 8(A1, C1), when people travel from
their accommodation to a corporation or a transportation center, in-
tersection number (-0.35, -0.27) and travel distance (-1.05, -0.59)
are negative influences.

Second, road importance has the strongest positive effect on
route choice, i.e., 0.86 and 0.64, regardless of whether it is from ac-
commodation to a corporation or a transportation center. With the
help of the geospatial map view, we learn that people are driving
on a primary or secondary road such as Chang Shun Street (Figure
8(A2)), Dong Cheng Gen Street (Figure 8(B2)), Bei Jiao Chang
West Road (Figure 8(C2)), etc.

Finally, the preference of route choice from the accommoda-
tion to the mall is completely the opposite to that of travelling to
corporation and transportation center (Figure 8(B1)). Road impor-
tance has a negative influence (-0.58), while intersection number
and travel distance have a positive influence (0.93 and 0.59). A rea-
sonable explanation is that people are more inclined to consider
comfort when traveling without time constraints, even though these
routes may involve a longer distance or more intersections.

6.2. Expert Interview

We invite three domain experts to evaluate the system regarding
workflow, visual design, and effectiveness. E1 and E2 are employ-
ees of a government transport department and an enterprise, respec-
tively. They have been closely collaborating for a long time to ex-
plore people’s travel patterns and analyze the current status of urban
transportation operations. E3 is a PhD student working in the field
of transport with a foundation in visualization. None of the three
experts have known about the RouteVis system before.

Procedure. We conducted a two-hour online meeting with three
experts. First, we spent 10 minutes introducing the RouteVis sys-
tem, including the data, addressed problems, workflow, and ana-
lytical requirements. Subsequently, we explained the visualizations
and interactions of the RouteVis system using a demo video of us-
age scenarios in Section 6.1. Finally, we asked experts to freely ex-
plore the system and collect their feedback during usage, providing
constructive guidance for further improvement.

System. The comprehensive and clear analytical process of
RouteVis had been praised by three experts. Experts only needed
to select areas of interest in the geospatial map view, and the sys-
tem would automatically explore. As stated by E1, "The RouteVis
system makes the entire analysis process easy and efficient. Com-
pared to the tedious operations of spreadsheet queries and statistics,
it significantly enhances our work efficiency". E1 favored the multi-
factor exploration view, as he believed that this approach was prac-
tical in the analysis of influencing factors, providing compelling
evidence for decision-making. However, E1 also pointed out that
"it would be better if the findings from the exploration could be
documented". E2 emphasized the organic synergy among various
views, "Combining multi-factor exploration view and radar view,
I can more flexibly compare the differences in influences on dif-
ferent routes". In addition, E2 suggested, "Since the system has al-
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Table 2: Running time (milliseconds) for each step.

Trajectory
Number

k-Gram Similarity Clustering VSMP
Ranking
SVM

17 9.97 446.78 2905.24 36.33 9.97
23 1.00 515.62 1996.36 14.67 4.99
53 5.98 2139.28 6008.63 16.33 4.99
77 5.99 5716.70 20979.87 17.00 4.99
115 27.92 8393.54 25917.78 30.00 10.97
156 48.90 17271.76 55758.42 34.33 3.99
207 71.79 41385.26 199398.28 56.00 3.99
350 58.87 86424.72 117913.45 37.33 5.97
445 153.59 157374.93 260784.31 51.00 24.93
793 242.35 385683.82 277310.82 53.67 3.99

ready provided the travel pattern view, should it be considered as
a factor?". Both E1 and E2 recommended providing downloadable
guidelines to describe how to use the system.

Visual Designs. Expert E1, E2, and E3 all reported that the sys-
tem provided richer information through diverse visual channels.
Regarding the temporal summary view, they thought it’s good to
show information at different levels of granularity, i.e., days, stages,
and hours. E3 commented, "After watching the demo video, I could
clearly understand the meaning of each graphical element and col-
or scheme in the system". A trade-off between visual representa-
tion and cognitive load was required. "RouteVis requires a certain
learning curve, especially for novice users," added E3. Besides, E1
questioned the lines showing the raw data in the multi-factor explo-
ration view. "These lines allow me to observe the overall trend, but
I struggle to obtain specific details without the y-axis".

7. Discussion

System Performance. The running time of the RouteVis system
includes the computation of the quantitative analytical framework
and the rendering of the visualization. We recorded the required
running time for each step by conducting experiments on 10 ran-
domly selected travel data, as shown in Table 2. As the number of
trajectories increases, the response of k-Gram, VMSP, and Rank-
ing SVM is rapid, taking only tens of milliseconds. The bottleneck
of RouteVis lies in similarity calculation and clustering. Theoret-
ically, the computational complexity of similarity is O(n2), which
depends on the number of trajectories n. To ensure that the user
experience is not affected by prolonged waiting times, we employ
interactive filtering within the system, so as to exclude trajectories
that are not expected to be analyzed. Currently, RouteVis has hun-
dreds of trajectories after filtering, so route identification can be
done in a few minutes.

Generalization. Trajectory data can be regarded as spatio-
temporal data because it contains information in both spatial and
temporal dimensions, so the methods and visual designs proposed
in this paper can be applied to explore other data. The core task
of analyzing influencing factors can be abstracted as: identify the
objective, define the factors, and quantify the weight. For exam-
ple, a similar exploration scheme can be used to discover the caus-
es of air quality pollution. The analysis process involves identify-
ing contaminated areas (i.e., clustering monitoring data) and deter-

mining whether they are caused by industrial or vehicle emission-
s. The spatio-temporal characteristics of air pollution are summa-
rized through the geospatial map view and temporal summary view
in RouteVis. Potential influencing factors are then calculated and
quantified, using statistical or machine learning methods. The mul-
tivariate presentation solution (e.g. egocentric network and matrix)
in the multi-factor exploration view still is applicable.

Limitations. The scalability of route identification is somewhat
constrained, primarily due to two factors: the computation of sim-
ilarity and the traversal to find the optimal route. Given the s-
patiotemporal characteristics of the transportation domain, offline
route recognition demonstrate significant effectiveness in reducing
user waiting times. However, it suffers from a lack of flexibility
in meeting user analytics requirements. Moreover, the scalability
of the system is also a concern for us. We only allow users to ex-
plore up to 10 routes. On the one hand, the spatial representation of
the road in the map is limited, and displaying too many routes can
result in overlap, making it challenging to discern the actual driv-
ing process. Although we provide interactions allowing analysts to
track a single route, mitigating visual clutter to some extent. On
the other hand, in the route cluster view, using the qualitative col-
or schemes to visually represent identified routes faces scalability
issues. As the number of routes increases, the distinction between
colors becomes smaller and smaller. The other limitation is that the
functionality of the system needs to be further improved. RouteVis
should save a snapshot of the analysis process to facilitate back-
tracking to the previous state and compare the results and differ-
ences at different stages.

8. Conclusion and Future Work

In this work, we study the quantification of influencing factors that
affect route choice. Based on summarized design requirements, we
propose RouteVis, a visual analytics system to help traffic analysts
understand the preferences of people’s route choice behind trajec-
tory data. Through trajectory transformation, we capture the sim-
ilarity between them and utilize hierarchical clustering to identify
routes while evaluating them with four metrics. We then propose
a quantitative approach to model route choice behaviors and de-
rive their respective influence weights. Usage scenarios and expert
interviews demonstrate that RouteVis can effectively discover the
relationship between route choice and the influencing factors and
enhance traffic analysts’ perception of the current state of travel.

However, there is still room for improvement in this work: 1) We
will strive to incorporate additional factors for a more comprehen-
sive and detailed understanding of people’s decision-making pro-
cesses. The potential effects of external factors such as weather,
major events, or infrastructure changes on route choice cannot be
ignored. 2) An in-depth study on how multiple influences work to-
gether on route choice is an optional direction. We look forward
to revealing the interrelationships among these influencing factors
and their comprehensive effects on route choice behavior.
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