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Abstract
Can a given set system be drawn as an Euler diagram? We present the first method that correctly decides this question for
arbitrary set systems if the Euler diagram is required to represent each set with a single connected region. If the answer is
yes, our method constructs an Euler diagram. If the answer is no, our method yields an Euler diagram for a simplified version
of the set system, where a minimum number of set elements have been removed. Further, we integrate known wellformedness
criteria for Euler diagrams as additional optimization objectives into our method. Our focus lies on the computation of a planar
graph that is embedded in the plane to serve as the dual graph of the Euler diagram. Since even a basic version of this problem
is known to be NP-hard, we choose an approach based on integer linear programming (ILP), which allows us to compute
optimal solutions with existing mathematical solvers. For this, we draw upon previous research on computing planar supports of
hypergraphs and adapt existing ILP building blocks for contiguity-constrained spatial unit allocation and the maximum planar
subgraph problem. To generate Euler diagrams for large set systems, for which the proposed simplification through element
removal becomes indispensable, we also present an efficient heuristic. We report on experiments with data from MovieDB and
Twitter. Over all examples, including 850 non-trivial instances, our exact optimization method failed only for one set system to
find a solution without removing a set element. However, with the removal of only a few set elements, the Euler diagrams can
be substantially improved with respect to our wellformedness criteria.

CCS Concepts
• Human-centered computing → Information visualization; • Theory of computation → Integer programming; • Mathe-
matics of computing → Hypergraphs;

1. Introduction

Euler diagrams are frequently used to visualize set systems. They
represent each set as a region in the plane that is bounded by a
closed curve. An area in an Euler diagram that is occupied by one
or multiple regions indicates the existence of set elements that are
contained in the corresponding sets and in no other set. An ad-
vantage of Euler diagrams is that they are intuitive to understand.
However, they can become cluttered even for medium-sized set
systems. For a given set system, it is possible that no Euler dia-
gram exists when requiring the regions to be connected. Previous
approaches [RZF08, SA08] split sets into two or more separate re-
gions. However, splitting makes it harder to identify regions be-
longing to the same set, and increases the overall number of regions
in the visualization.

Our work addresses two research problems. First, none of the
existing methods can decide for a given set system whether an Eu-
ler diagram with a single connected region for each set exists, let
alone generate an Euler diagram in every case where it is possible.
Second, Euler diagrams have typically been considered as a tool to

visualize set systems without loss of information. We think Euler
diagrams can be used as a tool to visually summarize large set sys-
tems, but for this summary, the generation of Euler diagrams has to
be combined with a simplification of the given data.

Our contribution is a new combinatorial optimization approach.
Given a set system as input, our goal is to compute a simplified
but still similar version of the set system that can be drawn nicely
as an Euler diagram. The simplification is achieved by removing
some set elements from the set system. To quantify the loss of in-
formation caused by the removal of elements, we assume that every
element has a weight expressing the cost of its removal. For exam-
ple, the weight of each element may be one, or it can be equal to the
number of sets containing the element. More generally, any mea-
sure expressing the importance of the element can be applied.

Our most important contribution is an exact optimization method
that minimizes the total weight of the removed set elements while
ensuring that the resulting simplified set system can be embedded
in the plane as an Euler diagram with a single connected region
for each set. Moreover, we contribute multiple extensions of our
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method to integrate additional optimization criteria that improve
the resulting Euler diagram with respect to known wellformedness
conditions [RZP11]. For large set systems, we introduce an effi-
cient heuristic method. We conduct experiments with both the ex-
act method and the heuristic on realistic set systems and assess the
quality of their solutions as well as their efficiency.

2. Preliminaries and basic problem

To discuss our contribution in the context of related work and de-
velop our methods, we view the given set system as a hypergraph.
A hypergraph H = (V,E) consists of two sets, a vertex set V and
a hyperedge set E, where each hyperedge X ∈ E is a subset of V ,
i.e., X ⊆V . In the hypergraph representation of a set system, every
vertex in V corresponds to a set element and every hyperedge in E
to a set. A support of a hypergraph H = (V,E) is a graph G with
vertex set V such that each vertex set X ∈ E (i.e., each hyperedge)
induces a connected subgraph in G, meaning that the subgraph of G
whose node set is X and whose edge set contains an edge for every
two nodes in X that are adjacent in G is connected. In the context
of Euler diagrams, it is most interesting to find a planar support of
a given hypergraph H, i.e., a support of H that can be drawn in the
plane without edge crossings; see Fig. 1. In essence, a planar sup-
port of a given hypergraph can serve as the dual graph of the Euler
diagram that is to be constructed; see Figs. 2 and 3.
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Figure 1: A pla-
nar support of the
hypergraph with
nodes 1, . . . ,5 and
hyperedges {1,2,3},
{1,4,5},{2,4}, each
inducing a connected
subgraph.

Figure 2: An Eu-
ler diagram whose
dual graph is the
planar support in
Fig. 1. The three re-
gions correspond to
the three hyperedges
of the hypergraph.

1 2

5

3

4

Figure 3: The pla-
nar support of the
hypergraph in Fig. 1
superimposed with
an Euler diagram
using the planar
support as its dual
graph.

When we say that we remove an element v from a hypergraph
H = (V,E), we imply that v is removed from the vertex set V of
H as well as from every hyperedge X ∈ E in which v occurs. We
introduce for every node v ∈ V a weight w(v) ∈ R>0 measuring
the cost of its removal. If the aim is to minimize the number of
element removals, we set w(v) = 1 for each set element. Else, if
the aim is to minimize the loss of set memberships, we set w(v) =
|ℓ(v)|, where ℓ(v) is the set of hyperedges containing v, i.e., ℓ(v) =
{X ∈ E | v ∈ X}. With H−S, we refer to the hypergraph resulting
from a hypergraph H = (V,E) after removing a set S ⊆ V from
it. With this, we are ready to state a basic problem that asks for an
optimal simplification of a set system to generate an Euler diagram.

Problem 1 (SetSystemSimplification)
Given a hypergraph H = (V,E) and a weighting w:V → R>0, find
a minimum-weight set S ⊆ V such that H−S has a planar support
and return such a planar support as output.

We would like to point out that SetSystemSimplification has a so-
lution with S = ∅ if and only if the given hypergraph H has a planar

support. Therfore, any exact optimization algorithm for SetSystem-
Simplification can be used as a tool to decide whether a hypergraph
has a planar support. Since deciding whether a hypergraph has a
planar support is NP-hard [JP87], we conclude that SetSystemSim-
plification is NP-hard, too.

As our problem is NP-hard, there is no reasonable hope for an ef-
ficient exact algorithm. Therefore, we focus on an approach based
on integer linear programming, which is a general method for solv-
ing combinatorial optimization problems and has the advantage that
we can employ existing mathematical solvers. With this, we can
solve both the new problem SetSystemSimplification and the known
problem of finding a planar support for a given hypergraph.

Solving SetSystemSimplification is insufficient since it neglects
important criteria. Therefore, we will extend it to a multi-criterial
problem, MCSetSystemSimplification, after reviewing wellformed-
ness conditions for Euler diagrams. Both our exact method and our
heuristic can deal with this extended problem.

3. Workflow

While we consider the exact optimization method and the heuristic
for MCSetSystemSimplification as our main contribution, we also
provide a complete workflow that yields an Euler diagram visual-
izing a simplified version of a given hypergraph. This workflow is
illustrated in Fig. 4 for an artificial example and outlined below.

In Step 1 of our workflow, we replace every set of nodes that
are contained in exactly the same hyperedges with a single node,
yielding the condensed hypergraph. The motivation for this step
is that nodes contained in exactly the same hyperedges should not
be separated in the final visualization. Moreover, working with the
condensed graph greatly reduces the running time of our methods.
However, that this step may affect the existence of a planar sup-
port [vBKK∗22]. Therefore, we may optionally skip this step, for
example, if the aim is to compute a planar support of the original
hypergraph.

In Step 2 of the workflow, the condensed hypergraph is used to
compute the superdual graph, whose node set contains every node
of the condensed hypergraph as well as a special node v0 represent-
ing the outer face, and whose edge set contains every edge that may
be useful for the dual graph of the Euler diagram. Next, in Step 3,
a solution to MCSetSystemSimplification is computed in the form
of a selection of nodes and edges of the superdual graph, which de-
termines both the simplified hypergraph and the dual graph of the
Euler diagram. This is achieved either with our exact optimization
approach via integer linear programming or our heuristic method.

We use existing methods for the last three steps of our workflow.
First, in Step 4, we compute a planar embedding of the dual graph
generated in Step 3 [CP95]. In Step 5, the planar embedding is used
to construct an initial Euler diagram [RZF08] that is guaranteed to
contain only simple curves. Finally, in Step 6, the curves of the
initial Euler diagram are smoothed [SAS16].

4. Related work

The visualization of set systems has been an active research
topic for several years. A comprehensive study and classifica-
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Figure 4: Results after different steps of our hypergraph visualization workflow. The input to the shown example is a set system consisting of
nine sets, i.e., hyperedges: a:{1,4,7}, b:{1,5,7}, c:{1,6,7}, d:{2,4}, e:{2,5}, f:{2,6}, g:{3,4}, h:{3,5}, i:{3,6}. The set elements 1
and 7 are replaced by a single set element in the first step because both are contained by the same hyperedges. The label of each node refers
to the sets containing it. The additional node labeled 0 represents the outer face. The results of Steps 2–6 are visualized by Figs. (a)–(e). For
each set, there exists one edge in the superdual graph that has to be selected to ensure the set’s connectivity if all set elements are selected.
Since these edges constitute the non-planar graph K3,3, a node of the superdual graph has to be removed to generate a planar dual graph.

tion of the literature into six categories was done by Alsallakh et
al. [AMA∗16]. Here, we focus on Euler diagrams, which have been
investigated by two overlapping communities: information visual-
ization and graph drawing.

4.1. Euler diagrams

Much research on Euler diagrams has focused on the definition of
wellformedness conditions and how to ensure them. These condi-
tions describe properties of Euler diagrams that target an improved
comprehension of the diagrams. Sets are represented by labeled
closed curves and set intersections are represented by zones, which
are regions enclosed by the required closed curves. Typical well-
formedness conditions include:

• Connected zones: each zone in the diagram is connected, broken
in Fig. 5a.

• No concurrency: no pair of curves run concurrently, broken in
Fig. 5b.

• Transversality: intersecting curves always intersect transver-
sally (that is they cross, rather than just ’touch’), broken in
Fig. 5c.

• Simplicity: all curves are simple curves. A curve is simple if it
does not cross itself, broken in Fig. 5d.

• No triple points: there are no triple points of intersection among
the curves, broken in Fig. 5e.

• Unique curve labels: no curve label is used more than once,
broken in Fig. 5f.

For a more formal definition of wellformedness conditions,
see [SRHT07]. To verify the importance of each property, Rodgers
et al. [RZP11] conducted a user study measuring time and errors
during the completion of given tasks. Disconnnected zones and
concurrent curves caused significant errors and an increase in com-
pletion time. Moreover, representing a set with more than a single
curve had a significantly adverse impact on task completion time.

Early approaches to Euler diagram embedding aimed to create
wellformed Euler diagrams with rather strict conditions. Flower
and Howse [FH02] defined concrete Euler diagrams, which met

(d) non simple curve: b
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(a) disconnected zone:
the intersection of a and b

a b

c

(f) duplicated curve label: c
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(c) nontransverse
intersection: a and b

a b

(b) concurrency:
a and b; a and c; b and c
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c

(e) triple point: a b and c

a b

c

Figure 5: Examples of wellformedness conditions.

all of the wellformedness conditions above. However, strictly re-
quiring all conditions means many set systems cannot be drawn.

Methods for generating Euler diagrams with relaxed wellformed
conditions have been developed by Rodgers et al. [RZF08] and Si-
monetto and Auber [SA08]. However, these methods allow con-
currency and duplicated curve labels. Moreover, they are heuris-
tic and may introduce duplicated curve labels even when it is un-
necessary. Since some of the existing methods (e.g., [SAA09])
yield Euler diagrams that can look distorted and stretched, Eu-
lerSmooth has been developed to smooth the curves of an ex-
isting Euler diagram [SAS16]. For achieving this goal, the algo-
rithm applies a curve shortening flow approach. During this ap-
proach, the algorithm ensures that every set element stays within
the correct zone using a force-directed edge-aware algorithm, Im-
PrEd [SAAB11]. SPEULER constructs Euler diagrams where set
elements are arranged using circular layouts [KGWD22]. The re-
sulting Euler diagrams are wellformed, which is partly a result by
allowing only neighboring zones with no concurrency. RectEuler
represents set-like data as Euler diagrams using rectangles as en-
closing curves [PKS∗23]. The resulting Euler diagrams are well-
formed. However, they split the diagram into multiple diagrams if
necessary. Additionally, there exist approaches for drawing the set
elements of set systems as glyphs within the corresponding region
of the Euler diagram [Bra12].

© 2024 The Authors.
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Recently, Zhou et al. [ZRPW23] presented a method for the sim-
plification of hypergraphs and used Euler-like diagrams to visu-
alize the results, but the simplification method does not consider
criteria regarding the resulting visualization. Oliver et al. [OZZ23]
presented a method for hypergraph simplification and visualization
which, however, does not use Euler diagrams. Instead, the hyper-
edges are represented as polygons, whose vertices are the nodes.

4.2. Hypergraph drawings and planar supports

In the graph drawing community, a set system is usually viewed as
a hypergraph, and different types of hypergraph drawings are con-
sidered. Mäkinen [Mäk90] introduced two types of drawings, edge
standard and subset standard. The latter type includes vertex-based
Venn diagrams, which were defined by Pollack [JP87] and which
correspond to the type of Euler diagrams that we address with
our work, i.e., Euler diagrams that are based on planar supports.
Later, vertex-based Venn diagrams were generalized into subdivi-
sion drawings [KvKS09]. Johnson and Pollack [JP87] also showed
that it is NP-hard to decide whether a given hypergraph has a planar
support. Moreover, they presented an efficient algorithm that yields
a tree support if it exists, i.e., a planar support that is a tree. Follow-
ing up on this study, efficient algorithms were developed that can
deal with edge weights to express preferences for including certain
edges in a tree support [KS03, KMN14]. Also, it is known that one
can efficiently decide whether a hypergraph has a planar support
that is a path [KS03] or a path-based tree support [BKM∗11], i.e.,
a planar support that is a tree such that every hyperedge induces a
connected path in it.

Another line of research has dealt with finding planar supports
for hypergraphs with special properties. Brandes et al. [BCPS11]
presented an efficient algorithm for hypergraphs that are closed un-
der intersections and differences, i.e., every intersection and differ-
ence of two hyperedges is also a hyperedge. Moreover, a hyper-
graph has a planar support if there is a non-empty intersection of
all hyperedges [CR05], there are at most eight hyperedges [VV04],
or the hypergraph results from the intersection of two families of
regions that have a special property, called non-piercing [RR18].
None of the existing methods, however, can decide for an arbitrary
hypergraph whether it has a planar support.

Recently, van Bevern et al. [vBKK∗22] studied the role of twins
in computing planar supports, where two vertices are twins if they
occur in exactly the same hyperedges. They showed that when re-
placing a set of twins by a single vertex, the hypergraph may cease
to have a planar support. However, the proof by Johnson and Pol-
lak [JP87] shows that even for hypergraphs without twins, it is NP-
hard to decide whether a planar support exists. Our method for
computing a planar support can deal with hypergraphs that con-
tain twins, but we propose an optional preprocessing step to re-
place each set of twins by a single node to ensure that it will be
represented as a single connected zone in the output Euler diagram.

4.3. Set visualizations

Several methods for set visualization have been developed that are
related to hypergraph drawings or Euler diagrams.

LineSets aim at the reduction of clutter in representations of set

systems [ARRC11]. They represent each set of the system as a sin-
gle continuous curve connecting all set elements. Similar to Line-
Sets, Kelp Diagrams connect every zone corresponding to the same
set with a line [DvKSW12]. If two sets share the same line, they are
stacked and the lower one has an increased width. Additionally, the
lines contain only straight segments. KelpFusion is an extension to
Kelp diagrams [MRS∗13]. It fills regions that are enclosed by lines
corresponding to the same set.

A different approach of set visualization is UpSet [LGS∗14]. Up-
Set is based on a matrix visualization where sets are represented in
columns and set interactions are displayed in rows. MapSets draw a
region containing the elements of a set [EHKP15]. However, these
elements belong to only a single set, e.g. political parties. This re-
sults in no shared regions between sets. Additionally, the geomet-
ric position of set elements is fixed. As a result, the visualization
is a partition of the plane containing set elements. ClusterSets are
a generalization to MapSets that also allows single edges between
points of the same set [GCH∗21] and sets to be split into multiple
regions. Similarly, GMAP draws general graphs as geographic-like
maps [GHK09]. The positions of the individual set elements are
determined by the relation to adjacent set elements.

4.4. Integer linear programming

Integer linear programming is a general method for solving combi-
natorial optimization problems [NW88]. The approach is to encode
a problem in the form of a set of variables, an objective function,
and a set of constraints that have the form of an integer linear pro-
gram (ILP), and to let a solver compute a variable assignment that is
optimal under the constraints. The variable vector x of an ILP con-
tains integer variables. The objective function and the constraints of
an ILP in canonical form are f (x) = cTx and Ax≤ b, x≥ 0, respec-
tively, where c, A, and b are given as constants. An equality con-
straint can be encoded in this form using two inequality constraints,
and a binary variable can be expressed as an integer variable with
upper bound 1. Although solving ILPs requires exponential time in
the worst case, there exist ILP solvers that often perform well in
practice. Especially for NP-hard problems, such as SetSystemSim-
plification, this approach is justifiable and often successful.

In the field of information visualization, two ILP-based meth-
ods are most related to our own. Castermans et al. [TvGW∗19]
considered the problem of finding a support of a hypergraph with
fixed vertex positions. The support is required to be a crossing-
free straight-line graph; hence, a stricter requirement than planarity
is enforced. This can easily be achieved by forbidding the selec-
tion of crossing pairs of candidate edges. Our situation, however, is
much more involved, since we need to ensure the planarity of the
support without knowing the positions of its nodes. Another ILP-
based method, MosaicSets, embeds a set system into a prescribed
host graph, e.g., a regular grid [RWB∗23]. There, the planarity is
automatically ensured by choosing a planar host.

When modeling SetSystemSimplification as an ILP, the challenge
lies in expressing constraints to ensure the connectivity requirement
for hyperedges and the planarity requirement. We adapt a formula-
tion by Shirabe [Shi05] that enforces the connectivity of a region
that results from the allocation of a set of faces of a planar sub-
division. Our constraint formulation for planarity is adapted from

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



P. Rottmann, P. Rodgers, X. Yan, D. Archambault, B. Wang, J.-H. Haunert / Generating Euler Diagrams 5 of 12

Chimani et al. [CHW19], who developed an ILP for the maximum
planar subgraph problem, which for a given graph asks for a planar
subgraph with the maximum number of edges.

5. Extended problem

In this section, we extend SetSystemSimplification to model the
most important wellformedness conditions, drawing upon the user
study by Rodgers et al. [RZP11]. We require the connected zones
wellformedness condition and consider the no-concurrency well-
formedness condition in the objective function. We consider the
unique curves labels’ wellformedness condition in the sense that we
require that each set is represented as a connected region. However,
we allow regions with holes. During the rendering process, we en-
sure that the Euler diagram satisfies the simplicity wellformedness
condition by constructing the initial Euler diagram using a method
that guarantees simple curves [RZF08]. The method that we apply
for smoothing the Euler diagram [SAS16] considers the transver-
sality wellformedness condition, but it does not strictly guarantee
it. Before giving a formal definition of the extended problem, MC-
SetSystemSimplification, we provide technical details on how the
input for the problem evolves from Steps 1 and 2 of our workflow.

In Step 1, which is optional, we compute for a given node-
weighted hypergraph H∗ = (V∗,E∗) the condensed hypergraph
H = (V,E) and its node weighting w. We partition V∗ into clus-
ters, such that two nodes u,v ∈ V∗ are in the same cluster if and
only if ℓ(u) = ℓ(v), meaning that u and v are contained in exactly
the same set of hyperedges. Then, for each cluster, we introduce
a corresponding node in V , whose weight w(v) we set to the total
weight of the cluster. For every hyperedge e∗ ∈ E∗, we add a corre-
sponding hyperedge e to E, which for each node in e∗ contains the
node representing its cluster. If we wish to skip Step 1, we simply
set H = H∗. Only with Step 1, however, we ensure that our results
fulfill the connected zones wellformedness condition.

In Step 2, based on H = (V,E), we compute the superdual graph
G = (Z,F), from which we will select a subgraph that will serve
as the dual graph of the Euler diagram. The node set of G is Z =
V ∪{v0}, where v0 is a special node representing the outer face of
the Euler diagram. The edge set F of G contains two types of edges,
i.e., F = F1∪F2, where F1 and F2 are defined as follows:

• The set F1 contains all edges that may be useful for a planar
support of H, that is,

F1 = {{u,v} | u,v ∈V,u ̸= v, ℓ(u)∩ ℓ(v) ̸= ∅} . (1)

Eq. 1 means that F1 contains an edge for every two distinct nodes
of H that are contained together in at least one hyperedge.

• The set F2 contains edges that represent possible adjacency rela-
tionships between the outer face v0 and the nodes in V . In princi-
ple, one could include one edge {v0,v} for each node v ∈V . It is
sufficient, however, to include only those edges whose selection
has an influence on the objective function. We will introduce an
objective function that rewards adjacency relationships between
v0 and nodes that are contained in few hyperedges (ideally, in
only one hyperedge). Hence, we define

F2 = {{v0,u} | u ∈V, |ℓ(u)|= min
w∈V
{|ℓ(w)|}} . (2)

Selecting an edge {u,v} ∈ F1 for the dual graph causes a viola-
tion of the no-concurrency wellformedness condition if the labels
ℓ(u) and ℓ(v) differ by more than one. We generally tolerate concur-
rencies, but aim to keep their number low. Therefore, to count the
number of concurrencies implied with the selected dual graph, we
introduce an edge weight ω(e) for every edge e ∈ F1. This weight
of an edge e = {u,v} is set to ω(e) = |ℓ(u)∆ℓ(v)|−1. Hereby, ∆ is
the symmetric difference.

Using the node weighting w, the newly introduced edge sets F1
and F2, and the edge weighting ω, we define three objective func-
tions used in our extended problem definition. For a resulting planar
graph G′, the kept set elements and set memberships are quantified
by fweight. We compute the total number of concurrencies of G′

with fconcur and count the total number of favorable adjacency re-
lationships between nodes and the outer face by fouter.

Using the additional definitions, we extend the problem SetSys-
temSimplification to MCSetSystemSimplification.

Problem 2 (MCSetSystemSimplification) Given

• a hypergraph H = (V,E),
• the superdual graph G = (Z,F) for H, with F = F1∪F2,
• a node weighting w:V → R>0,
• an edge weighting ω:F1→ R≥0, and
• parameters α,β ∈ R≥0,

find

• a set S⊆V and
• a planar subgraph G′ = (Z′,F ′) of the superdual graph G for H,

such that G′′ = (Z′ \{v0},F1∩F ′) is a planar support of the hyper-
graph H−S and

f (G′) = fweight(G
′)−α · fconcur(G′)+β · fouter(G′) (3)

is maximized, where

fweight(G
′) = ∑

v∈V\S
w(v) , (4)

fconcur(G′) = ∑
e∈F1∩F′

ω(e) , and (5)

fouter(G′) = |F2∩F ′| . (6)

Here, G′′ is the dual graph of the Euler diagram excluding the node
v0 representing the outer face and its incident edges. The hyper-
edge that corresponds to a set forms a connected component in
G′′. This ensures that for each set the corresponding region is con-
nected, which avoids certain violations of the unique curve labels
wellformedness condition, such as the one in Fig. 5f. However, we
allow regions with holes. Therefore, a solution may contain multi-
ple curves with the same label, i.e., the exterior ring and the mul-
tiple interior rings of a region. The function fconcur evaluates only
the set of edges belonging to G′′, i.e., the set F1 ∩F ′. In contrast,
the function fouter counts the number of selected edges incident to
v0, which equals the size of F2∩F ′.

© 2024 The Authors.
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6. Methodology

In this section, we present our exact method and our heuristic for
MCSetSystemSimplification; see Sect. 6.1 and Sect. 6.2, respec-
tively. Recall that both methods take the superdual graph G =
(Z,F) as input and return a planar subgraph G′ = (Z′,F ′) of it,
which will serve as the Euler diagram’s dual graph.

6.1. An integer linear program

Variables encoding the selected subgraph For each node u of the
superdual graph G = (Z,F), we define a binary variable xu indicat-
ing whether the node is part of the selected subgraph G′ (xu = 1).

xu ∈ {0,1} ∀u ∈ Z (7)

Moreover, we introduce one binary variable zu,v for each edge e =
{u,v} ∈ F . This variable indicates whether e is selected for G′.

zu,v ∈ {0,1} ∀{u,v} ∈ F (8)

These z-variables are coupled with the x-variables to ensure that an
edge can be selected only if its two incident nodes are selected.

zu,v ≤ xu and zu,v ≤ xv ∀{u,v} ∈ F (9)

Objective The x- and z-variables introduced in the previous sec-
tion are sufficient to express all three objectives of MCSetSystem-
Simplification.

Maximize ∑
p∈Z

w(p)·xp−α ∑
{u,v}∈F1

ω(u,v)·zu,v+β ∑
{v0,v}∈F2

zv0,v

(10)

Enforcing connectivity of hyperedges To ensure the connectivity
of hyperedges in the selected subgraph G′ of G, we adapt a flow
model by Shirabe [Shi05] for spatial unit allocation tasks occurring
in spatial planning. In our application, we apply the model sepa-
rately to each hyperedge X ∈ E. For this, we introduce a directed
graph G̃X = (ZX ,AX ); see Fig. 6. The node set of G̃X contains every
node of G that is labeled with X , i.e.,

ZX = {u ∈ Z | X ∈ ℓ(u)} . (11)

The arc set of G̃X contains two opposite arcs for each edge of G
that connects two nodes labeled with X , i.e.,

AX = {(u,v),(v,u) | {u,v} ∈ F,X ∈ ℓ(u),X ∈ ℓ(v)} . (12)

Due to the definition of G, G̃X is a complete, directed graph.

Figure 7 illustrates the flow model that ensures the connectivity
of the subset {u ∈ X | xu = 1} selected from X . The flow in G̃X is
represented with the following variables:

yX
u,v ∈ {0, . . . , |X |−1} ∀X ∈ E,∀(u,v) ∈ AX . (13)

These variables are constrained such that only arcs corresponding
to edges of G that are selected for G′ can carry flow.

yX
u,v ≤ (|X |−1) · zu,v ∀(u,v) ∈ AX ,∀X ∈ E (14)

Another set of variables models which node acts as a sink of the
flow network for X .

cX
u ∈ {0,1} ∀X ∈ E,∀u ∈ ZX (15)

These variables are constrained such that the network for X can
contain at most one sink (node e in Fig. 7, with cX

e = 1).

∑
u∈ZX

cX
u ≤ 1 ∀X ∈ E (16)

Finally, the next two constraints ensure that

• every selected node except the sink contributes at least one unit
of flow to the network (i.e., nodes b, c, d in Fig. 7),

• the sink (i.e., node e in Fig. 7) is allowed to receive as much flow
as there are nodes in the network, and

• every non-selected node receives no flow (i.e., node a in Fig. 7).

∑
(v,w)∈AX

yX
v,w− ∑

(u,v)∈AX

yX
u,v ≥ xv−|X | ·cX

v ∀X ∈ E,∀v∈ ZX (17)

∑
(u,v)∈AX

yX
u,v ≤ (|X |−1) · xv ∀X ∈ E,∀v ∈ ZX (18)

To summarize, every flow that a node contributes to the network
for a hyperedge X has to reach the sink and can pass only through
nodes selected for X . The presented model up to now is sufficient to
ensure that the nodes selected for a hyperedge X induce a connected
subgraph in the selected subgraph G′ of G.

a

b

c
d

e

Figure 6: The di-
rected graph G̃X for a
hyperedge X.
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1
3

a

b
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d

e

xa = 0

cXa = 0

xb = 1

cXb = 0

xc = 1

cXc = 0

xd = 1

cXd = 0

xe = 1

cXe = 1

Figure 7: A feasible assignment of the
variables modeling the connectivity of
the selected subgraph for X.

Enforcing planarity A graph is planar if and only if it does not
contain a Kuratowski subdivision as a subgraph (i.e., a subdivision
of K3,3 or K5) [Kur30]. Hence, we can ensure the planarity of the
output graph G′ by requiring that, for each Kuratowski subdivision
K contained in G, at least one edge is unselected. For this, we add
the constraint

∑
{u,v}∈F(K)

zu,v ≤ |F(K)|−1 ∀K ∈ K(G) , (19)

where K(G) is the set of all Kuratowski subdivisions contained in
G, and F(K) is the set of edges of a graph K.

A challenge with this formulation is that there can be exponen-
tially many Kuratowski subdivisions in G. Therefore, setting up the
ILP with all the |K(G)| instances of Constraint 19 is prohibitive in
practice. To tackle this challenge, we initially set up the ILP with-
out Constraint 19, but we make sure that the solver detects rele-
vant instances of Constraint 19 during the optimization process and
adds them to the model. We implement this idea with a callback,
which is a customized method that the solver automatically invokes
at certain states of the optimization process. The callback that we
introduce is invoked whenever the solver finds a new incumbent
solution, i.e., a solution that satisfies all constraints of the current
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model and that is better than any solution found before. For the in-
cumbent solution that led to the invocation of the callback, let G′ be
the subgraph of G as determined with the z-variables. We apply the
Boyer-Myrvold’s planarity testing algorithm [BM04] to G′, which
either reports that G′ is planar or returns a Kuratowski subdivision
K of G′, thus proving that G′ is non-planar. If G′ is planar, we sim-
ply resume solving the current model, since there may be better
solutions than G′ that the solver has not found yet. Else, we instan-
tiate Contraint 19 with the found Kuratowski subdivision K and add
this instance of the constraint to the model, before resuming the so-
lution procedure. This strategy is supported by state-of-the-art ILP
solvers in a way that guarantees an optimal solution as output.

To strengthen our initial model without Constraint 19, we add
the following constraint.

∑
{u,v}∈F

zu,v ≤ 3 · ∑
p∈Z

xp−6 (20)

This inequality does not ensure planarity but, due to Euler’s for-
mula, is valid for all solutions satisfying the planarity requirement.

6.2. Heuristic approach

We now present our heuristic for selecting a planar subgraph G′ =
(Z′,F ′) of the superdual graph G = (Z,F). The heuristic initial-
izes G′ with the node representing the outer face as the only node,
i.e., Z′ = {v0} and F ′ = ∅. Then, it lets G′ grow in an iterative
and greedy manner, ensuring that after every iteration the connec-
tivity requirement for hyperedges and the planarity requirement are
satisfied. Thus, the heuristic guarantees a feasible solution to MC-
SetSystemSimplification, but not an optimal solution.

Algorithm 1 describes the heuristic in more detail. The iterative
growth is implemented with a while loop, where in each iteration
the method ADDNEXTNODE is called. The method returns true or
false, depending on whether it succeeded to grow G′. If the method
was unsuccessful, the algorithm terminates and returns G′.

The method ADDNEXTNODE is presented in Algorithm 2. It first
computes a list C of candidates, where a candidate c is an exten-
sion of G′ by one node c.v ∈ Z \ Z′ and a set of edges c.edges
between c.v and nodes of G′. The candidate list C is obtained as
the union of multiple lists, each of which is computed based on
one edge {p,v} ∈ F with p ∈ Z′ and v ∈ Z \ Z′, using a method
CREATEEDGECANDIDATES. This method returns only candidates
whose selection satisfies the connectivity requirement (as we will
later explain). After C has been set up, we compute for each candi-
date c∈C the increase in the objective value that its selection would
cause and store it as c.w. Finally, we go through the candidates in
decreasing order of c.w and choose the first candidate that does not
violate the planarity requirement. For planarity testing, we use the
Boyer-Myrvold algorithm [BM04], as in our ILP-based method.

The method CREATEEDGECANDIDATES yields for a given edge
e = {p,v} a set of candidates; see Algorithm 3. For every candidate
c in this set, c.v = v and c.edges contains e. However, the algorithm
returns multiple candidates, which differ with respect to the edges
in c.edges in addition to e. To compute this set, let X1, . . . ,XK be
the hyperedges that contain v and whose connectivity would not be
achieved when selecting v with edge e = {p,v} alone. For example,

Algorithm 1 Heuristic set system simplification

Require: Undirected super dual graph G = (Z,F) with node
weights w and edge weigths ω

1: procedure SIMPLIFY(G)
2: Z′←{v0},F ′←∅, G′← (Z′,F ′)
3: s← True
4: while s do
5: s← ADDNEXTNODE(G′,G)

return G′ = (Z′,F ′)

Algorithm 2 Greedy addition of the next node together with edges
connecting it to the current graph

Require: Current selected dual graph G′ = (Z′,F ′), super dual
graph G = (Z,F)

1: procedure ADDNEXTNODE(G′,G)
2: ▷ Collect candidates:
3: C← empty list of candidates
4: for (p,v) ∈ F such that p ∈ Z′ and v ̸∈ Z′ do
5: Cpv← CREATEEDGECANDIDATES(G′,G, p,v)
6: C←C∪Cpv

7: ▷ Rate candidates:
8: for c ∈C do
9: c.w← w(c.v)−α · ∑

e∈c.edges∩F1

ω(e)+β · |c.edges∩F2|

10: ▷ Choose best candidate:
11: Sort C descending by weight w
12: while C.size > 0 do
13: c←C.pollFirst()
14: Add node c.v to Z′ and edges c.edges to F ′

15: if isPlanar(G′) then
16: return True
17: else
18: Remove c.v from Z′ and c.edges from F ′

return False

in Fig. 8, this holds for the hyperedge a. For each such hyperedge,
the connectivity can be repaired with a single edge among the edges
incident to v other than e, whose number is deg(v)−1.

Hence, we generate O((deg(v)− 1)K) candidates, where K <
|ℓ(v)|. In Fig. 8, this yields two candidates, visualized with different
colors. Explicitly enumerating the candidates can be done reason-

a

ac

ab
b

0

a

ac

ab
b

0

Figure 8: Graph G′ (black) after adding three nodes and three
edges with our heuristic. Node ab has not been added yet (left).
Calling CREATEEDGECANDIDATES for edge {a, ab} yields two
candidates: The red candidate with edges {a, ab},{b, ab} and
the blue candidate {ac, ab},{b, ab} (right).
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Algorithm 3 Create candidates for a single edge {p,v}

1: procedure CREATEEDGECANDIDATES(G′,G, p,v)
2: C← empty list of candidates
3: Let {X1, . . . ,XK} be the set of hyperedges in ℓ(v) whose

connectivity would be violated if selecting only v and {p,v}.
4: For i = 1, . . . ,K let F ′

i be the set of edges connecting v with
a selected node of hyperedge Xi, i.e., a node in Xi and G′.

5: for ε ∈ F ′
1 ×F ′

2 × . . .×F ′
K do

6: Let c be a new candidate
7: c.v = v
8: c.edges = set containing edge {p,v} and all edges in ε

9: C.add(c)
return C

ably fast, assuming that the number |ℓ(v)| of hyperedges containing
node v is a small constant, which we did in all our experiments with
the heuristic. For set systems where |ℓ(v)| can be large, one may use
our heuristic with a user-set upper limit on the size of c.edges.

7. Experiments

Datasets We evaluate our methods with two datasets.

• MovieDB from the 2007 InfoVis contest [KJKC]: Each set sys-
tem is based on a single director. The sets are the movies of the
director. The set elements are actors of the corresponding movie.

• TwitterCircles [LK14]: The dataset consists of users and their in-
terest groups. Each set system is based on a user’s ego network.
Each set is based on the user’s interest circles while the set ele-
ments are followed users belonging to at least one interest circle.

In total, there are 930 set systems in TwitterCircles and 16884
in MovieDB. However, we omit all set systems that have less than
five nodes in addition to v0 in the superdual graph since those al-
ways have a planar embedding, simply because they cannot have a
K5 or a K3,3 as a minor. Thus, we select 281 and 569 set systems,
respectively. Table 1 provides further details. For all experiments,
we defined the weight of an element as the number of sets contain-
ing it, and we applied the optional Step 1, i.e., the condensation of
the hypergraph. All experiments were executed on an AMD Ryzen
9 7950X with 64GB of RAM using Java 11 and Gurobi 9.5.1 for
solving the ILPs.

The code and datasets are available under a GPL open
source license from https://gitlab.igg.uni-bonn.de/
geoinfo/generating-euler-diagrams.

dataset #set systems #sets #elements

MovieDB 569
Avg 4.39 44.30
Max 15 288

TwitterCircles 281
Avg 6.19 73.83
Max 14 197

Table 1: Statistics of MovieDB and TwitterCircles.

Before analyzing the results, we show the full workflow on the
set system for the director Keith Hooker from MovieDB in Fig. 9.

The set systems consists of 5 sets with 19 set elements. Our ILP ap-
proach produces an Euler diagram where each single-labeled face
is adjacent to the outer face. Additionally, the minimization of con-
currencies results in a nested structure. Nodes with only a few la-
bels are placed near the outer face. In contrast, regions with a higher
label count are moved toward the center of the Euler diagram.

Parameter influence To study the influence of the parameters α

and β, we computed multiple solutions for all set systems from
MovieDB using our ILP approach. For β = 0.1 and α = 0.01
the average number of concurrencies was 1.43 and all set ele-
ments were selected. Keeping β fixed and increasing α to 1.25 re-
duces the average number of concurrencies per Euler diagram by
54.98%, whereas the weight of the selected set elements decreases
by 0.42%.

Our goal is to demonstrate the complexity of the datasets and the
advantages of our simplification through a single example. There-
fore, the director Joel Schoenbach is shown in Fig. 10. This exam-
ple shows that our approach can simplify the set system to reduce
concurrency. However, this comes at the cost of the removal of ele-
ments. We show additional examples in the supplemental material.

Similarly, we investigate the influence of the parameter β. We
compute two solutions for the same set system; see Fig. 11. Both
solutions were obtained with α = 0.01. On the left, we set β = 0.1.
On the right, we set β = 0, which results in only a single node
being adjacent to the outer face. The latter leads to a hardly readable
visualization. The sets are nested and form holes within the set that
is connected to the outer face. Comparing both Euler diagrams, it
is harder to follow individual set outlines for β = 0. As a result,
it would be difficult to determine labels within the interior of the
diagram when only a single label for each curve is given.

Comparison of solutions of exact method and heuristic We now
compare the results of the ILP and of the heuristic for the 850 set
systems given with the two datasets. For this purpose, we evalu-
ate the value of the overall objective function f and the functions
fweigth, fconcur, fouter expressing the three criteria of MCSetSystem-
Simplification. Based on our experiences with the different param-
eter settings discussed in the previous section, we fixed α = 0.01
and β = 0.1 for all the experiments that we report here.

We use a time limit of one hour for the ILP solver and report the
best solution. For all 850 set systems, the solver found a solution
within the time limit, but in four examples from TwitterCircles the
solver was not able to prove the optimality of the solution. In three
cases, the solution contained 100% of the total weight of the set
system. In one example (id = 779715), a solution with 50.82% of
the total weight was returned and a gap of 96.64% was reported,
meaning that there might be a solution whose objective value is
roughly twice as high as that of the found solution.

Across all instances, we observe that the heuristic performs
worse than the ILP, in the sense that it achieves a lower value for
the objective function f (see the column f in Table 2 for MovieDB
and Table 3 for TwitterCircles). This is mainly due to two factors:
the heuristic includes less node weight in the dual graph (column
fweight) and selects edges with more concurrency (column fconcur).

For all instances in MovieDB, our ILP approach found a planar
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Figure 9: Euler diagram of the set system corresponding to the director Keith Hooker from MovieDB.
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Figure 11: Comparison of results for director Art Camacho for
β = 0.1 (left) and β = 0 (right); α = 0.01 for both. For β = 0, only
one node of the dual graph, i.e. labelled c, is adjacent to the outer
face.

support with all set elements. In contrast, the heuristic did not in-
clude all set elements in every solution. The average value of fweight
is 0.05% less with the heuristic than with the ILP. For the instances
in TwitterCircles, the ILP in a single case yielded a solution with-
out all set elements, and the average value of fweight is 0.16% less
with the heuristic than with the ILP.

To evaluate the results with respect to concurrent curves, we
compare the average values of fconcur of our approaches. For Twit-
terCircles, fconcur increased from 2.02 to 4.12. For MovieDB,

Method f fweight fconcur fouter Time [s]

ILP
Avg 50.68 50.26 1.43 4.08 0.221
Max 294.66 294 55 14 99.3485

Heuristic
Avg 50.68 50.26 2.78 4.07 0.0003
Max 294.66 294 90 14 0.018

Table 2: Results of the ILP and the heuristic on MovieDB. Avg and
Max are the average and maximum over all instances.

Method f fweight fconcur fouter Time [s]

ILP
Avg 128.73 128.20 2.02 5.06 54.05
Max 1069.16 1069 89 13 3,602.53

Heuristic
Avg 128.50 127.99 4.12 5.00 0.003
Max 1069.08 1069 111 13 0.267

Table 3: Results of the ILP and the heuristic on TwitterCircles. Avg
and Max are the average and maximum over all instances.

fconcur increased from 1.43 to 2.78. The increased number of con-
currencies is also reflected by the maximum values of fconcur,
which increased from 89 to 111 and from 55 to 90, respectively.

We investigate the distribution of the increased number of con-
currencies by the factor of two in Fig. 12. None of the instances
drastically exceeds this factor. The additional concurrencies are
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approach. Each point represents a set system in MovieDB.
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Figure 13: Resulting Euler diagrams for director Brett Ryan
Bonowicz using the ILP (left) and the heuristic (right).

well distributed across all instances in MovieDB. As an example,
the results of both approaches for the director Brett Ryan Bonow-
icz are shown in Fig. 13. In that case, the additional concurrency is
well distributed across the visualization, and the maximum number
of concurrencies occurring between two adjacent zones is the same
for the ILP as for the heuristic.

Comparison of running times We measured the running times of
the heuristic and the ILP (see the last columns in Tables 2 and 3).
Each running time includes the time for Steps 1–3. It excludes the
running time for Steps 4–6, as these steps are not our contribution.
The maximum running time of TwitterCircles of roughly one hour
is due to the time limit.

We observe a large difference between the ILP and the heuristic
for both the average and maximum values. On the other hand, we
can compute an optimal dual graph of Euler diagrams for the movie
dataset within the time limit using our ILP. However, the heuristic
is 138 times faster than the ILP on average. Setting a time limit
of 10s for the ILP solver results in the same order of speedup for
TwitterCircles. However, such a constrained time limit for the ILP
solver leads to worse results than the heuristic.

Comparison with an existing method Finally, we compared our
exact method with the method by Rodgers et al. [RZF08], which
allows sets to be split into multiple regions, breaking the duplicate
curve label wellformedness condition as well as drawing layouts
with concurrency, see Section 4.1. It is the closest state-of-the-art

to our method. First, using our exact method, we identified all set
systems in MovieDB that do not admit an Euler diagram with con-
nected regions and without concurrency, yielding 187 set systems.
For each of them, we used the method of Rodgers et al. to generate
an Euler diagram. In 18.2% of the cases, the resulting Euler dia-
gram splits at least one set into two or more regions. In contrast,
in every case, our exact method with α = 0.01 and β = 0.1 yielded
an Euler diagram with a single connected region for each set and
without losing a set element. Moreover, on average over all 187 set
systems, our ILP reduced the concurrency by 35.35%.

8. Conclusion

We have proposed a novel ILP approach for finding a planar sup-
port of a given hypergraph that represents a set system. We have
integrated this approach into a complete workflow for generating
Euler diagrams that represent each set as a single connected region.
The ILP maximizes the preserved number of set elements or set
memberships. Additionally, it minimizes the total number of con-
current curves and places a maximum number of faces contained
in only few curves adjacent to the outer face. Moreover, we have
developed a heuristic that tries to optimize the same objective by
greedily adding nodes to an empty graph. Our experiments show
that our ILP can be used to produce optimal general Euler dia-
grams that comply with our wellformedness criteria. Moreover, our
approach can simplify a set system in order to reduce concurrency.
Comparisons of the heuristic with the ILP show that the heuristic
produces results with similar objective values while increasing the
concurrency by a factor of two. A benefit of the heuristic is that it
needs only a fraction of the processing time.

For future work, producing Euler diagrams without concurrency
by either limiting the edges within the superdual graph or merg-
ing sets might be possible. When concurrency cannot be avoided,
equally distributing concurrency across edges instead of accumu-
lating the total concurrency in a single edge is favorable. To im-
prove readability, we could consider additional wellformedness
conditions, such as the avoidance of triple points. With regards to
the heuristic, the computation of candidates can be improved to
avoid the brute force approach. As new nodes are added to the dual
graph, the algorithm must update existing candidates. Additionally,
excluding certain edges from candidate creation might me benefi-
cial [WMT23]. Our ILP could be accelerated, e.g., by generating
multiple Kuratowski subdivisions at once [CHW19], instead of one
by one. It may also be possible to explore ways of displaying re-
moved set elements and indicating the lost information using visual
mechanisms, such as texture, shading or icons. Furthermore, we
would like to encode the degree of simplification and completeness
of the Euler diagram using visualizations for quantitative informa-
tion, such as area proportional layouts [SRH11] or applying a color
scale [SGS∗18].
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