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Antarstick: Extracting Snow Height From Time-Lapse Photography
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Figure 1: An overview of the Antarstick tool, featuring the view of an example dataset. In the forefront, there is a window, where the user can
edit the measured snow height values and see them in context. The background has aggregated views of all snow stakes in the area for easy
navigation and comparison.

Abstract
The evolution and accumulation of snow cover are among the most important characteristics influencing Antarctica’s climate
and biotopes. The changes in Antarctica are also substantially impacting global climate change. Therefore, detailed monitoring
of snow evolution is key to understanding such changes. One way to conduct this monitoring is by installing trail cameras in a
particular region and then processing the captured information. This option is affordable, but has some drawbacks, such as the
fully automatic solution for the extraction of snow height from these images is not feasible. Therefore, it still requires human
intervention, manually correcting the inaccurately extracted information. In this paper, we present Antarstick, a tool for visual
guidance of the user to potentially wrong values extracted from poor-quality images and support for their interactive correction.
This tool allows for much quicker and semi-automated processing of snow height from time-lapse photography.

CCS Concepts
• Human-centered computing → Visualization toolkits; Geographic visualization;

1. Introduction

Antarctica is one of the most important sites on our planet with re-
spect to climate change. The amount of fallen snow is an important
factor in the local hydrology, influencing the total amount of water
present in the soil. Several peripheral areas of Antarctica are not
formed by permafrost, and in summer, the snow and ice are melting

and nourishing the microorganisms and plants. The ability to mea-
sure the snow collected in an area and, subsequently, the amount of
water in the system helps the researchers to understand the ecology
of an area and its evolution over time [HCK∗20].

Researchers implement various methods to measure the snow-
fall. These include radars (both terrestrial and satellite), lidars, or

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Associa-
tion for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial
License, which permits use, distribution and reproduction in any medium, provided the original work
is properly cited and is not used for commercial purposes.

DOI: 10.1111/cgf.15088

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-5249-815X
https://orcid.org/0000-0001-9483-7562
https://orcid.org/0000-0003-0045-0872
https://doi.org/10.1111/cgf.15088


2 of 10 M. Lang, R. Mráz, M. Trtík, S. Stoppel, J. Byška, B. Kozlíková / Antarstick: Extracting Snow Height From Time-Lapse Photography

ultrasound probes [LGG10]. The disadvantage of such systems is
either their high complexity and purchase cost or the limitation of
measuring only one place at a time.

A more affordable option is to use a set of trail cameras pointed
at a location equipped with passive markers showing the snow
height (snow stakes). The benefit of this setup is in its flexibility—
researchers can include several cameras monitoring the area from
various angles, which gives them a more robust system. It also al-
lows them to visually verify the measurements to improve trust in
data—this is virtually impossible with systems measuring only one
place. On the other hand, this approach requires the development of
image processing pipelines to get the measurements.

The time between frames needs to be up to a couple of hours to
capture the snow evolution using trail cameras in sufficient detail.
Our collaborators experimentally determined that taking a photo
every 2½ hours is sufficient. This results in approximately 3500 im-
ages every year per camera that need to be analyzed. Fully manual
data extraction at this scale is not practical, so we need to automate
the process as much as possible. Based on our thorough evalua-
tion of the existing methods, discussed in section 2, we decided to
implement a combination of machine learning and morphological
operations to detect the snow stakes in the image. However, as the
weather often creates very unfavorable conditions, only a limited
number of images can be correctly interpreted by a fully automatic
solution. This results in a very noisy dataset with many outliers and
missing values.

That led us to develop Antarstick, the tool for the exploration
and manual correction of such datasets. Our tool is based on Shnei-
derman’s mantra “Overview first, zoom and filter, details on de-
mand” [Shn03]. It provides the user with an overview of the overall
snow level from a measured area. The tool highlights the areas of the
dataset that require manual treatment, which are usually diverging
from the local average. When inspecting these outliers, the user can
review the image and inspect the reason behind the outlier. They can
repair the measurement manually or exclude it from the dataset.

Antarstick was designed in tight collaboration with the domain
researchers from the Mendel Polar Station of Masaryk University,
who were also testing the final product. Their evaluation is also
summarized in this paper. Although the tool was primarily designed
with domain-specific tasks in mind, the general concept of the tool
is applicable to other areas, where time-lapse dataset is processed.
We believe that our described methodology and provided source
code (https://muni.cz/go/antarstick) can guide other
visualization researchers in other domains.

The contributions of our paper to the visualization community
can be thus summarized as:

• We propose a method for exploring and curating automatically
processed time-lapse data.

• We designed visual representations of automatically processed
data, their linking, and interactions with respect to the domain-
specific requirements.

• We present a freely available solution with a sample dataset,
demonstrating the proposed methodology and interaction con-
cepts on a real-case scenario of snow-level extraction.

2. Related Work

Before delving into the details of methods and approaches relevant
to our solution, it is worth mentioning our previous work [OHC∗20],
where we were also dealing with the data captured in the vicinity of
the Mendel Polar Station in Antarctica. There, we primarily focused
on designing a tool for exploring the correlation of various measure-
ments, including wind speed and direction, soil and air temperature,
and snow level. However, at that time, we used a straightforward
solution for semi-automatic extraction of snow level. During the
final testing of our previous tool, the experts expressed concerns
regarding the robustness of the tool. They were interested in a more
precise solution for measuring snow height, which initiated our
further research presented in this paper.

2.1. Methods of Snow Measurement

The work of Lundberg et al. [LGG10] compiles a comprehensive list
of snow-measuring techniques used in parts of Sweden, Norway, and
Finland. The described techniques are used for measuring various
parameters, such as depth of snow, density, and water equivalent.
Many of the measuring techniques mentioned require a human
operator at a site. Such methods are out of the question when used at
a remote polar station, which is occupied only for several months a
year. The researchers from Mendel Polar Station tested the ultrasonic
transducer methods for the height measurement prior to installing
the camera system and snow stakes. Their findings were that many
of the measurements were imprecise due to wind-carried particles
in the air since the area is very windy throughout the whole season.
It was impossible to distinguish between the real value and the error,
as they had only one number per measurement. Using the images
from trail cameras can significantly improve the credibility of the
measurement, as they show the data in the context it was measured.

Time-lapse photography has successfully been used to capture
the presence of the snow and its height. The simpler task is to de-
tect the presence of snow in the image. Millet et al. [MHW18]
and Rüfenacht et al. [RBBS14] have used various clustering meth-
ods on a color image to identify the snow-covered percentage of
a photo. Salvatori et al. [SPG∗11] use histogram-based threshold-
ing for detecting snow/no snow pixels. Fedorov et al. [FCFT16]
evaluated the previous methods and compared them with several
supervised machine-learning methods. They concluded that the ma-
chine learning approach yields generally more robust results with
higher accuracy.

When measuring the snow height, there is usually an external
marker required, typically in the form of a pole or snow stake.
Several semi-automatic pipelines were devised [GPW13, OHC∗20]
to track these snow stakes in the images. In these approaches, the
users determine the snow level in each photo by clicking on the
stakes exactly where they are buried in the snow. The snow height
is then automatically computed from the stake position and size
that is defined a priori. The obvious problem with this approach
is that the processing of large datasets is very time-consuming.
Despite that, it is also common to process the images completely
manually [LCW15, KHKN20].

To automate the measurement of the snow height, the first step is
to find these snow stakes in the image automatically. An example
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Figure 2: Example images from our input datasets, demonstrating the variability in the image quality, caused by different weather conditions.
(a),(b) Good quality day and night images; (c) color distortions caused by sun; (d),(e) day and night images during snowstorm; (f) camera is
partially covered by snow.

of this is the work of Kopp et al. [KTD19], using either image
processing methods or a convolutional neural network to detect the
snow stake. Once the stakes are detected, an automatic batch routine
can analyze each photo and find how many pixels of the stake are
covered with snow. This can be done by separating the snow-free
pixels from the snow pixels based on the color [FW08] or counting
visible height markers on the snow stakes [PHK∗12]. However,
the automatic measurement still suffers from various problems that
require manual post-processing. The common issues include shifting
of the camera housing and frost building up on the camera lenses, or
reduced visibility conditions, such as fog or precipitation [PHK∗12,
BATDM21].

2.2. Cleansing and Visualizing Time-Dependent Data

The problem with automated methods is that they often create in-
correct data that need to be manually revised. This is why we need
data-cleansing solutions, that assist in the process of reviewing data.

Data cleansing is often the most time-consuming aspect of data
analysis. Kandel et al. [KHP∗11] provide examples of tasks required
for cleaning a dataset, and Gschwandtner et al. [GGAM12] catego-
rize types of errors and inconsistencies present in time-dependent
data. There are many examples of software solutions used for visual
analysis and subsequent data cleaning. Gschwandtner et al. [GE18]
and Bernard et al. [BHR∗19] presented tools for cleaning a gen-
eral time-dependent dataset. Visplause [ASMP16] uses automated
plausibility checks and multiple linked views to assess the qual-
ity of many time series at once. TimeCleanser [GAM∗14] utilizes
semi-automatic quality checks in combination with various repre-

sentations, such as line charts, bar charts, and heatmaps, to detect
data anomalies and provide users with an overview of the dataset
quality. Finally, Shimabukuro et al. [SFdOL04] proposed a visual
representation suitable for the comparison of a larger number of
time-dependent climatology measures that can be helpful for identi-
fying plausible values for missing data. The presented solutions are
missing the crucial feature of exploring the underlying data, such as
images in our case.

There are solutions developed for processing and labeling video
data, i.e., for machine-learning applications. A tool by Kurzhals et al.
[KHSW16] provides a rich environment for labeling a video feed
into similar sequences and drawing them as scarf plots. The scarf
plots are horizontal bands along the timeline that mark interesting
sequences in the video. While this technique is suitable for video, the
time-lapse feed has significant and sometimes uneven gaps between
frames, which would result in very scarce representation.

In the following, we will discuss further approaches to the vi-
sual analysis of time series data that are the most relevant to our
own application. For a more comprehensive overview, we kindly
refer the reader to the survey of Aigner et al. [AMM∗07] or to the
book by Aigner et al. [AMST11]. When it comes to visualizing
the development of the snow height over time, the most common
approach is to use line charts [FW08, GPW13, LCW15, KHKN20]
or scatterplots [PHK∗12, KTD19]. Bögl et al. [BFG∗17] presented
an approach for analyzing patterns in periodic time series that can
be potentially useful when depicting the snow evolution over time.
However, the periodic encoding breaks the temporal coherence of
the data, making it harder to spot outliers. Kopp et al. [KTD19]
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used the color encoding in the background of the temporally ordered
chart to encode periodic changes between day and night. These
changes are important when assessing the quality of the images
while analyzing time-lapse data.

2.3. Image Processing

As the pipeline in our solution first tries to automatically detect
the snow stakes in the input images, we were also investigating
the most suitable approaches to that. The most relevant ones are
summarized in this section. We also sketch our selected solution
here, as we are not considering that as novel to be presented as one
of our contributions.

There are various image-processing techniques for detecting snow
stakes, one of which is based on color channel analysis. Orange
markers on a stake are used in [HM14] so that low values in the
blue channel of an image reveal the stake’s position. The approach
[PHK∗12] assumes the stakes are painted with alternating red and
black bars of size 10 cm. And in [GPW13], stakes contain black
bars separated 10 cm from each other. Convolutional network Mask
R-CNN was used in [KTD19] for stake detection. The lowest pixel
in an image classified by the network as belonging to the stake
represents the point where it meets the snow.

3. Analysis of Requirements and Design Decisions

Within numerous interviews with our domain experts from the
Mendel Polar Station, we discussed their issues with reading out
the snow height from the series of images they are capturing in the
vicinity of the station. Within the past years, they tried to find a
suitable, at least semi-automatic solution, that would help them ex-
tract the required information from the images. However, in the end,
they always ended with a purely manual approach, as the existing
solutions were unreliable or did not fulfill their expectations.

As shown in Fig. 2, the combination of varying weather and light
conditions, including snowstorms, day and night changes, sunlight
glares, or similarity of the ground and sky for snowy images, is
inevitably causing errors even in the most robust automatic solutions.
Therefore, a certain level of human intervention is necessary to
correct the snow height extracted from the problematic images.

As the manual annotation of all images would take days, the
researchers always processed only a small subset of the images,
and for the rest of the dataset, they performed simple interpolation.
In this way, they were losing valuable information about sudden
snowfalls and melting in shorter time periods, which could impact
the ecosystem.

We concluded that the ideal tool for the researchers would help
them visually explore the resulting values coming from the auto-
matic measurement and manually correct the obviously erroneous
values. In this way, the researchers would have means of understand-
ing the quality of the whole dataset in a fraction of the time they
originally spent on the analysis. They can easily fix it and understand
the evolution of snow coverage in a given time period.

Based on these findings, we identified four high-level tasks that
our envisioned tool should support:

T1 The tool should automatically process the whole dataset with only
minimal user intervention.

T2 The tool should visualize the measured values and provide an
indication of the credibility of the measurements.

T3 The tool should support the possibility of comparing the informa-
tion about snow height evolution around a snow stake between
the images taken from multiple cameras.

T4 The tool should allow the users to directly fix the erroneous
records and store the corrected values in the dataset.

The first and main task is to alleviate the repetitive workload of
the researchers when processing a large number of images. The
user should not be forced to watch each individual image in the
dataset and instead only set up the automatic extraction (T1). As it is
apparent from the related work, the common workflow of measuring
snow from an image is to mark the position of the snow stakes
manually in the image, where the whole stake is visible. Another
common technique is to define a region of interest, where the stake
is expected so that the whole image is not searched. In the ideal case,
the algorithm would find an image where the whole stake is visible
and use it as a ground truth. This would automate the whole process,
however the complexity of finding the reference image in a general
dataset makes it hard to justify in a real-world application compared
to its benefit. We believe the tasks for the user are simple enough
and allow the system to be reasonably lightweight.

The second task requires giving a comprehensive overview of
the measured data and then suggesting areas with potential errors
(T2). For that, we need to already have an automatically processed
dataset from T1. The dataset can be viewed from two perspectives:
from the trail camera perspective, where there is information about
snow height evolution around all stakes, and from the perspective of
individual stakes, where we can compare the snow height seen from
every camera that is capturing it. In the ideal case, the snow height
measured from multiple cameras is identical. The stakes can be
obscured by other objects, such as snow on the camera, so the ability
to compare multiple camera sources is beneficial for verifying the
data.

The appropriate visual support for the third task should help
the user understand the relationships between data from one stake
captured by multiple cameras and thus serve as an additional ver-
ification (T3). This requires the images to be taken ideally at the
same time and if this is not achieved, we need to create a way of
aligning images corresponding in time to each other. We also need to
consider that the quality of the extracted information highly depends
on the position of the stake on the image and its distance from the
camera. It is evident that the readouts of those stakes far away and
in the corner of the image will be of worse quality.

The fourth task aims to support fast and intuitive correction of
incorrect records that the user found using the solutions defined by
the three previous tasks (T4). The tool should present the measured
data directly in the image and allow easy editing. The user should
also have the option to completely discard an image if the quality is
too poor.
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Figure 3: Camera View with moving averages of individual stakes. The background rectangles show the missing data. The darker the color, the
more stakes are missing at that point (A). The spike (B) suggests potentially erroneous data and the "sink" (C) shows the stretch without snow.

4. Automated Snow Height Extraction

We developed an algorithm capable of producing an automatically
measured set of images, with only minimal setup from the user.
Since there is no standardized method, we developed our own one,
using methods discussed in section 2. The full explanation of the
algorithm can be found in work by Mráz [Mra21]. As our proposed
algorithm utilizes a combination of already existing methods, we are
not considering this as a novel contribution. However, we believe
that it is worth to present for the sake of reproducibility.

In accordance with T1, we require only minimal user input when
setting up the algorithm. We ask the user to select a representative
photo, where all stakes are fully visible and mark their top and
bottom. These positions now serve as a reference for the stake-
finding algorithm. The user does this for each camera, and then
they reference the same stake viewed from multiple cameras, so the
visual representation across cameras is explicit. There is no more
setup required from the user, and they can start the recognition.

First, we identify stakes using a histogram of oriented gra-
dients [DT05] and a support vector machine [CVS95], which
produces a set of rectangles indicating the presence of stakes in
the image. We equalize the histograms in each rectangle. Then we
detect the actual stakes contained in the computed rectangles by
applying mathematical morphology [Soi03, Ser83] to convert them
to binary images, where white pixels represent the stakes. Finally,
we apply a version of Hough line transform [GMK99] to identify
the lines in the binary images.

To avoid unnecessary processing of individual stakes, we evaluate
if an image contains any snow at all. For this, we use a support vector
machine classifier [CVS95] that was trained on manually labeled
images (600 containing snow and 1800 without any snow). The
image is processed either if it was recognized as an image with
snow or if there was snow in the previous five images. This heuristic
dramatically reduces the processing time.

In our evaluation, the processing of roughly 3600 images (3000×
4000 px) in four threads took about 4.5 minutes (75 ms per image)
on Core i7-4720HQ CPU. The threads took about 170 MB RAM
of 8 GB available. The detection of snow/no-snow in the image is
reasonably accurate, with about 97 % accuracy. The actual snow
height detection was correct in 83 %. However, considering only
images when the site was fully covered by snow, the height detection
was correct in 92 %.

5. Antarstick Design

This section presents the details about the design of our proposed An-
tarstick tool. The tool consists of three main views. As the locations
are captured from multiple angles, presenting all available infor-
mation for comparison is necessary. The first visual representation
the user encounters is the Camera View (Fig. 3), showing the snow
height extracted at all visible stakes in the camera’s field of view.
The idea is to show the overall structure of the dataset throughout the
given time period, represented by lines of moving averages. Exact
values for individual stakes can be inspected in the Stake View (Fig.
4). It allows for checking every value and its relation to the moving
average. If the stake is visible from more cameras, the Stake View
presents this information as well (Fig. 4). The most detailed view,
where the user can edit the incorrect detection, is the Image Detail
View (Fig. 6). The interplay between these three proposed views
guides the user to see the global overview of the dataset first, locate
regions with possible problems, and then inspect them in detail.

5.1. Camera View

The purpose of Camera View is to aggregate all snow heights in one
place. It consists of a set of line charts, where each chart corresponds
to a single camera. The view was designed as a first overview of the
dataset. The juxtaposed views of each camera serve as a compari-
son tool (T3), while the superimposition of the snow stakes shows
the spread of snow height across the measured area. The naïve as-
sumption is that all snow stakes should have the same snow height
at a time. If there is a consistent spread among the heights in the
graph, it indicates diverse conditions at each stake, pointing towards
a potential trend. On the other hand, if there is a larger spread for a
shorter time, that would indicate possibly erroneous values.

When designing the view, we needed to find a balance between
complete information and readability. The initial solution of super-
imposing all heights as individual points resulted in an unreadable
clutter. The discrete points also hide the fact that a measurement
is missing, as is presented by Eaton et al. [EPD05]. We chose a
line chart to show the information, for several reasons. The first
is a visualization of sudden spikes in data (Fig. 3B). They could
signify a massive snowstorm, or more probably, the value has been
misinterpreted. In either case, it is something worth investigating,
and the spikes are drawing attention to it.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



6 of 10 M. Lang, R. Mráz, M. Trtík, S. Stoppel, J. Byška, B. Kozlíková / Antarstick: Extracting Snow Height From Time-Lapse Photography

...

Figure 4: The Stake View shows the data points and the moving average of one stake (A). When the stake is selected (B), the summary chart on
the right (D) is replaced by a preview of the image (C). Chevrons on the left part (E) for showing and collapsing charts. The Overview Chart
(F) shows the position and the zoom level with respect to the whole dataset.

The second benefit of a line chart is the visualization of missing
values since the line segments show continuity and end abruptly
when the value is missing. To further enhance the visualization
of missing values, we used the background to show rectangles of
different shades. They encode the missing values at a given time.
The darker the background, the more values are missing. When a
longer series is missing, often due to the covering of the camera
lens, the rectangles create wide dark bands, drawing attention to
them (Fig. 3A). That way, we can guide the user to the low-quality
parts of the dataset. Using them also reveals a difference between
missing values and correct values without snow (Fig. 3C).

To further reinforce the interaction, we connected the Camera
View with the Stake View in zoom and drag, so both views show the
same time frame. The user can also select any line in the Camera
View to open the corresponding Stake View.

5.2. Stake View

The Stake View (Fig. 4) provides a detailed view of a single stake,
seen from multiple cameras (T2). The initial design featured a point
chart, where each point is one measurement in time. That would
suffice for a simple overview, however, there still were things to
improve in terms of guidance.

First, the user couldn’t distinguish between missing and zero
values. We used the color and glyph channel of the point to encode
this information, along with the image status (Fig. 5). On top of it,
we also added the possibility to filter the points based on the same
image status. The filtered points are semi-transparent and, therefore,
less noticeable, but they are still accessible.

We use the Stake View to solve task T3, where we want to compare
data from multiple cameras. Since we are using color and glyph
channels to distinguish between states, it would be impractical to
superimpose all views into the same chart. Instead, to reduce visual

clutter, we show all views juxtaposed. When selecting a point in one
of the cameras, the closest point in the other camera time-wise is
also selected (Fig. 4B). In case the other camera has a large gap in
the measurements, the closest value will be at the edge of said gap
and the user can disregard it for the comparison.

Similar to the discussion in subsection 5.1, the point chart is not
well suited for finding outliers. We include a line chart in the form
of a running average, which creates a proxy of an expected value.
When there is an outlier, it shows up further from the average line,
which guides the user towards it. We reused these running average
lines in the Camera View to compare the stakes among themselves.

When using either the Stake View or the Camera View, the user
can zoom in to inspect details in the timeline. It is easy to lose track
of the scale and position, so we implemented the Overview Chart
(Fig. 4F). It serves as a minimap, showing the position and visible
range of the dataset. It is also connected with other views, so the
user can drag and select the visible range from the Overview Chart.

The background shows the sun position, as the amount of light
is one of the major factors that play into the visibility of the stakes.
The user can easily see the day/night cycle and infer whether the
outlier corresponds to a lack of light.

To the right of the chart, there is a window showing additional
information. When no point is selected, it shows a distribution of
points across states in a stacked bar chart (Fig. 4D), otherwise it
shows the currently selected image (Fig. 4C). By clicking on the
image preview, the user opens the Image Detail View.

5.3. Image Detail View

The purpose of this window is to inspect data and provide the tool for
correcting it. We reserved most of the space for the original image,
as it is the original purpose of this view (Fig. 6A). All found stakes
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Figure 5: Left: The legend shows different colors and glyphs of
each point. Right: Available filtering options for images, stakes,
and displayed snow height values. The filtered data points are semi-
transparent in the Stake Views.

are marked by an overlay showing the position of the stake and the
snow height, all of which the user can hide (Fig. 6C). The user can
move the stakes and the snow height, which directly changes the
dataset underneath. Since the image-processing algorithm does not
always find all stakes, it is possible to both add and remove stakes,
as well as undo these changes.

When fixing such large datasets, it is easy for the user to get lost
and review the same image multiple times. We prevent this waste of
time by implementing a system of marking the images. The marks
are then visible in the Stake Views. Any time the user edits the image,
it is marked as “Approved,” which changes the color of the point
in the Stake View (see Fig. 5). The user can uncheck the mark at
any moment to note the image is not fully processed. In the same
way, the user can discard the image, which will still show up in the
Stake View as a cross, but it will not be taken into account when
computing the running average.

When fixing a larger sequence, it would be cumbersome to re-
turn to the main window and select the next image. Therefore, we
included a small gallery of surrounding images (Fig. 6B) that also
shows the “Approved”/“Discarded” marks.

6. Design Study

In order to understand the effectiveness of the proposed tool, we per-
formed a design study to gain the user’s opinions and insights. The
study has been conducted as a series of semi-structured interviews,
as described in [Off].

Data: We used a real dataset from Antarctica. Images were cap-
tured at a site on James Ross Island during the 2018 season. The
measured area is a large boulder with eight snow stakes around it
and can be seen in Fig. 2. It consists of over 7000 images taken
by two trail cameras in roughly 2-hour intervals. Each image has
been processed by our classifier, which tried to find all snow stakes
and measure the snow height. This dataset has been used within the
study with the experts.

Sample: We have conducted the study with five experts who
regularly visit the Mendel Polar station in Antarctica and actively
analyze the gathered data, including the trail camera images that
form the input dataset of Antarstick. These experts were researchers,

all with experience with field measurements in Antarctica. Two of
the participants are the original authors of the dataset, responsible
for measuring snow at the Mendel Polar Station.

Procedure: In the study, the developers of the tool engaged in ses-
sions with experts. These sessions were facilitated by two designers
of the tool, meeting with one to two experts in a meeting room. Two
of the five experts who participated joined remotely via video call,
manipulating the tool through remote desktop software. Each ses-
sion, spanning approximately one hour, was recorded with explicit
consent from the participants. The first part comprised the introduc-
tion of the Antarstick tool, its purpose, and its functionality. After
that, the experts were asked to interact with the application and nar-
rate their mental model using the thinking-aloud method [Lew82].
We prepared a set of questions that we asked the participants to
gain deeper insights during the tasks and afterward. The questions
included their opinions on Antarstick, how they use individual visu-
alizations, or how the visualizations work together. We also asked
for useful, redundant, and missing features.

6.1. Results

In our evaluation, we were able to get many findings and remarks.
We grouped them into several categories:

Workflow: The experts first inspected the general overview of
the year provided by the Camera Views (Fig. 3), where they can see
the distribution of missing data. Using that as navigation, the users
located individual problems using the Stake View (Fig. 4).

We observed two different approaches when using the Image De-
tail View (Fig. 6) to correct data during the evaluation. The first ap-
proach is to edit the values by moving the markers to the correct po-
sition, which works well with images of lower quality (e.g., a quick
drop in the height that was incorrectly measured in a blurred image).
The second approach is to discard the incorrectly measured stake
right away. This pruning approach allows for a quick improvement
of the resulting dataset, removing large portions of erroneous but oth-
erwise unimportant data. Both methods are supported by our design.

Attitude towards visualizations: The participants stated that
even without any correction of the individual values, the initial view
already gave them an understandable preview of the snow cover
trends over the examined time period. They confirmed that the back-
ground highlight of missing data presented in the Camera View
clearly suggests the critical parts where some user intervention is re-
quired. They also very much appreciated the possibility of accessing
the original image using the Image Detail view. Lastly, the partici-
pants stated that the navigation in the charts and the zooming and
data selection were intuitive. Especially the synchronized zooming
was described as very useful.

Correction of errors: As we mentioned earlier, there were two
possible workflows that the experts used. The first one, editing the
stake position, requires the user to move the stake manually. The
editing was regarded by the experts as easy and intuitive. The same
goes for discarding and adding individual stakes, which is possible
in the same window, in the Image Detail View. One user suggested
the use of keyboard shortcuts.
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Figure 6: The Image Detail View consists of a zoomable view of the source image with stake overlays (A). The image controls (C) offer tools
to manipulate the stakes, and the image and stake info (D) show all available details. The gallery at the bottom (B) shows the neighboring
images, providing important context and navigation. On the right, there are the stake overlays. The general stake overlay is on top, and the
currently selected one is on the bottom (E).

Limitations and new features: Some of the suggestions
by users addressed the visualizations and the presentation
of information, while others mentioned the user interface
and interaction with the software. As for the visualizations, the
users mentioned subtle discrepancies in the color scheme and other
minor adjustments. For example, the reddish color selected for Stake
not found state reminded them more of a ground color, which they
connected more with the images, where there was no snow. The ex-
perts also had some requirements regarding the interaction, such as
batch processing of many images at once. Usually, when the camera
gets snowed in, the whole period can be discarded at once. That
means the stake charts would need brushing and allow for removal
without going into a detailed view. This will also complement the
workflow that discards erroneous data instead of fixing them.

We believe that this evaluation revealed important insights, and
we will use it to improve Antarstick to suit experts’ needs. In
the following section, we draw some of the conclusions for the
subsequent work.

7. Discussion & Lessons Learned

After the design process, implementation, and user evaluation, we
were able to summarize the findings into the following ideas. These
are the lessons learned from the design study.

Users are more interested in correct data rather than com-
plete data. When the users are cleaning the dataset, we have ob-
served that they are not reluctant to discard data, especially when
they do not see any significant change between the neighboring
images. Therefore, it is important to provide the user with an easy
way of discarding the data, be it individual measurements in the
image or the image as a whole.

Thanks to the overlay of the stakes (Fig. 6E), it was trivial to
identify and then adjust the measurement. The lesson learned is that
when working with pictorial data, it is often preferable to show the
user both the source data and the computed result.

Point chart with running average guides the users towards
incorrect results. The users were able to find the outliers more
easily when they had a reference line going through the chart.
Similarly, they were able to spot other features of the line chart,
such as split lines where the measurements were missing, or abrupt
jumps in the data.

Background can be used to display the validity of the data.
When designing the Camera View, we were aiming to summarize
the overall trends in the dataset. We were able to utilize the
background to show the number of valid data points, which
clearly highlights the problematic segments. Our test subjects
confirmed our initial assumption that it is an effective representation.

© 2024 The Authors.
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Batch processing based on brushing is required for efficient
cleaning of data. During the evaluation, experts requested the option
to select more images and change their parameters at once. This
would speed up the cleaning significantly. However, it is not practical
to allow every action to be done in a batch. In our case, the following
edits are meaningful:

• discard the stake from selected photos,
• discard selected photos,
• set snow height at a stake to zero,
• mark images as no-snow (thus setting the values for all stakes in

this image to zero).

Within the batch processing, setting the height of snow to a differ-
ent value than zero is not a valid operation, since often the incorrect
value is measured due to the shifted stake, and the image would still
need to be checked manually. The same applies to setting the same
height for every stake in the image (except for zero). In conclusion,
it is practical to include batch editing, but the actions need to be
well-designed.

Splitting the whole dataset into smaller parts can make it
easier to work with. It is not usually crucial to clean the dataset
as a whole. In our case, the images share context only locally, e.g.,
the camera gets snowed-in only for a couple of hours/days, or the
snowstorm recedes overnight. The overview of the dataset is helpful
as it provides a preliminary view of the whole measured period (i.e.,
year) and allows one to keep track of the edited data. However, the
cleansing process itself does not require a detailed view of the entire
year. While the application is designed to work with the whole year
(over 7000 images), in some of our tests we tried to clean smaller
portions of the data consisting of roughly one month. This made
the visualizations less cluttered and it was easier to navigate in the
shorter timeline. Arguably, if the users were able to finish cleansing
faster, it would give them a greater sense of accomplishment and
make the experience more enjoyable.

7.1. Generalization of the visualization

The proposed workflow of cleaning the automatically processed
time-lapse data can be applied to other application domains as well.
Especially in natural sciences, where long-term observations are
quite common, time-lapse imaging techniques are a good way of
studying changes. Combined with automatic processing, they can
prove a powerful tool for researchers.

While we performed the evaluation with the experts, we have
also discussed other possible usage scenarios of this tool. One of the
interesting ideas was time-lapse measurements of the water level
in lakes of James Ross Island. The water level measurement can
be done in the same exact way as measuring snow, which suggests
Antarstick would need little to no adjustments to process this kind
of data. We would like to explore this application in the future.

One of the hypothetical usage scenarios could be the exploration
of lichen growth. A commonly used technique is to take pictures of
the colonies to compare the growth between years [SGP07, Ben90].
With the creation of an automatic measuring algorithm that would
mark the grown area, the approach for cleaning the dataset can
be utilized. Instead of a stake, every colony would have its own

chart, showing the measured area. Because the steady growth of
the lichen is expected, every change in this trend would be easily
detectable, and with a detailed view of every image, it could be
instantly reviewed.

In more general terms, every time-lapse dataset with one or more
scalar values extracted from it can be visualized using the principles
described in our solution.

8. Conclusion and Future Work

In this paper, we introduced Antarstick, an interactive tool for the
visual exploration and correction of information about the evolu-
tion of snow height values around stakes that were automatically
extracted from time-lapse photographs. Antarstick was created in
collaboration with experts in the field of environmental sciences
who conduct yearly experiments in Antarctica. We asked five of
them to evaluate the final version of Antarstick and its ability to
aid their research. Based on the feedback we collected during the
evaluation, we can conclude that the domain experts appreciated the
features and options that the tool offers, as it allows them to quickly
verify and correct large datasets of images, which was not possi-
ble to reach before without tedious manual work. The evaluation
identified interesting directions for future improvements, coming
from a new observation that the need for manual correction differs
according to the amount of snow in a particular time period. We are
planning to utilize this observation to improve the visual guidance
in the next version of Antarstick. Moreover, while we demonstrated
Antarstick’s features and capabilities on a dataset that was parsed
by our own classifier, the tool can be utilized for cleansing data pro-
duced by any approach that provides access to the detected stakes
and the raw images. We also illustrated possible generalizations to
cleaning other time-lapse image datasets. We believe that this will
inspire other people to clean their data efficiently.
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