
Eurographics Conference on Visualization (EuroVis) 2024
W. Aigner, D. Archambault, and R. Bujack
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 3

Improving Temporal Treemaps by Minimizing Crossings

Alexander Dobler1 and Martin Nöllenburg1

1TU Wien, Algorithms and Complexity Group, Austria

Abstract
Temporal trees are trees that evolve over a discrete set of time steps. Each time step is associated with a node-weighted rooted
tree and consecutive trees change by adding new nodes, removing nodes, splitting nodes, merging nodes, and changing node
weights. Recently, two-dimensional visualizations of temporal trees called temporal treemaps have been proposed, representing
the temporal dimension on the x-axis, and visualizing the tree modifications over time as temporal edges of varying thickness.
The tree hierarchy at each time step is depicted as a vertical, one-dimensional nesting relationships, similarly to standard, non-
temporal treemaps. Naturally, temporal edges can cross in the visualization, decreasing readability. Heuristics were proposed to
minimize such crossings in the literature, but a formal characterization and minimization of crossings in temporal treemaps was
left open. In this paper, we propose two variants of defining crossings in temporal treemaps that can be combinatorially char-
acterized. For each variant, we propose an exact optimization algorithm based on integer linear programming and heuristics
based on graph drawing techniques. In an extensive experimental evaluation, we show that on the one hand the exact algorithms
reduce the number of crossings by a factor of 20 on average compared to the previous algorithms. On the other hand, our new
heuristics are faster by a factor of more than 100 and still reduce the number of crossings by a factor of almost three.

Keywords: Temporal treemaps, crossing reduction, temporal data, algorithm engineering, computational experiments

CCS Concepts
• Human-centered computing → Treemaps; Graph drawings; • Theory of computation → Design and analysis of
algorithms;

1. Introduction

Trees are a very common and useful way to represent hierarchical
data such as file systems, source code repositories with versioning
control, structures of organizations, biological taxonomies etc. By
adding data values as node weights in the tree, we can also represent
numeric attributes of the underlying data. There is a plethora of tree
visualization techniques [Sch11], with treemaps [Shn92] being one
of the most well-known ones for weighted trees.

In many contexts such trees may change over time, leading to
temporal trees. First, the data values associated with the nodes may
change, e.g., by changing the contents of a file or the size of a re-
search group in a university. Second, the tree structure itself may
change over time, e.g., by creating, deleting, or moving files, by
splitting or merging research units or by restructuring institutes in
the faculty of a university, and so on. This leads to a temporal se-
quence of related trees, one for each discrete time step. The evo-
lution of the tree between two time steps is modelled by temporal
edges that represent the correspondence between two nodes of con-
secutive trees. A node might have multiple outgoing and incoming
temporal edges, representing the splitting or merging of a node, re-
spectively. Naturally, each node in a tree has a level representing its
depth in this tree. Refer to Figure 1a for an example. Visualizing

temporal trees is a challenging task as we have to convey the tree
structure for each point in time, and also represent the changes that
occur over time. Many visualization techniques for temporal trees
have been proposed [BBDW17, GLAK23].

This paper deals with temporal treemaps, a temporal tree visual-
ization approach [KW19] that is based on the nested tracking graph
metaphor [LWM∗17]. The x-axis of a temporal treemap represents
time, temporal edges are drawn as horizontal x-monotone bands of
varying thickness depending on node weights, and the hierarchical
relationships are conveyed by vertical nestings of these temporal
edges (see Figure 1c). The only restriction imposed on temporal
trees by this temporal treemap visualization is that temporal edges
can only connect nodes of the same level, i.e., nodes cannot change
their level over time. The similarity to treemaps – and thus the ori-
gin of the name temporal treemaps – is immediate when consid-
ering the tree of Figure 1a in the first time step t1 visualized as
a vertical treemap in Figure 1b. One could interpret Figure 1b as
looking at the temporal treemap in Figure 1c from the left side.

The bands in temporal treemaps can cross in the visualization,
and it is non-trivial how to avoid such crossings. For example, the
visualization in Figure 1c has a crossing between the two temporal
edges (a1,b2) and (a2,b1). Such crossings depend on the vertical

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1111/cgf.15087

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-0712-9726
https://orcid.org/0000-0003-0454-3937
https://doi.org/10.1111/cgf.15087

2 of 12 A. Dobler & M. Nöllenburg / Improving Temporal Treemaps by Minimizing Crossings

order of temporal edges, which is not pre-specified in the input data
and hence must be computed. One of the contributions of Köpp and
Weinkauf [KW19] are heuristic algorithms to compute such orders
that lead to few crossings. However, they do not provide a formal
way of quantifying the number of crossings in the output of their
algorithms, nor do they investigate their exact minimization.

We tackle the problem of minimizing crossings in temporal
treemaps for the first time from a rigorous algorithm engineering
perspective with the aim of improving the existing heuristic
approaches of Köpp and Weinkauf [KW19] for temporal treemap
visualizations. We note that such visualizations have already been
motivated extensively by Köpp and Weinkauf and Lukasczyk et
al. [LWM∗17], and their relevance in visualization is witnessed
by the multitude of follow-up works. This paper aims to improve
temporal treemap (and nested tracking graph) visualizations
by providing algorithms that minimize crossings more effec-
tively and more efficiently. In fact, crossings are one of the
most important factor that negatively influences graph readabil-
ity [Pur97, WPCM02] and hence crossing minimization is a well
established way of improving graph visualizations and reducing
visual clutter. Our main contributions include the following.

• In Section 4 we formally define two types of crossings occurring
in temporal treemaps that rely on a combinatorial characteriza-
tion of such visualizations. We define two associated computa-
tional problems of minimizing the two types of crossings.

• In Section 5.1 we show that both problems are generally NP-
hard. In the supplementary material [DN23] we give polynomial
algorithms that determine if a solution with zero crossings exists.

• In Section 5.2 we discuss the algorithms by Köpp and
Weinkauf [KW19] in more detail. We observe some drawbacks
in those algorithms that we want to circumvent in our algorithms.

• In Section 5.3 we give exact algorithms that compute optimal
solutions with the minimum number of crossings.

• In Section 5.4 we give a set of new heuristic algorithms.
• In Section 6 we conduct an experimental evaluation of the exist-

ing and new algorithms.
• Finally, in Section 7, we showcase the effect of more rigorous

crossing minimization in an example for a real-world dataset.

The implementations of algorithms in this paper make use of the
code-base of Köpp and Weinkauf [KW19]. All implementations,
datasets, additional experimental evaluations, and additional
examples of temporal treemaps are available on OSF [DN23].

2. Related work

In this section we discuss related work starting with brief overviews
on tree and temporal data visualizations focusing on the most rele-
vant aspects such as treemaps and temporal streams. We then dis-
cuss in more detail approaches on temporal tree visualization as
well as work on crossing minimization in layered graphs.

Tree visualizations. For an overview of the rich literature on tree
visualization we refer to the treevis.net bibliography [Sch11]. Tree
data with nodes having real-valued weights such that the weights
of internal nodes are at least the sum of weights of their children,
appear in many contexts such as file systems with files, folders, and

a1

a2

a3

a4

d1

d2

d3

t1 t2 t3 t4

c1b1

b2

(a)

t1

(b)

a4

a3

a2

a1

t1 t2 t3 t4

d1

d2

d3

b2

b1

(c)

Figure 1: (a) A temporal tree G over four time steps. Tree edges
are drawn in solid black, temporal edges in dashed violet. Layers
are displayed as stacked blue planes, with black nodes placed on
them. Lower levels have lighter color. Leaves of the first and last
time steps are labelled. (b) The tree at time t1 drawn as a vertical
treemap. (c) G drawn as a temporal treemap with two crossings.
Temporal edges in lower levels have lighter color. The leaves of
the first and last time steps are again labelled. The combinatorial
layout corresponds to the vertical ordering of the leaves at t1 to t4.

their respective sizes on the hard disk. Such data are often visual-
ized as treemaps [JS91, Shn92] in a nested, space-filling 2d layout.
A node corresponds to a (rectangular) region of the visualization
and its weight is represented by the size of the region. Hierarchi-
cal relationships are conveyed by nesting of those regions. Many
variants of treemaps have been proposed, with neighborhood con-
straints [SW01], varying region shapes [BHvW00,BD05,dBOS13,
GSWD18] and types of region boundaries [vWvdW99].

Temporal data visualizations. Temporal data are usually repre-
sented by a sequence of data values for a discrete set of time steps.
For example, a set of subjects (e.g. countries) might have a data
value (e.g. population) for each time step (e.g. year). For a gen-
eral overview of visualizing temporal data we refer to the book by
Aigner et al. [AMST23]. Such data might be visualized in a static
way by letting the x-axis represent time and the varying data values
are represented by stacked horizontal bands with varying widths
for each subject. Such visualizations are known as streamgraphs or
stacked graphs. Visualization systems for these are available. One
of the first is ThemeRiver [HHWN02]; other works focus on opti-
mizing aesthetic criteria such as wiggles [BH16, BW08].

Temporal tree visualizations. Temporal trees are trees that
change over a sequence of discrete time steps. Many visualiza-
tions for such data exist, e.g., stable sequences of node link dia-
grams for trees evolving by node insertion and deletion [GLAK23].
Adaptations of treemap layout algorithms aim at producing similar
treemap visualizations for similar trees and use animation to show
the changes over time: Hahn et al. [HTMD14], Sud et al. [SFL10],
Hees and Hage [vHH17] adapt Voronoi treemap algorithms, while
Sondag et al. [SSV18], and Tak and Cockburn [TC13] adapt al-
gorithms for rectangular treemaps. Vernier et al. [VSC∗20] pro-
vide a quantitative evaluation of these time-dependent treemap
visualizations. Adaptations of streamgraphs attempt to visualize
such data by conveying hierarchy with color [CSWP18, WK06],
or showing individual hierarchy levels separately [BLC12]. Burch

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

A. Dobler & M. Nöllenburg / Improving Temporal Treemaps by Minimizing Crossings 3 of 12

et al. [BBLW14] propose a visualization of changing hierarchies
based on indented plots – which use indentation to convey infor-
mation about hierarchy and depth of trees. BarcodeTree [LZD∗20]
is a novel approach to visualize temporal trees, where the tree at
each time step is visualized by a sequence of rectangles represent-
ing the nodes. Beck et al. [BWB∗14] use a treemap-like visualiza-
tion called Icicle Plots to compare a primary hierarchy to several
others. Code Flows [TA08] is a tool to visualize changes in source
code repositories by showing movement of code blocks as crossing
tubes connecting their position in vertical icicle plots.

Our work is mainly based on two papers that propose tempo-
ral treemap visualizations—static two-dimensional visualizations
that adopt the visual metaphor of treemaps in one dimension and
show the temporal changes in the second (horizontal) dimension.
Lukasczyk et al. [LWM∗17] have proposed nested tracking graphs,
a method initially used to visualize hierarchically nested graphs.
Additionally, nested tracking graphs can visualize temporal trees
as shown in Figure 1c. However, their layout algorithm can pro-
duce many crossings and crossing minimization in this context is
an open problem. Köpp and Weinkauf [KW19] introduced the no-
tion of temporal treemaps for nested tracking graphs of temporal
trees and have proposed a layout algorithm designed for reduc-
ing the crossings. They define a set of constraints that need to be
satisfied in order to reduce crossings, and then give implementa-
tions of a greedy heuristic and a simulated annealing algorithm
that maximize the number of satisfied constraints. However, they
do not give a quantitative characterization of crossings in their pro-
duced outputs. They also introduced a different variant of visual-
izing temporal trees that is similar to nested tracking graphs and
uses cushion rendering. However, temporal edges are treated dif-
ferently and crossings can lead to undesirable artifacts. This ren-
dering is thus more suitable when there are few or no crossings.
SplitStreams [BNRB21] is another recent visualization similar to
temporal treemaps, and we expect that our methods and crossing
minimization algorithms are also relevant for minimizing stream
crossings in SplitStreams.

Guerra-Gómez et al. [GPPS13] give a taxonomy on types of
changes in temporal trees. Temporal treemaps fit partially into
their Type 4: changes in node weights and topology. Graham and
Kennedy [GK10] give a survey on visualizations for multiple (not
necessarily temporal) trees. Furthermore, a taxonomy on general
dynamic graph visualizations is given by Beck et al. [BBDW17].

Crossing minimization in layered graph drawing. Algorithmic
ideas in this paper are inspired by the graph drawing literature
for variants of layered graph drawing [HN14]. The well-known
Sugiyama framework [STT81] is an algorithmic pipeline for draw-
ing directed graphs in an upward layer-by-layer style. A crucial step
is to minimize the number of crossings by finding node orders for
each layer. Two well-known heuristics are the barycenter heuris-
tic [STT81] and the median heuristic [EW94]. Ordering problems
also appear in different contexts for graph visualization [BBR∗16].

Storylines, popularized by an xkcd comic [Mun09], depict the
interaction of multiple characters over time. Each character is rep-
resented by an x-monotone curve and interactions are depicted by
vertical proximity of these curves at specific times. Much focus
has been given to drawing storylines with few crossings between

G|t1 root(G|t1)

leaves(G|t1)

level 0

level 1

level 2

(a)

t1 t2

(b)

t1 t2

(c)

Figure 2: (a) The tree G|t1 for the temporal tree G in Figure 1a. (b)
A non hierarchy-compliant temporal tree and (b) its visualization
as temporal treemap with an unavoidable crossing.

character curves [KNP∗15, GJLM16, vDLMW17, vDFF∗17]. The
integer linear programming model by Gronemann et al. [GJLM16]
has inspired the exact algorithms in this paper.

Drawing layered graphs without crossings has appeared in the
context of T -level planarity [ALB∗15, JLM98], which is similar
to problems discussed in this paper. The problem deals with draw-
ing a layered graph without crossings with additional constraints
for the nodes of each layer. Namely, each layer is constrained by a
tree whose leaves are the nodes of the layer and leaves that are de-
scendants of the same inner node must appear consecutively. This
almost corresponds to our setting, except that in temporal trees tem-
poral edges can also go between non-leaf nodes of the trees.

3. Temporal Trees

We start with some notation needed for the definition of temporal
trees. For n ∈ N, let [n] = {1,2, . . . ,n}. Let T be a rooted tree. De-
note its leaf set as leaves(T) and for an internal node u, denote its
children as children(u), and by T (u) the subtree rooted at u. Per-
mutations are treated as lists of distinct elements, modifiable by
removal, addition, and concatenation of sub-permutations.

Formal Definition. Let τ = {t1, t2, . . . , tℓ} be a set of ℓ time steps,
ordered totally by their index. A temporal tree G is a tuple G =
(V,ET ,EN) (see Figure 1a). The set V are the nodes, and each node
v ∈ V has a time step time(v) ∈ τ. The set EN consists of directed
(from parent to child) hierarchical edges, each connecting two dis-
tinct nodes u,v ∈ V with time(u) = time(v). For t ∈ τ, the graph
G|t = (V |t ,EN |t) consists of all nodes v ∈ V with time(v) = t, and
all edges (u,v)∈EN such that time(u)= time(v)= t. For each t ∈ τ,
G|t is a rooted tree with a unique root root(G|t) (see Figure 2a for
the tree G|t1 of the temporal tree in Figure 1a). Let v be a node with
time(v) = t. We say that v is a leaf if v is a leaf in G|t . If it is not
a leaf, then the set of children(v) refers to its children in G|t . The
depth or level of a node in a rooted tree is its distance to the root.
We define level(v) of a node v ∈ V with time(v) = t as its depth in
G|t . The set ET consists of directed temporal edges (u,v), where
time(u) = ti, time(v) = ti+1, and level(u) = level(v). Thus, tempo-
ral edges connect nodes in the trees of two consecutive time steps,
whose level is the same in both trees. Over the course of time, nodes
may appear if they have zero incoming temporal edges, disappear
if they have zero outgoing temporal edges, split into other nodes if
they have more than one outgoing temporal edge, and merge into

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

4 of 12 A. Dobler & M. Nöllenburg / Improving Temporal Treemaps by Minimizing Crossings

a node if they have more than one incoming temporal edge. Addi-
tionally, each node u∈V is given a weight wgt(u)∈R+ associated
with it. These values can for example represent sizes of files and
directories when the temporal tree represents a file system. We re-
quire wgt(u)≥ ∑v∈children(u) wgt(v).

An edge (u,v)∈ ET is hierarchy-compliant if u and v are roots of
their respective trees, or the parent of u and the parent of v are also
connected in ET . If all edges in ET are hierarchy-compliant, then G
is hierarchy-compliant. See, e.g., Figure 2b for a temporal tree that
is not hierarchy-compliant. Köpp and Weinkauf [KW19] only con-
sider hierachy-compliant temporal trees because edges that are not
hierarchy-compliant lead to visual artifacts in temporal tree visual-
izations, such as unavoidable crossings. Our algorithms also work
more generally for temporal trees that are not hierarchy-compliant.

Visualizations and their Combinatorial Characterization. We
are concerned with a temporal tee visualization based on the nested
tracking graph metaphor, termed temporal treemaps in this paper.
This visualization allows us to define crossings in a natural way;
Köpp and Weinkauf [KW19] also use it to verify the crossing-
reduction of their simulated annealing algorithm, however, they do
not formally define their notion of crossings. Köpp and Weinkauf
propose another visualization using cushion maps, which, however,
leads to undesirable artifacts whenever crossings appear in the com-
binatorial characterization. Furthermore, it is hard to capture the
term “crossing” for such visualizations. Thus, their cushion map vi-
sualization is more appropriate when there are no crossings, which
usually happens if there are few merges and splits in the tempo-
ral tree. Despite their claim that their visualization is preferable for
cases where wgt(u) = ∑v∈children(u) wgt(v), we will later argue for
the efficacy of nested tracking graphs even in such scenarios.

Temporal treemaps draw the temporal edges of the temporal tree.
The hierarchical relationships within each time step are implicitly
represented by color and containment of temporal edges as in a
treemap. The x-axis represents time and each time step corresponds
to a vertical strip of the visualization. Temporal edges within a spe-
cific layer of the temporal tree have the same color. The vertical
width of temporal edges (u,v) is determined by the values wgt(u)
and wgt(v). As an example take the temporal tree G from Figure 1a.
A temporal treemap visualization for G is shown in Figure 1c. Tem-
poral edges are colored in various shades of blue depending on their
level – edges in lower levels are coloured in a lighter shade. As
stated before, a concern by Köpp and Weinkauf is that such visu-
alizations are “not the best choice” [KW19] for drawing temporal
trees where the weight of a node is equal to the sum of weights of its
children. Indeed, in the original definition, edges appearing closer
to the roots of the temporal tree would be hidden by edges that are
further from the roots, as it is also the case in standard treemaps.
This can be avoided, though, by adding a small amount of padding
at the top and bottom of temporal edges. As correctly observed by
Köpp and Weinkauf, such visualizations are not completely faithful
anymore, but using small enough padding and proper descriptions
of the visualization, this should not impede understanding the data.

Temporal treemaps are combinatorially characterized by a per-
mutation of the leaves of the temporal tree at each time step. The
permutation π of the leaves Lt of the tree G|t corresponds to the or-
der the leaves Lt appear from top to bottom along the vertical slice

of the temporal treemap corresponding to time step t. These permu-
tations, however, are required to have a specific property: for each
internal node u of G|t , the leaves of the subtree G|t(u) rooted at u
have to appear consecutively in π to convey the hierarchical con-
tainment properties of the temporal tree. We say that π is restricted
by G|t . It is not required to explicitly represent the order of internal
nodes of G|t , as this order is extracted from the order of leaves: If
two internal nodes u and v in G|t are compared, none being a de-
scendant of the other, then we can compare the order of some leaf
in G|t(u) and some leaf in G|t(v). For leaves a,b, we write a ≺π b
if a comes before b in π. For two nodes u,v in G|t , not necessarily
leaves and neither u being a descendant of v nor v being a descen-
dant of u, we write u≺π v if leaves in G|t(u) come before leaves in
G|t(v). Now, let G = (V,ET ,EN) be a temporal tree on a set of time
steps τ = {t1, t2, . . . , tℓ}. A combinatorial layout of G is a sequence
of permutations (π1,π2, . . . ,πℓ) such that πi is a permutation of the
leaves of the tree G|ti and is restricted by G|ti . Each combinatorial
layout corresponds to a drawing of G as a temporal treemap.

4. Formalizing Crossings

Let us now propose two natural definitions of crossings in temporal
tree layouts that can be easily checked for combinatorial layouts
of temporal trees. Generally, we will define what it means that two
temporal edges e = (u,v) and f = (u′,v′) cross. First, it is clear
that for a crossing to happen e and f must be edges between the
same two time steps ti and ti+1. Second, the order of u and u′ in πi
must be different to the order of v and v′ in πi+1. So for a crossing
to happen we either have u ≺πi u′ and v′ ≺πi+1 v, or u′ ≺πi u and
v≺πi+1 v′. Note that for this to be well-defined, neither u and u′ nor
v and v′ can be in an ancestor-descendant relation.

We now give a formal definition of crossing, one of its flaws, and
a second definition that overcomes this.

Crossing Definition 1. Given a combinatorial layout L =
(π1,π2, . . . ,πℓ) of a temporal tree, we say that two temporal edges
e = (u,v) and f = (u′,v′) cross if

1. there exists an i ∈ {1,2, . . . , ℓ − 1} such that time(u) =
time(u′) = ti and time(v) = time(v′) = ti+1,

2. neither u, u′, nor v, v′ are in ancestor-descendant relation, and
3. u≺πi u′ and v′ ≺πi+1 v, or u′ ≺πi u and v≺πi+1 v′.

Let cr(L) be the number of edge-pairs that cross in the combina-
torial layout L. We deal with the following optimization problem.

Problem 1 Given a temporal tree G, compute a combinatorial lay-
out L of G with the minimum number of crossings cr(L).

However, with this definition of crossing we can have many cross-
ings for a combinatorial layout whose drawing as temporal treemap
does not visually appear to have as many crossings. See Figure 3
for an example with 9 crossings according to the above definition,
but the drawing appears to only have one “nested” crossing.

Crossing Definition 2. We overcome the problem in Figure 3 with
a second crossing definition. Intuitively, it makes sense to require
for a crossing that at least one endpoint of both edges involved has
to be a leaf in its tree. This is not enough as can be observed for the

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

A. Dobler & M. Nöllenburg / Improving Temporal Treemaps by Minimizing Crossings 5 of 12

t1 t2

(a)

t1 t2

(b)

Figure 3: A temporal tree (a) and one of its drawings as temporal
treemap (b) such that cr(L)= 9 and crL(L)= 1 for the correspond-
ing combinatorial layout.

t1 t2

(a)

t1 t2

(b)

Figure 4: A temporal tree (a) and a drawing as temporal treemap
(b) such that one of the edges on level one involved in a crossing
has two non-leaf endpoints.

level-1 crossing in Figure 4, where an edge with two non-leaf end-
points is involved in a crossing which would not have been counted
otherwise. But these two edges have specific properties. Namely,
we say that a temporal edge (u,v) between G|ti and G|ti+1 is a leaf-
edge if there is no temporal edge (u′,v′) such that u′ is a descendant
of u in G|ti and v′ is a descendant of v in G|ti+1 . This leads to the
second crossing definition. We say that two temporal edges e and
f form a leaf crossing in a combinatorial layout L if they obey all
properties of Crossing Definition 1, and

4. e and f are both leaf-edges.

Let crL(L) be the number of leaf crossing in L. Again, we define
a computational problem.

Problem 2 Given a temporal tree G, compute a combinatorial lay-
out L of G with the minimum number of leaf crossings crL(L).

Note that the crossing in Figure 3 is not the same as a crossing be-
tween only two single temporal edges. Thus, it might make sense to
penalize such a “nested” crossing more and Crossing Definition 1
is also a valid option. We propose algorithms for minimizing both
types of crossings in the next section.

Above, we have ignored crossings stemming from non
hierarchy-compliant trees. See Figure 2 for an example, where the
level-2 leaf edge crosses the border of its parents. Such crossings
cannot be avoided and they appear in every combinatorial layout of
the input tree. We thus ignore them in our definition of crossings,
as we will never be able to remove such crossings.

5. Algorithms for Minimizing Crossings

In this section, we will propose algorithms for solving Problem 1
and Problem 2. First we will show that both problems are NP-hard.

This justifies the investigation of heuristics and non-polynomial ex-
act approaches. Then we will discuss the algorithms by Köpp and
Weinkauf. Lastly we will present our new algorithms—integer lin-
ear programs computing optimal solutions, and two heuristics.

5.1. Complexity

NP-hardness. NP-hardness follows by a simple reduction from
the NP-hard problem BIPARTITE CROSSING NUMBER [GJ83].
The problem input is a tuple (G,k), where G is a bipartite graph
with the node set V partitioned into V1 and V2, and k is an inte-
ger. The problem asks whether there is a drawing of the graph with
edges as straight lines, with the nodes on two parallel horizontal
lines such that all nodes in V1 are placed on the top line, all nodes
in V2 are placed on the bottom line, and the drawing has at most
k crossings. This problem can be simulated with a temporal tree G
for two time steps t1, t2, such that

• G|t1 is a single root with an edge to every node in V1,
• G|t2 is a single root with an edge to every node in V2, and
• ET consists of the edges in G plus an edge connecting the roots

of G|t1 and G|t2 .

As G only has two levels, crossings and leaf crossings are the same
for every combinatorial layout. Also, it is easy to see that G has a
combinatorial layout with at most k crossings if and only if (G,k)
is a yes-instance of BIPARTITE CROSSING NUMBER. This is the
case as there is essentially a one-to-one correspondence between
such drawings of G and the temporal treemaps corresponding to
combinatorial layouts of G. Thus, the following holds.

Theorem 5.1 Problem 1 and Problem 2 are NP-hard.

Additionally, we show in the supplementary material [DN23] that
planar temporal treemaps – those which have a layout with zero
crossings – can be recognized in polynomial time.

5.2. The Approach of Köpp and Weinkauf

Let us now discuss the algorithms of Köpp and Weinkauf [KW19]
to compute combinatorial layouts with few crossings. They com-
pute a single permutation π of the union of leaves of trees for each
time step, that is, ∪t∈τleaves(G|t). The permutations of leaves for a
single time step can then be obtained by removing all other leaves
from that permutation. Their heuristic algorithms try to compute
such a permutation maximizing the number of satisfied hierarchy
and topology constraints imposed by the temporal tree. Essentially,
these constraints enforce specific leaves to be together in the per-
mutation π, and the constraints should ensure that the resulting
combinatorial layout has few crossings. They propose two algo-
rithms for this. A heuristic that takes a single constraint, satisfies it
by placing the involved leaves together in π as long as the number
of violated constraints decreases. The second algorithm is a simu-
lated annealing algorithm that works similarly as the heuristic, but
sometimes accepts worse solutions based on a temperature function
that decreases over time. Furthermore, the algorithms of Köpp and
Weinkauf work for an aggregated variant of the temporal tree that
aggregates sets of nodes with specific properties into single nodes.
The order then only needs to be computed for the fewer aggregated
nodes. The aggregated tree needs less space which improves the

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

6 of 12 A. Dobler & M. Nöllenburg / Improving Temporal Treemaps by Minimizing Crossings

t1 t2 t3 t4

(a)

t1 t2 t3 t4

(b)

Figure 5: A temporal tree (a) and one of its drawings as temporal
treemaps (b) without crossings. A set of leaves involved in a topol-
ogy constraint are marked in orange.

runtime of the heuristic and simulated annealing algorithm. Details
about the aggregation can be found in [KW19]. In our algorithms
we always work with non-aggregated temporal trees, as we do not
see how to integrate aggregated variants into our algorithms, and as
they sometimes do not preserve the number of crossings between
aggregated and non-aggregated trees.

We now discuss some concerns with these approaches, and how
they can lead to more crossings compared to other algorithms. First,
it can happen that after completion of an algorithm, some hierarchy
constraints are not satisfied and need to be repaired as these con-
straints reflect the hierarchical relationships of the single trees Gt
for time steps t. This is certainly undesirable, and can be prevented
by allowing only permutations where all hierarchy constraints are
satisfied; such permutations always exist and can be easily com-
puted. Second, there are temporal trees where crossings can be
avoided, even if there exists no permutation of the leaves satisfy-
ing all hierarchy and topology constraints. Such a temporal tree is
given in Figure 5. The combinatorial layout in Figure 5 has zero
crossings. However, the corresponding combinatorial layout does
not satisfy a topology constraint imposed by the construction of
Köpp and Weinkauf which would force all orange leaves to appear
together in π. In fact, there exists no combinatorial layout for this
temporal tree that satisfies all hierarchy and topology constraints as
they are defined by Köpp and Weinkauf. Our algorithms can handle
such inputs and produce a combinatorial layout with zero crossings.
Lastly, we will see in our experiments that the simulated annealing
algorithm is very slow as it requires a lot of iterations and each
iteration has to update the entire permutation.

5.3. Integer Linear Programming

Our first new algorithm uses the integer linear programming (ILP)
technique to compute optimal solutions (if given enough time) de-
spite the NP-hardness of the crossing minimization problems. It
builds on ideas from previous ILP formulations for a similar prob-
lem in storyline visualizations [GJLM16].

For each time step ti ∈ τ and each two leaves u,v ∈ leaves(G|ti),
u ̸= v, we have a binary ordering variable xu,v. This variable will be
1 if and only if u≺πi v in the solution. Let E2

cr contain all unordered
pairs {e, f} of temporal edges that could cross in some combinato-
rial layout of G. This set consists of all pairs of temporal edges e, f
between the same two time steps such that neither the sources nor
the targets are in an ancestor-descendant relation in the correspond-

ing trees. For each {e, f} ∈ E2
cr we have a binary crossing variable

ye, f that is 1 if and only if e and f cross in the solution.

ILP for minimizing crossings. We start by describing the objec-
tive and constraints for the ILP that minimizes crossings. Below,
u,v,w are always assumed to be pairwise different. For a temporal
edge e = (u,v) between time steps ti and ti+1, let src(e) be any leaf
in G|ti(u), and let tgt(e) be any leaf in G|ti+1(v).

minimize: ∑
{e, f}∈E2

cr

ye, f (1)

subject to: xu,v + xv,u = 1, i ∈ [ℓ],u,v ∈ leaves(G|ti) (2)

xu,v + xv,w + xu,w ≤ 2, i ∈ [ℓ],u,v,w ∈ leaves(G|ti) (3)

xsrc(e),src(f)− xtgt(e),tgt(f) ≤ ye, f ,{e, f} ∈ E2
cr (4)

xtgt(e),tgt(f)− xsrc(e),src(f) ≤ ye, f ,{e, f} ∈ E2
cr (5)

The objective (1) minimizes the number of crossings. The con-
straint (2) ensures antisymmetry of the computed permutations,
while (3) ensures transitivity (see e.g. [GJR85]). The constraints
(4) and (5) ensure that the crossing variable ye, f is one whenever
the two involved edges e and f cross in the resulting combinatorial
layout. However, this is still not enough for the resulting permuta-
tions to satisfy the hierarchy constraints imposed by the structures
of the trees for each time step. For this we have to introduce tree
constraints [GJLM16] that ensure that leaves in a subtree rooted at
an internal node appear consecutively in the corresponding permu-
tation. Thus, for each ti ∈ τ, each non-root internal node u∈V (G|ti),
each pair v,v′ of leaves in G|ti(u), and each w that is a leaf in G|ti
and is not in G|ti(u) we add the following constraint.

xv,w = xv′,w (6)

If all constraints of type (6) are satisfied then either w is either be-
fore or after all leaves of G|ti(u) in πi, but never in between. The
permutations π1,π2, . . . ,πℓ can then be extracted from the ordering
variables in the solution computed by any standard ILP solver. Due
to the objective corresponding to the number of crossings, any op-
timal solution will correspond to a combinatorial layout with the
minimal number of crossings. In our implementation we addition-
ally remove the symmetries created by ordering variables. That is,
for distinct u,v ∈ leaves(G|ti) we only have one of two variables
xu,v,xv,u in the model and adjust the constraints accordingly.

ILP for minimizing leaf crossings. The above formulation can
be converted to minimize leaf crossings instead of crossings. Let
E2

Lcr = E2
cr ∩ (EL × EL) be the set of all pairs of leaf edges that

can cross. Instead of having a crossing variable for each pair of
edges in E2

cr, we now have a variable ye, f for each pair {e, f} ∈
E2

Lcr. The ILP model can be obtained from the above formulation
by replacing every occurrence of E2

cr by E2
Lcr. The combinatorial

layout that minimizes leaf crossings can again be extracted from
the ordering variables in an optimum solution of the ILP model.

5.4. Barycenter and Median Heuristic

Since solving ILPs is not guaranteed to terminate within feasible
amount of time for large instances, we also present two heuristic
algorithms. These algorithms do not guarantee to produce optimal

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

A. Dobler & M. Nöllenburg / Improving Temporal Treemaps by Minimizing Crossings 7 of 12

Algorithm 1: First forward iteration of the barycenter
heuristic.

Input: Temporal tree G on time steps t1, t2, . . . , tℓ
Output: An order πi for each i = 1,2, . . . ℓ.

1 for i = 1,2,3, . . . , ℓ do
2 if i = 1 then π1← random order of leaves(Gt1) ;
3 else
4 pred_positions(u)← () for all nodes u in G|ti ;
5 πi← computeOrder(root(G|ti));
6 compute pos(v) for all nodes v in G|ti with respect to πi

7 return (π1,π2, . . . ,πℓ);

Algorithm 2: Recursive computation of the permutation of
leaves of the subtree rooted at u.

1 Function computeOrder(u):
2 if u is a leaf then
3 order← (u)

4 else
5 for v in children(u) do
6 πv←computeOrder(v);
7 pred_positions(u).append(pred_positions(v));

8 order← ();
9 for v in children(u) sorted by

average(pred_positions(v)) do
10 order.append(πv);

11 for temporal edge (v,w) ∈ ET such that w = u do
12 pred_positions(u).append(pos(v));

13 return order

solutions, but will compute good solutions very fast. Each algo-
rithm is based on a respective algorithm for layered graph drawing
[STT81,EW94]. Layered graph drawing is concerned with drawing
a graph on ℓ layers, each node being assigned to a specific layer and
edges connecting nodes of consecutive layers. In the well-known
Sugiyama-framework [STT81] a key step is to order nodes on the
respective layers to minimize the number of crossings. This is done
by multiple passes up and down the layers. In each pass up, the per-
mutation of nodes in layer i is computed based on the permutation
of nodes in layer i− 1 with i going from 2 to ℓ. In each pass down
the role of i and i−1 are reversed and i goes from ℓ to 2. Two well-
known strategies for adjusting the positions of nodes in layer i are
the barycenter heuristic [STT81] and the median heuristic [EW94].
The barycenter heuristic assigns a node in layer i the average posi-
tion of its adjacent nodes in layer i−1, while the median heuristic
uses the median instead of the average.

We adjust the median and barycenter heuristic to compute per-
mutations of leaves of temporal trees. Here we also have to consider
temporal edges between non-leaf nodes, and we have to compute
permutations adhering to the hierarchical structure of the trees of
each time step. We start by describing the barycenter heuristic and
later describe the changes required for the median heuristic.

Barycenter heuristic. Pseudocode for the first iteration of the
barycenter heuristic is shown in Algorithm 1. The algorithm com-
putes orders π1,π2, . . . ,πℓ of the combinatorial layout in this order.
Further, given the already computed order πi it computes the aux-
iliary values pos(u) for all nodes u in Gti which are defined as fol-
lows. If u is a leaf then pos(u) is the index of u in πi. Otherwise,
pos(u) is recursively computed as pos(u) = minv∈children(u) pos(v).

The permutation π1 is set to a random order of the leaves in
Gt1 . The recursive computation of the permutation πi for i ≥ 2
given πi−1 is shown in Algorithm 2. The function compute-
Order(u) computes a permutation for all leaves in G|ti(u).
So, πi is computed by applying the function to the root of G|ti .
The auxiliary lists pred_positions(u) (predecessor-positions)
store a list of values pos(v) for each temporal edge going from
some v in G|ti−1 to a node in the subtree G|ti(u). These lists are
used to determine the order between children of u. The function
computeOrder(u) recursively computes such a permutation as
follows. If u is a leaf, then the permutation consists of the single
leaf u. Otherwise, for each child v of u the order πv is computed
recursively. These are then concatenated by ascending order of the
average value in pred_positions(v). That is, if v1,v2, . . . ,vp are the
children of u sorted by the average value in their corresponding
pred_positions lists, then the computed order is the concatenation
of πv1 ,πv2 , . . . ,πvp in this order. Lastly, the function compute-
Order also computes the values pred_positions(u) by adding all
values pred_positions(v) for children v of u and adding values
pos(v) for temporal predecessors v of u. Temporal predecessors
are nodes v in G|ti−1 such that there exists a temporal edge (v,u).

Algorithm 1 is what we call a forward iteration. A backward it-
eration instead updates the orders πℓ−1,πℓ−2, . . . ,π1 in this order.
For example, when computing πi based on πi+1 we replace tempo-
ral predecessors of u by temporal successors of u in the above de-
scription. These are nodes v in G|ti+1 such that there exists a tempo-
ral edge (u,v). The complete barycenter heuristic consists of s ∈ N
sweeps; each sweep first does a forward iteration and then does a
backward iteration. Only the first forward iteration needs to initial-
ize the random order π1 in line 2, as π1 is already initialized in later
iterations. Later we discuss how the value s influences the results.

Median heuristic and implementation details. The barycenter
heuristic can very easily be transformed into the median heuris-
tic. We simply replace the average in line 9 of Algorithm 2 by
the median, i.e., we take median(pred_positions(v)) instead of
average(pred_positions(v)) to sort the children v of u. The com-
plete median heuristic is performed as above by doing s sweeps of
forward and backwards iterations. In our implementation we make
some optimizations to Algorithm 2. For the barycenter heuristic,
instead of storing pred_positions(u) as an array we only store the
sum and size of this list. The average is then easily computable. For
the median heuristic we store pred_positions(u) in a sorted multi-
set. In line 9 of Algorithm 2, initially the nodes u with non-empty
lists pred_positions(u) are sorted by average/median within their
respective lists. Next, the remaining nodes are sorted into this order
with comparisons between pairs of nodes – if at least one has an
empty pred_positions list – relying on the pre-established order πi
(during the first forward iteration, where πi is not yet known, they
are simply appended at the end).

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

8 of 12 A. Dobler & M. Nöllenburg / Improving Temporal Treemaps by Minimizing Crossings

Adaptation for leaf crossings. The above barycenter and median
heuristics are designed for minimizing crossings. A slight adapta-
tion can be used for minimizing leaf crossings: Instead of iterating
over ET in line 11, we only iterate over all leaf edges. This makes
sure that only the edges that can be involved in leaf crossings are
used to determine the computed permutations.

6. Experiments

We performed several experiments comparing the performance
of all our algorithms and the algorithms of Köpp and Weinkauf
[KW19] with respect to the number of (leaf) crossings and runtime.
We first present the setup, dataset, and then present the results.

6.1. Setup

Implementation. We implemented seven different algorithms, as
described in Section 5.2–Section 5.4. They are labelled as follows:

KW Heuristic+annealing algorithm by Köpp and Weinkauf. We
use the implementations by Köpp and Weinkauf working with
the aggregated variant of temporal trees.

ILP ILP formulation for crossings.
ILP-LE ILP formulation for leaf crossings.
BARY Barycenter heuristic for crossings.
BARY-LE Barycenter heuristic for leaf crossings.
MEDI Median heuristic for crossings.
MEDI-LE Median heuristic for leaf crossings.

The algorithm KW is a combination of the heuristic and simulated
annealing. First the heuristic is applied for twice as many itera-
tions as there are topology and hierarchy constraints. Then the sim-
ulated annealing algorithm takes the output of the heuristic as input
and is executed with initial temperature 5, 10 iterations per tem-
perature, temperature decay 0.9, and minimum temperature 10−5.
These choices give a good tradeoff between execution time of the
algorithm and its performance, as also determined by Köpp and
Weinkauf [KW19]. The number of sweeps for all the barycenter
and median heuristic variants was set to s = 10; we determined ex-
perimentally that this value produces good results. In fact, already
one sweep produced good results, and the average number of cross-
ings reduced by less than 5% when using ten sweeps instead of one.

All algorithms are implemented in C++17 and compiled with
g++ version 11.4.0 using the compile flags -Wall -Wextra -
O3. We make use of a data structure implementation for temporal
trees by Köpp and Weinkauf [KW19]. The integer linear program-
ming formulations were solved by the Gurobi solver [Gur23] with
version 10.0.0 using its C++ interface. All executions were per-
formed on a cluster of 48 nodes, each containing 2x AMD EPYC
7402, 2.80GHz 24-core processors running Ubuntu 18.04.6 LTS.
The memory limit was set to 8GB. As each individual execution
was limited to a single thread, the configuration is comparable to
the hardware of an ordinary user machine. The timeout of a single
execution of an algorithm for an instance was set to 10 minutes.

Test data. We have a set of hierarchy-compliant instances already
considered by Köpp and Weinkauf [KW19]. The Viscous Fingers
data set originally stemming from the IEEE visualization contest

IL
P

IL
P
-L

E

B
ar

y

B
ar

y-
LE

M
ed

i

M
ed

i-L
E

K
W

0

-2

-4

-6

-8

-10

lo
g

ra
ti

o

(a)

IL
P

IL
P
-L

E

B
ar

y

B
ar

y-
LE

M
ed

i

M
ed

i-L
E

K
W

0

-2

-4

-6

-8

lo
g

ra
ti

o

(b)

Figure 6: Boxplots of the logratios of (a) crossings (b) leaf cross-
ings for all algorithms. We consider all instances where (a) ILP
(b) ILP-LE neither times out nor runs into memory limit. The hor-
izontal lines of the boxes give the first quartile, median, and third
quartile from bottom to top. The whiskers show the minimum and
maximum value without outliers.

[GG16] consists of 919 nodes and 61 time steps, and represents a
process in fluid dynamics. The Cylinder data set describes vortex
activity in the wake of a square cylinder by means of the Okubo-
Weiss criterion [CBI∗05, vFWTS08]. It consists of 28904 nodes
and 508 time steps. Furthermore, we split the Cylinder dataset into
small instances by taking a range of time steps of the tree. Namely,
for each k ∈ {20,50,100,150,200,300}, we created instances tak-
ing the Cylinder dataset over the time step range [20 · i+1,20 · i+k]
for each integer i such that the range is a subset of [1,508]. Overall,
this results in a set of 114 benchmark instances of varying sizes.
We ran each algorithm on each of the 114 temporal trees once.

6.2. Results

Crossings. Here we consider the number of crossings obtained by
each algorithm. Algorithm ILP computes the optimum value. So,
for every other algorithm ALG we compute for each instance the
logratio log2((cropt + 1)/(crALG + 1)). Here, crALG is the number
of crossings obtained by ALG and cropt is the minimum number of
crossings obtained by ILP. The additive one is because we want to
avoid undefined values when one of cropt or crALG is zero. Higher
values of the logratio indicate better performance of the algorithm
and the logratio is never positive. A logratio of −k means that the
algorithm produces at least 2k as many crossings as the optimum.
If, e.g., k = −2 then there are 4 times as many crossings as in the
optimal solution. For all plots involving logratios we only consid-
ered instances where ILP neither timed out nor ran into a memory
limit (otherwise we do not know the optimum values).

Figure 6a depicts the logratios in a boxplot for each algorithm
over 69 instances. Note that the logratio of ILP is always the op-
timal value zero. It is interesting that even though ILP-LE is de-
signed to minimize leaf crossings, it performs very well w.r.t. cross-
ings, at least when compared to the other heuristic algorithms. Fur-
thermore, all variants of barycenter and median heuristics perform
very similar, the median heuristic variants performing a bit better.
Again, variants for leaf crossings perform very similar to its coun-
terparts designed for crossings. Lastly, the algorithm KW performs
worse than the remaining algorithms by a factor of at least two.

In Figure 7 we give a detailed comparison between the previous

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

A. Dobler & M. Nöllenburg / Improving Temporal Treemaps by Minimizing Crossings 9 of 12

0

-2

-4

-6

-8

-10

lo
g

ra
ti

o

0 cr. 1-10 cr. 11-209 cr.

KW

Medi

Figure 7: Comparison of the algorithms MEDI and KW w.r.t. to
the number of crossings. Each point corresponds to an instance and
an algorithm. The instances are ordered on the x-axis equidistant
by their optimum number of crossings. The lines correspond to a
running average of 5 points.

algorithm KW and one of our heuristics, MEDI. Due to their similar
performance this serves as a representative comparison to KW for
all our heuristics. The y-axis corresponds to the logratio obtained
by an algorithm. The instances are ordered along the x-axis by their
optimum number of crossings, ties are broken by going in increas-
ing order of the number of leaves. Ranges of the minimum number
of crossings are shown on the x-axis of the plot. Each dot corre-
sponds to an algorithm and an instance, the lines are running av-
erages of 5 points. MEDI consistently outperforms KW for nearly
all instances. Still, both algorithms are far from the optimum, even
when the optimum number of crossings is zero. Overall, the aver-
age logratio for KW is ≈ −4.1, while it is ≈ −3.1 for MEDI. So
MEDI produces on average less than 50% of the crossings of KW.

Leaf crossings. We continue with results for leaf crossings. We
use ILP-LE to compute optimum solutions and consider again the
logratio log2((lecropt + 1)/(lecrALG + 1)) where lecr refers to the
number of leaf crossings produced by an algorithm. For the same
reasons as before, we only consider instances where ILP-LE nei-
ther timed out nor ran into a memory limit.

Figure 6b shows a boxplot of these logratios for each algorithm
over 68 instances. Again, ILP performs well even though it is not
designed to minimize leaf crossings. The barycenter and median
heuristic variants perform better than KW. MEDI-LE is slightly
better than the other heuristic variants. In Figure 8, MEDI-LE and
KW are compared in detail. The instances are now sorted along
the x-axis by their optimum number of leaf crossings, ties are again
broken by the number of leaves in increasing order. The plot was
constructed the same way as Figure 7. MEDI-LE outperforms KW
in nearly all the considered instances. The average logratio for KW
is ≈−4.2, while it is ≈−2.7 for MEDI-LE. This means the num-
ber of leaf crossings are less by a factor of about 3 for MEDI-LE.

Computational Scalability. Lastly, we investigate how the algo-
rithms perform for larger instances. We measured the runtime in
milliseconds of each algorithm for each individual instance. Out
of the 114 instances ILP and ILP-LE exceeded the memory limit
twice each and produced 45 and 46 timeouts, respectively. The al-
gorithm KW had 24 timeouts, while our heuristics computed so-
lutions in under one second for every instance. Figure 9 shows a

0

-2

-4

-6

-8

-10

lo
g

ra
ti

o

0 lecr. 1-10 lecr. 11-142 lecr.

KW

Medi-LE

Figure 8: Comparison of the algorithms MEDI-LE and KW w.r.t.
to the number of leaf crossings. Each point corresponds to an in-
stance and an algorithm. The instances are ordered on the x-axis
equidistant by their optimum number of leaf crossings. The lines
correspond to a running average of 5 points.

103 104

nleaves

101

102

103

104

105

timeout

ru
n

ti
m

e
[m
s]

ILP

Bary

KW

Figure 9: Scatter plot of runtimes for selected algorithms. The lines
correspond to a running average of five non-timed out instances
and both axes are logarithmic.

scatter plot of runtimes by the total number of leaves in the tem-
poral tree instance. The runtimes of ILP-LE are very similar to
ILP, so we only show results for ILP. All our heuristic algorithms
are nearly equal w.r.t. runtime, so we only show results for BARY.
Timeouts are depicted on the topmost horizontal line. To spread out
the scattered points, the x- and y-axes are scaled logarithmically. It
is clearly visible that BARY is much faster than both other shown al-
gorithms, its runtime growing linearly with the number of leaves in
the instance. Even for over 10,000 leaves the runtime is still below
one second. The runtimes of ILP and KW follow a more chaotic
behavior. For ILP this is because it computes optimal solutions for
an NP-hard problem. It is quite surprising for KW, however, as we
would have expected the runtime to scale linearly with the number
of leaves. This could be because KW works with an aggregated
variant of the temporal tree whose size does not exactly correspond
to the number of leaves in the instance. If we consider the ratio be-
tween runtimes of KW and BARY, then the median is≈ 324 and the
average is ≈ 921. So despite both being heuristics, we observe that
BARY computes solutions with significantly fewer (leaf) crossings
by a factor of 2–3 on average and is at the same time significantly
faster by 2–3 orders of magnitude. Even though ILP always com-
putes optimal solutions, its runtimes are often comparable to KW.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

10 of 12 A. Dobler & M. Nöllenburg / Improving Temporal Treemaps by Minimizing Crossings

(a) ILP: 10 crossings, 7 leaf crossings, 332ms

(b) MEDI: 83 crossings, 58 leaf crossings, 20ms

(c) KW: 215 crossings, 109 leaf crossings, 59000ms

Figure 10: Combinatorial layouts computed for the Viscous Fin-
gers dataset by different algorithms shown as temporal treemaps.
Captions report number of crossings, leaf crossings, and runtime.
The input temporal tree has 939 nodes, 670 leaves, and depth 3.

7. Application Example

Finally, we show how the different numbers of crossings pro-
duced by the algorithms affect the actual representation as tempo-
ral treemap for a real-world data set. For this, we chose the Viscous
Fingers data set [GG16] that was used before to show temporal
treemaps [KW19] and removed the node weights to better recog-
nize crossings. We compare the combinatorial layout produced by
the algorithms ILP, KW, and MEDI in Figure 10. The layout com-
puted by KW has 20 times as many crossings as the ILP layout and
this is also clearly visible, e.g., in the regions with many crossings
encircled in red. Furthermore, ILP was able to compute the optimal
layout of this instance in only 332ms, which is almost 200 times
faster than the runtime of KW. MEDI computed the layout in only
20ms, and has half the crossings of KW but still 8 times more than
ILP. More examples are in the supplementary material [DN23].

8. Discussion and Limitations

We have defined two types of relevant crossings for temporal
tree visualizations and conjecture that minimizing each of them
leads to more readable temporal tree visualizations. We conjec-
ture that a significant reduction in the number of crossings as ob-
served for ILP in Section 7 also improves readability of the tem-

poral treemaps. But this will have to be verified by a separate user
study, which is beyond the scope of this paper. However, Köpp and
Weinkauf already argued strongly for minimizing crossings in their
paper [KW19] and empirical research in general graph drawing has
shown that crossing minimization is among the most influential as-
pects of improving graph readability [Pur97, WPCM02]. Finally, it
is interesting to expand the crossing minimization approaches to
other systems such as Splitstreams [BNRB21].

A restriction of temporal treemaps is that temporal edges can-
not connect nodes from different levels. It is yet open how to adapt
temporal treemaps for these cases. However, such temporal edges
can be simulated by letting the first node disappear and another ap-
pear. Our algorithms can be adapted for such edges; it is only the
visualizations that impose this restriction. Furthermore the visual
scalability of temporal treemaps is restricted by the number of per-
ceivable color shades which are assigned to the different levels.

It has yet to be determined which variant of crossings is more ef-
fective, crossings or leaf crossings. Again, user studies comparing
both need to be conducted. However, since we provide algorithms
for both variants, the appropriate one is ready once it is known
which variant performs better. It also makes sense to study a combi-
nation of both: crossings “overcount” crossings such as in Figure 3;
leaf crossings might “undercount” the crossings in Figure 3 as by
the definition of leaf crossing it is equivalent to only two leaf edges
crossing each other in a temporal tree of depth one. Hence, there is
a trade-off between both and a combination might be of interest.

Our heuristics compute better solutions than previous heuristics
from the literature and are much faster. However, solutions still
have significantly more crossings than the optimal solutions com-
puted by the ILP approaches. Further improvements of our heuris-
tics can be studied, or one could try to adapt alternative algorithms
for layered graph drawing to temporal trees, for example the sifting
technique [MSM99]. In fact, our ILP algorithms were able to com-
pute optimal solutions within 10 minutes for all temporal trees with
up to 500 leaves in our test data set, corresponding to medium-size
real world data, and are thus the recommended choice for optimiz-
ing the layout of such trees. In interaction settings, or where an
efficient ILP solver is not available, or in instances with more than
500 leaves our heuristics are to be preferred.

Lastly, we have performed experiments for a relatively small set
of established real-world instances, one of which was split into a
larger set of instances. A larger set of instances would have been
desirable, however, real-world temporal tree data are not as abun-
dant as other types of graphs and we use a superset of the instances
used by Köpp and Weinkauf [KW19]. Such instances have to con-
tain sufficient changes in the tree over time to lead to crossings.

Acknowledgement

This work is supported by the Vienna Science and Technology
Fund (WWTF) [10.47379/ICT19035]. The authors acknowledge
TU Wien Bibliothek for financial support through its Open Access
Funding Programme.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

A. Dobler & M. Nöllenburg / Improving Temporal Treemaps by Minimizing Crossings 11 of 12

References
[ALB∗15] ANGELINI P., LOZZO G. D., BATTISTA G. D., FRATI F.,

ROSELLI V.: The importance of being proper: (in clustered-level pla-
narity and T-level planarity). Theor. Comput. Sci. 571 (2015), 1–9.
doi:10.1016/j.tcs.2014.12.019. 3

[AMST23] AIGNER W., MIKSCH S., SCHUMANN H., TOMINSKI C.:
Visualization of Time-Oriented Data, 2nd ed. Springer, 2023. 2

[BBDW17] BECK F., BURCH M., DIEHL S., WEISKOPF D.: A taxon-
omy and survey of dynamic graph visualization. Comput. Graph. Forum
36, 1 (2017), 133–159. doi:10.1111/CGF.12791. 1, 3

[BBLW14] BURCH M., BLASCHECK T., LOUKA C., WEISKOPF D.: Vi-
sualizing hierarchy changes by dynamic indented plots. In Proc. IEEE
Symposium on Information Visualization (InfoVis’14) (2014), Laramee
R. S., Kerren A., Braz J., (Eds.), SciTePress, pp. 91–98. doi:10.
5220/0004652400910098. 3

[BBR∗16] BEHRISCH M., BACH B., RICHE N. H., SCHRECK T.,
FEKETE J.: Matrix reordering methods for table and network visualiza-
tion. Comput. Graph. Forum 35, 3 (2016), 693–716. doi:10.1111/
CGF.12935. 3

[BD05] BALZER M., DEUSSEN O.: Voronoi treemaps. In Proc. IEEE
Symposium on Information Visualization (InfoVis’05) (2005), Stasko
J. T., Ward M. O., (Eds.), IEEE Computer Society, pp. 49–56. doi:
10.1109/INFVIS.2005.1532128. 2

[BH16] BARTOLOMEO M. D., HU Y.: There is more to streamgraphs
than movies: Better aesthetics via ordering and lassoing. Comput. Graph.
Forum 35, 3 (2016), 341–350. doi:10.1111/CGF.12910. 2

[BHvW00] BRULS M., HUIZING K., VAN WIJK J. J.: Squarified
treemaps. In Proc. Symposium on Visualization (VisSym’2000) (2000),
de Leeuw W. C., van Liere R., (Eds.), Eurographics Association, pp. 33–
42. doi:10.1007/978-3-7091-6783-0_4. 2

[BLC12] BAUR D., LEE B., CARPENDALE S.: Touchwave: kinetic
multi-touch manipulation for hierarchical stacked graphs. In Proc. In-
teractive Tabletops and Surfaces (ITS’12) (2012), Shaer O., Shen C.,
Morris M. R., Horn M. S., (Eds.), ACM, pp. 255–264. doi:10.1145/
2396636.2396675. 2

[BNRB21] BOLTE F., NOURANI M., RAGAN E. D., BRUCKNER S.:
Splitstreams: A visual metaphor for evolving hierarchies. IEEE Trans.
Vis. Comput. Graph. 27, 8 (2021), 3571–3584. doi:10.1109/TVCG.
2020.2973564. 3, 10

[BW08] BYRON L., WATTENBERG M.: Stacked graphs - geometry &
aesthetics. IEEE Trans. Vis. Comput. Graph. 14, 6 (2008), 1245–1252.
doi:10.1109/TVCG.2008.166. 2

[BWB∗14] BECK F., WISZNIEWSKY F., BURCH M., DIEHL S.,
WEISKOPF D.: Asymmetric visual hierarchy comparison with nested
icicle plots. In Proc. Workshop on Euler Diagrams and Graph Visu-
alization in Practice (2014), Burton J., Stapleton G., Klein K., (Eds.),
vol. 1244 of CEUR Workshop Proceedings, CEUR-WS.org, pp. 53–
62. URL: https://ceur-ws.org/Vol-1244/GViP-paper3.
pdf. 3

[CBI∗05] CAMARRI S., BUFFONI M., IOLLO A., SALVETTI M. V.,
ET AL.: Simulation of the three-dimensional flow around a square cylin-
der between parallel walls at moderate reynolds numbers. In XVII Con-
gresso AIMeTA di Meccanica Teorica e Applicata, Volume II (2005),
vol. 1, Firenze University Press, pp. 23–34. 8

[CSWP18] CUENCA E., SALLABERRY A., WANG F. Y., PONCELET P.:
Multistream: A multiresolution streamgraph approach to explore hier-
archical time series. IEEE Trans. Vis. Comput. Graph. 24, 12 (2018),
3160–3173. doi:10.1109/TVCG.2018.2796591. 2

[dBOS13] DE BERG M., ONAK K., SIDIROPOULOS A.: Fat polygonal
partitions with applications to visualization and embeddings. J. Comput.
Geom. 4, 1 (2013), 212–239. doi:10.20382/JOCG.V4I1A9. 2

[DN23] DOBLER A., NÖLLENBURG M.: OSF: Improving temporal
treemaps by minimizing crossings, 2023. doi:10.17605/OSF.IO/
WZBM9. 2, 5, 10

[EW94] EADES P., WORMALD N. C.: Edge crossings in drawings of
bipartite graphs. Algorithmica 11, 4 (1994), 379–403. doi:10.1007/
BF01187020. 3, 7

[GG16] GEVECI B., GARTH C.: IEEEVIS: Scientific visualization con-
test, 2016. URL: http://www.uni-kl.de/sciviscontest/.
8, 10

[GJ83] GAREY M. R., JOHNSON D. S.: Crossing number is NP-
complete. SIAM J. Algebraic Discret. Methods 4, 3 (1983), 312–316.
5

[GJLM16] GRONEMANN M., JÜNGER M., LIERS F., MAMBELLI F.:
Crossing minimization in storyline visualization. In Proc. Graph Draw-
ing and Network Visualization (GD’16) (2016), Hu Y., Nöllenburg M.,
(Eds.), vol. 9801 of Lecture Notes in Computer Science, Springer,
pp. 367–381. doi:10.1007/978-3-319-50106-2_29. 3, 6

[GJR85] GRÖTSCHEL M., JÜNGER M., REINELT G.: Facets of the lin-
ear ordering polytope. Math. Program. 33, 1 (1985), 43–60. doi:
10.1007/BF01582010. 6

[GK10] GRAHAM M., KENNEDY J. B.: A survey of multiple tree visu-
alisation. Inf. Vis. 9, 4 (2010), 235–252. doi:10.1057/IVS.2009.
29. 3

[GLAK23] GRAY K., LI M., AHMED R., KOBOUROV S.: Visualiz-
ing evolving trees. In Proc. Graph Drawing and Network Visualiza-
tion (GD’22) (2023), Angelini P., von Hanxleden R., (Eds.), vol. 13764
of Lecture Notes in Computer Science, Springer, pp. 319–335. doi:
10.1007/978-3-031-22203-0_23. 1, 2

[GPPS13] GÓMEZ J. A. G., PACK M. L., PLAISANT C., SHNEIDER-
MAN B.: Visualizing change over time using dynamic hierarchies: Treev-
ersity2 and the stemview. IEEE Trans. Vis. Comput. Graph. 19, 12
(2013), 2566–2575. doi:10.1109/TVCG.2013.231. 3

[GSWD18] GÖRTLER J., SCHULZ C., WEISKOPF D., DEUSSEN O.:
Bubble treemaps for uncertainty visualization. IEEE Trans. Vis. Com-
put. Graph. 24, 1 (2018), 719–728. doi:10.1109/TVCG.2017.
2743959. 2

[Gur23] GUROBI OPTIMIZATION, LLC: Gurobi Optimizer Reference
Manual, 2023. URL: https://www.gurobi.com. 8

[HHWN02] HAVRE S., HETZLER E. G., WHITNEY P., NOWELL L. T.:
Themeriver: Visualizing thematic changes in large document collections.
IEEE Trans. Vis. Comput. Graph. 8, 1 (2002), 9–20. doi:10.1109/
2945.981848. 2

[HN14] HEALY P., NIKOLOV N. S.: Hierarchical drawing algorithms.
In Handbook of Graph Drawing and Visualization, Tamassia R., (Ed.).
CRC Press, 2014, ch. 13, pp. 409–454. 3

[HTMD14] HAHN S., TRÜMPER J., MORITZ D., DÖLLNER J.: Visu-
alization of varying hierarchies by stable layout of voronoi treemaps.
In Proc. International Conference on Information Visualization The-
ory and Applications (IVAPP’2014) (2014), Laramee R. S., Ker-
ren A., Braz J., (Eds.), SciTePress, pp. 50–58. doi:10.5220/
0004686200500058. 2

[JLM98] JÜNGER M., LEIPERT S., MUTZEL P.: Level planarity test-
ing in linear time. In Proc. Graph Drawing and Network Visual-
ization (GD’98) (1998), Whitesides S., (Ed.), vol. 1547 of Lecture
Notes in Computer Science, Springer, pp. 224–237. doi:10.1007/
3-540-37623-2_17. 3

[JS91] JOHNSON B., SHNEIDERMAN B.: Tree maps: A space-filling ap-
proach to the visualization of hierarchical information structures. In
Proc. IEEE Visualization Conference (IEEE Vis’91) (1991), Nielson
G. M., Rosenblum L. J., (Eds.), IEEE Computer Society Press, pp. 284–
291. doi:10.1109/VISUAL.1991.175815. 2

[KNP∗15] KOSTITSYNA I., NÖLLENBURG M., POLISHCHUK V.,
SCHULZ A., STRASH D.: On minimizing crossings in storyline vi-
sualizations. In Proc. Graph Drawing and Network Visualization
(GD’15) (2015), Giacomo E. D., Lubiw A., (Eds.), vol. 9411 of Lecture
Notes in Computer Science, Springer, pp. 192–198. doi:10.1007/
978-3-319-27261-0_16. 3

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.1016/j.tcs.2014.12.019
https://doi.org/10.1111/CGF.12791
https://doi.org/10.5220/0004652400910098
https://doi.org/10.5220/0004652400910098
https://doi.org/10.1111/CGF.12935
https://doi.org/10.1111/CGF.12935
https://doi.org/10.1109/INFVIS.2005.1532128
https://doi.org/10.1109/INFVIS.2005.1532128
https://doi.org/10.1111/CGF.12910
https://doi.org/10.1007/978-3-7091-6783-0_4
https://doi.org/10.1145/2396636.2396675
https://doi.org/10.1145/2396636.2396675
https://doi.org/10.1109/TVCG.2020.2973564
https://doi.org/10.1109/TVCG.2020.2973564
https://doi.org/10.1109/TVCG.2008.166
https://ceur-ws.org/Vol-1244/GViP-paper3.pdf
https://ceur-ws.org/Vol-1244/GViP-paper3.pdf
https://doi.org/10.1109/TVCG.2018.2796591
https://doi.org/10.20382/JOCG.V4I1A9
https://doi.org/10.17605/OSF.IO/WZBM9
https://doi.org/10.17605/OSF.IO/WZBM9
https://doi.org/10.1007/BF01187020
https://doi.org/10.1007/BF01187020
http://www.uni-kl.de/sciviscontest/
https://doi.org/10.1007/978-3-319-50106-2_29
https://doi.org/10.1007/BF01582010
https://doi.org/10.1007/BF01582010
https://doi.org/10.1057/IVS.2009.29
https://doi.org/10.1057/IVS.2009.29
https://doi.org/10.1007/978-3-031-22203-0_23
https://doi.org/10.1007/978-3-031-22203-0_23
https://doi.org/10.1109/TVCG.2013.231
https://doi.org/10.1109/TVCG.2017.2743959
https://doi.org/10.1109/TVCG.2017.2743959
https://www.gurobi.com
https://doi.org/10.1109/2945.981848
https://doi.org/10.1109/2945.981848
https://doi.org/10.5220/0004686200500058
https://doi.org/10.5220/0004686200500058
https://doi.org/10.1007/3-540-37623-2_17
https://doi.org/10.1007/3-540-37623-2_17
https://doi.org/10.1109/VISUAL.1991.175815
https://doi.org/10.1007/978-3-319-27261-0_16
https://doi.org/10.1007/978-3-319-27261-0_16

12 of 12 A. Dobler & M. Nöllenburg / Improving Temporal Treemaps by Minimizing Crossings

[KW19] KÖPP W., WEINKAUF T.: Temporal treemaps: Static visualiza-
tion of evolving trees. IEEE Trans. Vis. Comput. Graph. 25, 1 (2019),
534–543. doi:10.1109/TVCG.2018.2865265. 1, 2, 3, 4, 5, 6, 8,
10

[LWM∗17] LUKASCZYK J., WEBER G. H., MACIEJEWSKI R., GARTH
C., LEITTE H.: Nested tracking graphs. Comput. Graph. Forum 36, 3
(2017), 12–22. doi:10.1111/cgf.13164. 1, 2, 3

[LZD∗20] LI G., ZHANG Y., DONG Y., LIANG J., ZHANG J., WANG
J., MCGUFFIN M. J., YUAN X.: BarcodeTree: Scalable comparison
of multiple hierarchies. IEEE Trans. Vis. Comput. Graph. 26, 1 (2020),
1022–1032. doi:10.1109/TVCG.2019.2934535. 3

[MSM99] MATUSZEWSKI C., SCHÖNFELD R., MOLITOR P.: Using sift-
ing for k-layer straightline crossing minimization. In Proc. Graph Draw-
ing and Network Visualization (GD’99) (1999), Kratochvíl J., (Ed.),
vol. 1731 of Lecture Notes in Computer Science, Springer, pp. 217–224.
doi:10.1007/3-540-46648-7_22. 10

[Mun09] MUNROE R.: Movie Narrative Charts, Nov. 2009. URL:
https://xkcd.com/657/. 3

[Pur97] PURCHASE H. C.: Which aesthetic has the greatest effect on
human understanding? In Proc. Graph Drawing and Network Visu-
alization (GD’97) (1997), Battista G. D., (Ed.), vol. 1353 of Lecture
Notes in Computer Science, Springer, pp. 248–261. doi:10.1007/
3-540-63938-1_67. 2, 10

[Sch11] SCHULZ H.-J.: Treevis.net: A tree visualization reference. IEEE
Computer Graphics and Applications 31, 6 (2011), 11–15. doi:10.
1109/MCG.2011.103. 1, 2

[SFL10] SUD A., FISHER D., LEE H.: Fast dynamic voronoi treemaps.
In Proc. Symposium on Voronoi Diagrams in Science and Engineering
(ISVD’2010) (2010), Mostafavi M. A., (Ed.), IEEE Computer Society,
pp. 85–94. doi:10.1109/ISVD.2010.16. 2

[Shn92] SHNEIDERMAN B.: Tree visualization with tree-maps: 2-d
space-filling approach. ACM Trans. Graph. 11, 1 (1992), 92–99. doi:
10.1145/102377.115768. 1, 2

[SSV18] SONDAG M., SPECKMANN B., VERBEEK K.: Stable treemaps
via local moves. IEEE Trans. Vis. Comput. Graph. 24, 1 (2018), 729–
738. doi:10.1109/TVCG.2017.2745140. 2

[STT81] SUGIYAMA K., TAGAWA S., TODA M.: Methods for visual
understanding of hierarchical system structures. IEEE Trans. Syst.
Man Cybern. 11, 2 (1981), 109–125. doi:10.1109/TSMC.1981.
4308636. 3, 7

[SW01] SHNEIDERMAN B., WATTENBERG M.: Ordered treemap lay-
outs. In Proc. IEEE Symposium on Information Visualization (Info-
Vis’01) (2001), Andrews K., Roth S. F., Wong P. C., (Eds.), IEEE Com-
puter Society, pp. 73–78. doi:10.1109/INFVIS.2001.963283.
2

[TA08] TELEA A. C., AUBER D.: Code flows: Visualizing structural
evolution of source code. Comput. Graph. Forum 27, 3 (2008), 831–
838. doi:10.1111/J.1467-8659.2008.01214.X. 3

[TC13] TAK S., COCKBURN A.: Enhanced spatial stability with hilbert
and moore treemaps. IEEE Trans. Vis. Comput. Graph. 19, 1 (2013),
141–148. doi:10.1109/TVCG.2012.108. 2

[vDFF∗17] VAN DIJK T. C., FINK M., FISCHER N., LIPP F., MARK-
FELDER P., RAVSKY A., SURI S., WOLFF A.: Block crossings in sto-
ryline visualizations. J. Graph Algorithms Appl. 21, 5 (2017), 873–913.
doi:10.7155/JGAA.00443. 3

[vDLMW17] VAN DIJK T. C., LIPP F., MARKFELDER P., WOLFF A.:
Computing storyline visualizations with few block crossings. In Proc.
Graph Drawing and Network Visualization (GD’17) (2017), Frati F., Ma
K., (Eds.), vol. 10692 of Lecture Notes in Computer Science, Springer,
pp. 365–378. doi:10.1007/978-3-319-73915-1_29. 3

[vFWTS08] VON FUNCK W., WEINKAUF T., THEISEL H., SEIDEL H.:
Smoke surfaces: An interactive flow visualization technique inspired by
real-world flow experiments. IEEE Trans. Vis. Comput. Graph. 14, 6
(2008), 1396–1403. doi:10.1109/TVCG.2008.163. 8

[vHH17] VAN HEES R., HAGE J.: Stable and predictable voronoi
treemaps for software quality monitoring. Inf. Softw. Technol. 87 (2017),
242–258. doi:10.1016/J.INFSOF.2016.10.003. 2

[VSC∗20] VERNIER E. F., SONDAG M., COMBA J. L. D., SPECK-
MANN B., TELEA A. C., VERBEEK K.: Quantitative comparison of
time-dependent treemaps. Comput. Graph. Forum 39, 3 (2020), 393–
404. doi:10.1111/CGF.13989. 2

[vWvdW99] VAN WIJK J. J., VAN DE WETERING H.: Cushion treemaps:
Visualization of hierarchical information. In Proc. IEEE Symposium on
Information Visualization (InfoVis’99) (1999), IEEE Computer Society,
pp. 73–78. doi:10.1109/INFVIS.1999.801860. 2

[WK06] WATTENBERG M., KRISS J.: Designing for social data analysis.
IEEE Trans. Vis. Comput. Graph. 12, 4 (2006), 549–557. doi:10.
1109/TVCG.2006.65. 2

[WPCM02] WARE C., PURCHASE H. C., COLPOYS L., MCGILL M.:
Cognitive measurements of graph aesthetics. Inf. Vis. 1, 2 (2002), 103–
110. doi:10.1057/PALGRAVE.IVS.9500013. 2, 10

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.1109/TVCG.2018.2865265
https://doi.org/10.1111/cgf.13164
https://doi.org/10.1109/TVCG.2019.2934535
https://doi.org/10.1007/3-540-46648-7_22
https://xkcd.com/657/
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1109/MCG.2011.103
https://doi.org/10.1109/MCG.2011.103
https://doi.org/10.1109/ISVD.2010.16
https://doi.org/10.1145/102377.115768
https://doi.org/10.1145/102377.115768
https://doi.org/10.1109/TVCG.2017.2745140
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1109/INFVIS.2001.963283
https://doi.org/10.1111/J.1467-8659.2008.01214.X
https://doi.org/10.1109/TVCG.2012.108
https://doi.org/10.7155/JGAA.00443
https://doi.org/10.1007/978-3-319-73915-1_29
https://doi.org/10.1109/TVCG.2008.163
https://doi.org/10.1016/J.INFSOF.2016.10.003
https://doi.org/10.1111/CGF.13989
https://doi.org/10.1109/INFVIS.1999.801860
https://doi.org/10.1109/TVCG.2006.65
https://doi.org/10.1109/TVCG.2006.65
https://doi.org/10.1057/PALGRAVE.IVS.9500013

