
Eurographics Conference on Visualization (EuroVis) 2024
W. Aigner, D. Archambault, and R. Bujack
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 43 (2024), Number 3

CUPID: Contextual Understanding of Prompt-conditioned Image
Distributions

Y. Zhao ; M. Li and M. Berger

Vanderbilt University, USA

Abstract
We present CUPID: a visualization method for the contextual understanding of prompt-conditioned image distributions. CUPID
targets the visual analysis of distributions produced by modern text-to-image generative models, wherein a user can specify a
scene via natural language, and the model generates a set of images, each intended to satisfy the user’s description. CUPID
is designed to help understand the resulting distribution, using contextual cues to facilitate analysis: objects mentioned in the
prompt, novel, synthesized objects not explicitly mentioned, and their potential relationships. Central to CUPID is a novel
method for visualizing high-dimensional distributions, wherein contextualized embeddings of objects, those found within im-
ages, are mapped to a low-dimensional space via density-based embeddings. We show how such embeddings allows one to
discover salient styles of objects within a distribution, as well as identify anomalous, or rare, object styles. Moreover, we in-
troduce conditional density embeddings, whereby conditioning on a given object allows one to compare object dependencies
within the distribution. We employ CUPID for analyzing image distributions produced by large-scale diffusion models, where
our experimental results offer insights on language misunderstanding from such models and biases in object composition, while
also providing an interface for discovery of typical, or rare, synthesized scenes.

CCS Concepts
• Human-centered computing → Visualization techniques; Visual analytics; Visualization theory, concepts and paradigms;

1. Introduction

Generative AI is becoming commonplace in today’s society [Jo23],
due in large part to advancements made in generative mod-
els [SCS∗22], and the availability of large-scale datasets [SBV∗22]
on which to train models. Yet a key reason why generative AI is
useful to people is that modern generative models are typically
conditional in nature. A conditional generative model synthesizes
novel data instances, conditioned on data supplied by a user. Often
such conditioning takes the form of text prompts, e.g. for a text-
to-image generative model [RBL∗21], a user typically specifies a
natural language description of a scene. The model then conditions
on the text prompt in synthesizing a novel image that, ideally, ac-
curately represents the scene envisioned by the user. The ability to
condition on natural language gives users a fluid way to interface
with generative models, allowing for these models to be purposed
for a variety of creative tasks [EHoHC∗23]. For instance, the user
might want to produce a single image that meets precise criteria,
in contrast with more open-ended pursuits where the user does not
know exactly what they want, and thus generative models serve as
a source of inspiration.

Independent of downstream task, there remain numerous chal-
lenges in deploying text-to-image models for creative purposes.
Specifically, conditioned on a user’s prompt, the image gener-

ated by the model might differ from what the user has in mind;
this has motivated the development of prompt engineering meth-
ods [ZYLL22, BWS∗23]. Moreover, the user may wish to have
more fine-grained control on parameters of the generation pro-
cess, e.g. specifying the importance of objects mentioned in the
prompt [CAV∗23], the locations of objects [XZL∗23], or object
appearance [EJP∗24]. Yet once a prompt has been settled on for
image generation, and parameters of the generation process fixed,
a text-to-image model does not output just a single image. Rather,
these models provide samples drawn from a prompt-conditioned
distribution of images, consisting of all possible images that adhere
to the user’s input(s), subject to being within the training data dis-
tribution. Thus downstream tasks that involve some form of search
must contend with this distribution, e.g. finding an image satisfy-
ing certain criteria, or browsing the distribution to discover general
themes and variations of the prompt description.

We argue that a better understanding of the distribution can help
facilitate the completion of such tasks. To this end, we introduce
CUPID: a visualization method for the contextual understanding of
prompt-conditioned distributions. CUPID aims to support the un-
derstanding of images synthesized by modern text-to-image gen-
erative models. We assume that a user’s text prompt describes a
scene, comprised of a collection of objects that are intended to ap-
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pear across generated images. The primary goal of CUPID is to
help users understand the objects that populate the image distribu-
tion – these can be objects specified by the user, or left unspecified,
but nevertheless synthesized by the model. Since the images, and
objects therein, are samples drawn from a distribution, we wish to
depict the underlying density of objects. A representation of den-
sity allows one to understand what is typical, or rare, in a particular
object, e.g. the variety in appearance, texture, and style. Moreover,
density representations enable a better understanding of object re-
lationships, e.g. dependencies between objects that are indicative
of a potential bias of the model. CUPID leverages object-specific
feature representations [LLC∗21], thus allowing us to move beyond
image-level language representations [RKH∗21], obtaining a finer-
grained representation of objects for analysis.

At the heart of CUPID is a method for visually representing
the density of objects. We introduce density-based embeddings: a
method for producing low-dimensional embeddings that, when vi-
sualized, faithfully represents a provided measure of density that
has been assigned to the objects. Given some arbitrary density esti-
mate, for instance the kernel density estimation (KDE) [Par62] of a
collection of high-dimensional points, we propose an optimization
procedure that ensures the KDE of the low-dimensional embedding
is close to that of the provided density estimate. In turn, a position-
based visual encoding of the resulting embedding properly reflects
the KDE, e.g. a group of points that are in close proximity corre-
sponds to a region of high density from the original estimate.

A key feature of our embedding method is its generality: we
do not make assumptions on how the provided density estimate is
computed. Thus, we can depict the density for a single object, al-
lowing the user to distinguish an object by (1) different styles, and
(2) the likelihood of these styles, e.g. typical vs. rare. But just as im-
portantly, we can compute the joint probability distribution between
objects, and derive density estimates. Specifically, we can compute
the marginal density of an object, marginalizing over all instances
of another object – this allows us to compare the density of a single
object from marginals computed over different objects. Moreover,
we can form conditional densities – conditioned on an object in a
single image, we derive the density for a separate object over all im-
ages. The joint distribution also allows us to compute a measure of
dependence between different objects via pointwise mutual infor-
mation (PMI). Taken together, these quantities help contextualize
the analysis: we can study the distribution of a particular type of
object within the context of another object, e.g. observing a change
in the density, and why such a change might occur.

CUPID utilizes density-based embeddings within a visual inter-
face for analyzing samples from an image distribution, please see
Fig. 1 Objects are organized by those mentioned in the prompt,
shown as visual representations of density (left), and objects un-
specified, shown on the bottom. For a prompt object, we encode
its marginal density-based 2D embedding as a scatterplot, where
we marginalize over each of the unspecified objects, shown as a
row of scatterplots. Linked brushing of a set of objects (A) helps
convey the overall distribution across all objects from the provided
prompt (record, chair, couch) (B), while for more detailed analysis,
selecting a given image of the brushed object (C) enables one to
study object relationships. Specifically, selecting a green carpet in

“An open living room consisting of a green couch, a blue rocking chair, a 
collection of vinyl records, a stereo system, and floor-to-ceiling window”

Figure 1: CUPID aims to support users in understanding im-
age distributions produced by generative models. For the given
prompt describing the scene (top), one may brush 1D density em-
beddings of objects unspecified in the prompt, e.g. carpet (A), re-
sulting in linked updates to the remaining views, e.g. 1D densities
for specified objects (B). By selecting an image corresponding to
the brushed object (C), we can show more detailed information on
object relationships (D), here highlighting dependencies that exist
between the selected carpet object, and all couches in the distribu-
tion.

an image results in an update to the 2D density embeddings over
all prompt objects (D). In particular, we visually encode the PMI
between each object, and the selected object (green carpet), to re-
veal dependencies across objects, e.g. PMI with large magnitude
indicates dependence. As one usage of our interface (c.f. Fig. 1),
we find that a certain style of one object can preclude that same
style applied to another object, where the green color specified for
couches is instead applied to carpets.

We summarize the contributions of our work:

• We introduce a technique for computing density-based embed-
dings. This provides a visual representation of density for objects
that exist within a distribution of images.

• Our technique supports arbitrary density estimates. Thus we can
convey the density of individual objects, as well as density esti-
mates derived from the joint distribution of objects, allowing for
analysis of object relationships.

• The embeddings underlie a visualization design for helping un-
derstand the image distribution produced by a text-to-image gen-
erative model. We demonstrate the utility of our interface in
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studying object composition, scene perspective, and spatial re-
lationships between objects.

2. Related work

Our work spans several areas in visualization and HCI: using gener-
ative models to create images, analyzing such models, methods for
exploring images, as well as high-dimensional data analysis meth-
ods. We discuss each in turn.

2.1. Human-AI co-creation of images

The rise of text-to-image generative models [RBL∗21, RDN∗22,
SCS∗22] has sparked numerous interface designs [SCK∗23,
BWS∗23, FWW∗23, SCM∗23] to help humans co-create with
generative models – even for the creation of visualiza-
tions [SDBEA∗23, WCA23]. Some designs focus on editing a sin-
gle image at a time [ZRA23, CA23] using methods that either con-
trol the sampling process of a diffusion model, or explicitly train a
new diffusion model for a target mode of interaction. Other designs
are more exploratory, and study different ways of querying for im-
ages [SCK∗23], exploring the overall design space that might be
offered by a generative model [SCM∗23], as well as visual inter-
faces for exploring a collection of prompts in the pursuit of find-
ing a desired image [BWS∗23, FWW∗23]. In particular, Promp-
tify [BWS∗23] and PromptMagician [FWW∗23] are closely re-
lated to our work, in enabling users to fluidly explore images pro-
duced by text-to-image models. However, such methods use either
(1) image-level features, or (2) text-to-image alignment scores, e.g.
CLIP [RKH∗21]. Our work goes beyond image-level representa-
tions, and instead relies on object-level representations to offer a
more detailed view on the distribution of images produced by a
generative model. In this sense, we view CUPID as complemen-
tary to these works, along with other like-minded methods that rely
on navigating a large collection of images.

Another important distinction in our work is the study of a sin-
gle prompt-conditioned image distribution. The incentive to ex-
plore multiple prompts is due to the unpredictability of text-to-
image generative models, given a prompt describing a scene. Prior
work [ZPWHY23] has studied how prompting, more broadly for
generative models, can be challenging to adequately perform. Thus,
numerous methods for prompt engineering [PIL∗23,HCDW22] ex-
ist to translate a user’s intent to a prompt suitable for conditioning
on a generative model. On the other hand, often, prompts are not
intended to be highly precise descriptions that yield a single unique
image. And so understanding what a single prompt-conditioned
distribution has to offer can complement methods that further seek
to refine a prompt for model alignment.

2.2. Analyzing text-to-image generative models

Beyond the use of CUPID for search or discovery tasks, our in-
terface is also suitable to help verify whether the image distribu-
tion is faithful to the provided prompt. This process of verification
is related to existing work that focuses on analyzing the capabil-
ities of text-to-image generative models. In particular, numerous

methods have demonstrated that text-to-image diffusion models of-
ten misunderstand the intent behind a user’s prompt, e.g. to syn-
thesize and compose objects [PGBY23, OLDT23], adhere to spa-
tial reasoning [GPN∗22], and reason about relationships amongst
objects [CU22]. To a certain extent, it is possible to use existing
models in measuring the adherence of a synthesized image to a
given prompt [YBC∗23, KRMA23] , and there is evidence that the
learned representations of vision-language models carry meaning-
ful semantics [GCV∗21]). Nevertheless, vision-language reasoning
still remains challenging [MHG∗23], while such existing bench-
marks usually report coarse summaries on alignment [MHG∗23] or
composition abilities [PGBY23]. In contrast, CUPID offers an in-
teractive means of studying potential failure modes, or biases, that
might exist in an image distribution, without relying on predefined
textual probes to discover such issues. In particular, certain features
of objects can be difficult to describe with language to begin with,
e.g. the type of shape of an object, and thus our use of object-based
feature representations [LLC∗21] permits a more fine-grained anal-
ysis of image distributions.

2.3. Exploring image distributions

The visualization community has extensively studied methods for
exploring collections of images, and visual data more broadly –
please see [AGH∗23] for a survey. Closely related to CUPID are
methods for leveraging both images and text for exploring image
collections [GWM∗15, XCZ∗18]. However, these methods utilize
image-level features, and thus for more complex scenes they might
fail to capture the diversity of objects, and their properties. Nu-
merous techniques exist for more flexibly exploring images, e.g.
PhotoMesa [Bed01] for more expressive zoom, as well as methods
that target specific kinds of analysis in exploration, e.g. interac-
tively refining a recommendation system [ZWVW20], or the study
of image datasets as they pertain to training machine learning mod-
els [BHA∗23]. These methods can offer a deeper analysis on image
collections; nevertheless, our method is distinct from prior works in
supporting exploration at the object-level, rather than focusing on
image-level exploration.

2.4. High-dimensional visual analysis

A central problem in our work is how to explore samples drawn
from a high-dimensional probability distribution, and in partic-
ular, different perspectives of the distribution, realized as high-
dimensional feature vectors that correspond to specific objects. In
many visual analytics systems, a combination of dimensionality re-
duction (DR) and clustering is often used [WCR∗17, XHL∗22] to
support potential patterns in the data (e.g. tight cluster, or intra-
cluster similarity). In our scenario, as data are drawn from a prob-
ability distribution, our analysis is driven by estimating, and vi-
sualizing, the density [vdWB17, BIW19] of objects in individual
scenes (images). In this setting, we make fewer assumptions about
our data compared to clustering [TWB06], while still prioritizing
the density estimates we compute when deriving a low-dimensional
embedding of objects, akin to DR methods. In particular, DR tech-
niques have considered how to utilize similar forms of side in-
formation, e.g. contrastive DR [FKM19] or class-constrained t-
SNE [MvdEPV23]. In particular, our approach is closely related to
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“A child’s bedroom with cozy sheets, fluffy purple 
pillows,  plush toys, a ceiling fan, and a window 
through which sunlight illuminates the room.”

Figure 2: Our analysis of prompt-conditioned image distributions
is organized around (1) objects that appear in the distribution,
whether specified in the prompt or not, and (2) the properties of
objects, specified or unspecified. Ideally, generated images are con-
sistent with the prompt (A), while still exhibiting diversity charac-
teristic of the scene (D). Issues that arise can be due to language
misunderstanding, whether omitting a specified object’s property
(C), or biasing the properties of an unspecified object (B).

Meng et al., but rather than consider class probabilities in deriving
embeddings, we use a more general form of information – density
estimates – and a method for ensuring that the low-dimensional
embedding preserves density. This is in contrast with the more
traditional use of density estimation, as applied to a 2D projec-
tion [PLVDM∗16], to better emphasize clusters inferred by a DR
method.

3. CUPID objectives and data

In this section we discuss our problem setting and the objectives of
CUPID, and provide details on the data that we collect for visual-
ization.

We are primarily interested in studying what is produced by gen-
erative text-to-image models. In particular, CUPID is motivated by
modern text-to-image diffusion models [RBL∗21] that are trained
on large-scale image-captioned datasets, e.g. of the order of billions
of images [SBV∗22]. A text-to-image diffusion model is a con-
ditional probability distribution over images, where for some text
prompt denoted c, a diffusion model provides a means of draw-
ing images from a conditional distribution: x ∼ pθ(x|c), where x
is an image, and θ denotes model parameters. Samples are drawn
from this distribution by using a deep UNet-based convolutional
network [RBL∗21] to transform a presented noise image into a
realistic-looking image. Thus, a sampling of noise images – each
often associated with an integer used to seed a pseudo-random
number generator – gives rise to samples from the conditional dis-
tribution. Assuming the model is of sufficiently high capacity, the

prompt-conditioned distribution pθ(x|c) will assign high density to
images that are (1) faithfully described by the prompt c, and (2)
representative of the training data distribution [KSPH21].

To structure our analysis, we make a few assumptions on the
types of prompts that are provided, and what we expect to see in
the resulting distribution. We assume the prompt c corresponds to
some arbitrary scene, e.g. an outdoor environment or an indoor set-
ting such as a bedroom. We organize a scene along two axes: the
objects within a scene, and the properties of objects, e.g. this could
be their appearance, size, pose, texture, etc.. Moreover, the objects
within a scene either correspond to objects specified in the prompt,
or unspecified objects not mentioned in the prompt, but neverthe-
less synthesized by the generative model. Likewise, the properties
of an object may, or may not, be consistent with how the object
is described in the prompt. Last, unspecified objects might have
arbitrary properties, or alternatively take on properties that are de-
scribed in the prompt, but made in reference to other objects. We
summarize these scenarios in Fig. 2.

Given the uncertainty in what a generative model will produce
when provided a prompt, CUPID targets two types of analyses: ver-
ification, and discovery.

• Verification: at a basic level, is the generative model producing
images that are consistent with the given prompt? A user might
wish to verify the distribution’s faithfulness to the prompt’s ob-
jects, along with their properties (c.f. Fig. 2(A)). A mismatch can
occur when an object only appears in a subset of images. More-
over, when an object does appear, its properties may differ from
what was specified (c.f. Fig. 2(C)).

• Discovery: for objects whose properties are vague, or left un-
stated, a user may want to understand what properties are syn-
thesized by the generative model, e.g. what did the model de-
cide on, in the absence of the user deciding on object proper-
ties. Moreover, the model can generate unspecified objects (c.f.
Fig. 2(D)). Ideally these objects are characteristic of the scene,
and their properties are not biased by the properties specified in
the prompt (c.f. Fig. 2(B)).

To support these analyses, CUPID seeks to obtain a deeper un-
derstanding of the distribution pθ(x|c), moving beyond just the
density of an image, and instead, estimating the density of an ob-
ject within an image. Object-based density can help verify what is
typical or rare in the properties of an object. Moreover, the joint
distribution over multiple objects can help us understand depen-
dencies between objects. This can be used to better understand how
objects compose with one another, allowing for a more fine-grained
organization of object properties, while also indicating potential bi-
ases in the composition of a scene. The notion of a “property” of
an object, however, may not be easily expressed in language, and
thus for density estimation, CUPID leverages object-level feature
representations extracted in images.

In detail, CUPID uses the text-to-image diffusion model of
SDXL [PEL∗23], which produces images of resolution 1024 ×
1024. We use this model to ensure synthesized objects in images
are of sufficient resolution. Given a prompt, we generate a collec-
tion of images from SDXL xn ∼ p(x|c) for a total of N images,
where n ∈ [1, . . . ,N]. From this set of images, our aim is to find all
possible objects that have been synthesized by the model, across
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Image Distribution Ceiling fan features
Bedside lamp features

p( ) high marginal density

p( ) high marginal density

p( ), low joint density

Figure 3: Density estimation enables us to quantify what is typical,
and what is rare, within a given image distribution. For instance,
ceiling fan objects whose lights are turned on can have similar fea-
ture representations, and thus report high density. In contrast, ceil-
ing fans and lamps whose lights are both turned on will report a
low joint density, thus reflecting a rare object relationship.

all images. To do so, we use RAM [ZHM∗23], or the recognize
anything model, for open-vocabulary object recognition. Provided
an arbitrary set of object labels, for a given image, RAM predicts
a set of labels that correspond to objects that exist in the scene.
The labels are post-processed, in order to distinguish objects in the
prompt from those unspecified, while labels that carry similar se-
mantics are merged, in order to obtain a more concise label set –
we defer these details to supplementary.

The mere presence of an object within an image, however, is
insufficient for us in understanding the specific properties that
can object takes on. To address this, we derive an object-based
representation for every object recognized in an image, building
on the RAM model. Specifically, RAM uses multi-headed cross-
attention [VSP∗17] between spatially-referenced image features
and a label’s text features when predicting whether a given label is
present in an image. We use this cross-attention as a way to local-
ize where in the image an object has been recognized. Given that
the cross-attention used by RAM is relatively lightweight – only
2 layers, with 4 attention heads – we find that averaging the last
layer’s cross-attention maps, over all attention heads, gives an ef-
fective way to localize an object. Specifically, we find the position
in the image feature map whose averaged cross-attention is largest,
and associate the labeled object with this location. We then take the
visual feature at this location [LLC∗21] – what is provided as input
to cross-attention – as the object-based representation.

In summary, for each image xn, we assume a set of objects Sn
has been detected via RAM, and we associate each object s ∈ Sn
with a feature vector denoted zn,s. The full collection of objects
is provided via S =

⋃N
n=1Sn, which we distinguish between (1)

objects specified in the prompt, and (2) objects unspecified. Impor-
tantly, an object is not represented by language alone, but rather,
through feature representations of a pretrained vision transformer
model [LLC∗21].

4. Density-based embeddings

In this section we describe the methods used that underlie CUPID’s
visualization. As the mathematical object under study is a (condi-

tional) probability distribution, our aim is to estimate the density
of samples that have been drawn from this distribution, and subse-
quently, visualize the density estimate.

4.1. Object-based density estimation

Numerous likelihood-based models exist for either ex-
actly [PNR∗21] or approximately [KW13] reporting the density of
high-dimensional data, yet such methods are aimed at generaliza-
tion. In contrast, we are only concerned with a collection of images
that have been generated by a diffusion model, and obtaining
density estimates restricted to the provided set. To this end, we
propose to use nonparametric density estimation methods [Par62],
applied to individual objects synthesized by a generative model.
Specifically, we use KDE to obtain an unnormalized probability
distribution over objects via:

P̃d(zi,s) = ∑
n∈Os

k
(∥zi,s − zn,s∥2

h

)
, (1)

where s ∈ S represents an object, i ∈ [1, . . . ,N] indexes an image
from the distribution, and Os is the set of images where object s was
detected. The function k is the kernel, with associated bandwidth h.
Intuitively, h controls for the distance at which a pair of vectors
zi,s and zn,s are considered similar. We take k to be an exponential
kernel, e.g. k(z) = exp[−z] for input z > 0.

We can further extend density estimation of single objects, to
multiple objects, through forming a joint distribution. This is useful
for modeling object relationships. In particular, we define the joint
KDE to be:

P̃d(zi,s,z j,t) = ∑
n∈Os∩Ot

k
(∥zi,s − zn,s∥2

h

)
· k
(∥z j,t − zn,t∥2

h

)
, (2)

where s, t ∈ S correspond to distinct objects, while i and j index
over images. Within the sum, we only report a high count for image
n shared by the objects (Os ∩Ot ) if, both, object s for image i is
close to the corresponding object in image n, and object t for image
j is close to its corresponding object in image n.

From the unnormalized distributions, we may easily normalize
each, through dividing by their sum of values. This gives us prob-
ability distributions over individual objects Pd(zi,s) and joint prob-
ability distributions over pairs of objects Pd(zi,s,z j,t). The unnor-
malized distributions, however, have the interpretation of perform-
ing “soft” counts over images, e.g. for P̃d(zi,s) this would be the
number of times an object s with representation zi,s occurs in the
distribution. This enables us to compare the various properties of
an object through their density estimates: objects that have typ-
ical properties (e.g. common appearance, texture) will give high
counts, while objects that are rare in the distribution will report low
counts. Fig. 3 highlights the scenario in which we are considering
the joint probability distribution Pd(zi,s,z j,t). Here, marginals will
be reported as high probability for the lamps, and ceiling fans, in
both having lights turned on, relative to the full image distribution.
However, jointly, objects with such properties rarely co-occur, and
thus their joint distribution will report a low probability.

© 2024 The Authors.
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4.2. Density-preserving low-dimensional object embeddings

Given a probability distribution that characterizes an object indexed
by s, denoted Pd(zi,s), we would like to visualize the distribution.
The main purpose is to convey the modes of the distribution, e.g.
what is typical, and what is rare. Though visually conveying a
density-based clustering [TWB06] is one such option, it is not clear
if well-delineated clusters exist in the distribution to begin with.
Dimensionality reduction (DR) would be a less-restrictive way to
show the data, but might not accurately capture the density we have
computed. Instead, we propose a method that strikes a balance be-
tween clustering and DR: we aim to derive a low-dimensional em-
bedding for each image associated with an object, such that the
(normalized) KDE of the low-dimensional embedding matches the
provided density estimate.

To this end, we aim to find an embedding denoted Xs ∈R|Os|×D

for object s, and embedding dimensionality D ∈ {1,2}. To do so,
we minimize the KL divergence between normalized density esti-
mates:

min
Xs

DKL(Pd ∥ Qd) = min
Xs

∑
n∈Os

Pd(zn,s) log
Pd(zn,s)

Qd(xn,s)
, (3)

where Qd(xn,s) is the normalized version of the KDE, defined in
the same way as Eq. 1, replacing the object features with their low-
dimensional counterparts. We set h = 1 for Qd , as the bandwidth
merely fixes the scale of the embedding space.

An issue with minimizing Eq. 3 is that it can be undercon-
strained, e.g. there are many potential embedding configurations
that would lead to similar KDE-based probability distributions.
Thus, we combine this scheme with a neighbor embedding method,
namely tSNE [VdMH08], to ensure that local neighborhoods of
points in the high-dimensional space are preserved in the low-
dimensional space. Specifically, given a neighbor probability dis-
tribution over pairs of high-dimensional data points Pn, and a cor-
responding distribution governing the low-dimensional embedding
Qn, we solve for the following objective:

min
Xs

DKL(Pd ∥ Qd)+λDKL(Pn ∥ Qn), (4)

where λ balances the contributions of the objectives. We set λ= 0.1
for all experiments, thus giving priority to the density criterion.

One may ask whether tSNE alone is sufficient in preserving the
density of the original data. To test this, we compare our method
– what we term dSNE for brevity – to tSNE, with varying band-
width h ∈ {40,80}, as applied to “chair” features in the prompt-
conditioned distribution within Fig. 1. We show the results in Fig. 4,
where points are both colored, and sized, based on their (log) prob-
abilities of the target distribution Pd . As reported in the KL di-
vergence values (c.f. Eq. 3), and the clearer relationship between
point density in the scatterplots and the provided density values, our
method is able to faithfully capture the original density. In these ex-
amples, both tSNE and dSNE compute neighborhood bandwidths
based on a prescribed perplexity [VdMH08], which might give bias
towards factoring out local density variations. However, in fixing
the neighborhood bandwidths to a constant h for tSNE, namely the
same value used for KDE, we in fact found worse results, indicating
that neighbor embedding methods are inappropriate for capturing
density.

(a) tSNE: DKL(Pd ∥ Qd) = .18 (b) dSNE: DKL(Pd ∥ Qd) = .004

(c) tSNE: DKL(Pd ∥ Qd) = .07 (d) dSNE: DKL(Pd ∥ Qd) = .002

Figure 4: We compare our density-based embedding approach
(dSNE) to that of tSNE, where the provided density is both size and
color-encoded in the plots. Across varying bandwidths in the KDE
(h = 40 top row, h = 80 bottom row), our method obtains superior
results in density preservation.

A key feature of our embedding method is that it does not de-
pend on how the provided density estimate was computed. We only
assume a normalized probability distribution, defined over the in-
stances of an object, as input. This allows for flexibility in the types
of density estimates we can visually represent.

Individual object densities: this reflects the most straightfor-
ward scenario, namely the density Pd(zi,s) is the normalized KDE
of the object’s collection of feature vectors, in proportion to Eq. 1.
An embedding of this density provides a view exclusive to this ob-
ject, namely, a grouping of the object’s properties, and the likeli-
hood of a group appearing within the sampled distribution. Hence,
this form of density can help convey the more common properties
that an object takes on, as well as its more rare properties.

Marginalized object densities: the provided densities need not
be limited to individual objects. Instead, we can derive densities
based on the joint distribution of pairs of objects, in order to help
reveal object relationships. In particular, for an object indexed by s,
we can marginalize out all instances of another object, indexed by
t, giving us the following marginal densities:

Pd(zi,s; t) = ∑
n∈Os∩Ot

Pd(zi,s,zn,t), (5)

where the notation (; t) indicates a dependency on object t. The de-
piction of marginal densities is most useful when we wish to better
distinguish object properties, helping identify object properties that
are common when considering one object (t), but rare when con-
sidering a different object (t′). Namely, marginalizing out an object
indexed by t can reveal a high-density grouping in the resulting
embedding, but this very group might present low densities when
marginalizing over a different object t′.

© 2024 The Authors.
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(a) Visualization design overview. (b) Marginal density interaction. (c) Conditional density interaction.

Figure 5: An overview of the design for CUPID. (a) Density-based object embeddings are shown as violin plots for both prompt objects
and discovered objects, with object-marginalized density embeddings shown as 2D scatterplots. (b) Our interface supports linked brushing
to relate density representations, in this instance highlighting a rare Shih Tzu that has an angular limb deformity. (c) Further, the interface
allows for projection steering via conditioning on a selected image of a particular object, here for the paw feature of the chosen dog.

Conditional densities: rather than marginalizing over all in-
stances of an object, we can allow for the user to select an instance,
indexed by j, for a particular object, indexed by t. We may then
form a conditional density, conditioned on this particular object’s
instance:

Pd(zi,s|z j,t) =
P(zi,s,z j,t)

Pd(zi,s; t)
. (6)

This leads to a means of steering projections based on user-selected
objects. Intuitively, if we find the conditional density leads to an
embedding that does not differ too much from the marginal, then
this is an indication of independence between objects. Otherwise
this may indicate a level of dependence on the chosen object in-
stance, e.g. the density might be more spread out, or alternatively,
new regions of high density might form.

Aside from finding embeddings, we can also compute and com-
municate measures of (in-)dependence regarding objects. Specif-
ically, we may compute the pointwise mutual information (PMI)
between objects:

PMI(zi,s;z j,t) = logPd(zi,s,z j,t)− (logPd(zi,s)+ logPd(z j,t)).
(7)

If the PMI is zero, this suggests that the objects are independent
of one another. Otherwise, a PMI of high magnitude can elucidate
potential biases in how scenes are composed. Namely, a positive
PMI indicates two different kinds of objects that frequently co-
occur throughout the distribution. Conversely, negative PMI indi-
cates objects that rarely co-occur.

5. CUPID visualization design

We utilize the density-based visualization techniques as part of a
visualization design for exploring image distributions. The design
is motivated by (1) finding different properties of objects across
the distribution, for objects specified in the prompt as well as those
unspecified, or what we term discovered objects, and (2) finding
relationships between objects – please see Fig. 5 for an illustration.

Object density encodings: CUPID finds 1-dimensional density-
based embeddings for each object, in order to derive object-specific
positional encodings of scenes. We opt to use violin plots to show
the density, wherein a Gaussian KDE, with bandwidth h = 1 is per-
formed on the 1D embeddings, and the resulting density encoded as
width in an area mark. Importantly, this directly matches what we
optimize for in our density-based embeddings, and thus is a faithful
visual encoding of the density. We find these embeddings using the
1D probability distributions, rather than joint distributions, to give
a summary over all scenes. This process is performed individually
for objects that have been discovered by RAM – to distinguish from
prompt objects, we color the area marks green, and then horizon-
tally position the violin plots. The same process is performed for
prompt objects as well, wherein we vertically arrange the violin
plots, please see Fig. 5a.

Marginalized density encodings: for every combination of
prompt object and discovered object, we display a matrix of 2D
scatterplots, with each view depicting the marginalized density.
Specifically, rows correspond to objects mentioned in the prompt,
while columns correspond to discovered objects. A single view
in this matrix corresponds to a 2D density-based embedding of a
marginalized density, where marginalize out an unspecified object
(column) to obtain a marginal density over instances of a specified
object (row). Thus, each plot within a single row depicts instances
of a single object, but shown differently, dependent on the discov-
ered object. Such a design allows us to analyze how discovered
objects impact the objects that are specified by the user.

Interactive selection and linked highlighting: the 1D and 2D
density encodings are linked together through interactive brush-
ing. Specifically, a user can select a subset of scenes for a given
object either through brushing one of the violin plots, or brush-
ing one of the scatterplots. Consequently, we update all views to
display the subset, where for scatterplots we highlight the points
corresponding to the scenes. For the violin plots, we first derive
object-specific density estimates across all objects, limited to the

© 2024 The Authors.
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selected subset. We then encode these subset-restricted densities as
new violin plots, and superimpose them on top of their respective
objects. Moreover, we populate a scrollable image view with the
corresponding scenes, to allow an inspection of the user’s selec-
tion. Fig. 5b shows one example of such an interaction. In selecting
a dense cluster over a marginalized density embedding for “floor”,
we find Shih Tzu dogs sitting on pavement; the subset of scenes for
the “paws”-marginalized densities indicates an outlier, highlighting
a rare type of paw for a Shih Tzu.

Projection steering: CUPID further allows for a finer-grained
analysis of object relationships via the interactive steering of pro-
jections. Specifically, a user may opt to select a set of scenes for
a discovered object via the green violin plots, resulting in an up-
date to the image view. These images serve as a means of find-
ing potential dependencies between objects, via a mechanism for
conditioning. Namely, when hovering over an image that contains
the object, we show a point corresponding to the detection found
through RAM’s cross attention. That specific object, for a given
scene, is then used to derive a PMI score for every scene across
prompt objects. We then update the color encoding of the scatter-
plots – limited to the discovered object – by the PMI values. We use
a diverging color scale, in order to convey strong co-occurrence be-
tween objects (positive value, shown as red), and rare co-occurence
(negative value, shown as blue). If a user clicks on this image, we
form a conditional density for each prompt object, conditioning on
the selected instance of the discovered object. We then compute a
new 2D density-based embedding, for each of the object prompts,
using this conditional embedding as the target density. Fig. 5c high-
lights this method of steering, conditioning on a given instance of
the “paw” object in order to reproject the instances of “dog” – this
leads to a grouping of instances that better reflects the conditional
density.

6. Results

In this section we show the benefits of CUPID in analyzing a vari-
ety of prompt-conditioned image distributions. CUPID’s interface
is designed to explore a large collection of objects, whether speci-
fied or not; but due to limited display, the results presented here cor-
respond to a small set of objects found across images. We organize
our experiments based on the analysis modes discussed in Sec. 3,
e.g. verifying whether the distribution is faithful to the prompt and
avoiding biases, as well as a means of discovering scenes that exist
within a distribution. Due to space limitations we defer additional
results to supplementary material.

Experimental details: for all results in the paper we set the
bandwidth in KDE h = 40; we find the conclusions made in the
results are not sensitive to small variations in the bandwidth set-
ting. Furthermore, for tSNE, we set the perplexity to k = 7 for the
1D density embeddings, and k = 14 for the 2D density embed-
dings. Embeddings are optimized starting from a random initial-
ization of positions – as a result, in comparing 2D projections of a
single prompt object across all discovered objects, the scatterplots
are not necessarily in alignment. Nevertheless, we find that linked
highlighting helps address the lack of alignment between plots.

We use SDXL [PEL∗23] with its default parameters, and

A B C

A realistic photograph of a living room with a brown leather couch, a 
green chair, a collection of records and large windows, interior design, 
mid-century modern.

Figure 6: We show a basic use case of CUPID: exploring the den-
sity, restricted to a given object. We find that object instances of
highest density (A) happen to correspond to objects that are faith-
fully generated, both in existence (a couch) and appearance (brown
leather couch). By selecting a region of smaller density (B), we find
a couch still synthesized, yet its properties do not adhere to the
prompt, e.g. green color. Regions of low density (C) can either in-
dicate anomalous objects, or in this case outliers, e.g. no couch
present.

classifier-free guidance scale set to 5 to strike a balance between
prompt adherence and image quality. In all experiments, we draw
1,000 samples from a prompt-conditioned distribution for visual
analysis. For the studied prompts, we find that drawing more sam-
ples does not impact the results too much; however in general,
the number of samples necessary to ensure sufficient distribution
coverage is very likely prompt-dependent. From this sample size,
our interface maintains interactivity in (1) linked brushing, and (2)
image-conditioned PMI encoding. For projection steering, we find
that the optimization process takes around 2 seconds to converge
for a single prompt object, thus adding a small amount of latency
between projection updates.

6.1. Verification : faithfulness to objects and their properties

When exploring images synthesized by a text-to-image model, the
most basic questions one might have is: are the generated images
consistent with the given prompt? By exploring different modes in
the 1D density embeddings of an object in the prompt, users can
explore typical and rare images of the object, in order to see if the
object is consistently generated by the model, e.g. does the model
faithfully synthesize the object’s properties based on the prompt?
In Fig. 6 we show the ability of CUPID to support this basic kind
of analysis. Specifically, for this description of a living room, we
highlight 1D density-based selections for the “couch” object. We
find that for regions where the density is highest, the model synthe-
sizes couches that are consistent with the prompt, e.g. brown and
leather. For less dense regions, we find that a couch is still gener-
ated, but its properties are incorrect, e.g. its color is green. This can
be a disadvantage if the user were interested styles that are some-
what rare, relative to the primary mode, yet still consistent with
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"A bedroom with of a cozy bed, light-yellow pillows, curtains, a 
nightstand, a cloud-shape wall lamp, and pink bunny toys on bed."

A

B

Figure 7: Here we study the relationship between objects, both
specified and left unsaid, and their properties, both specified and
left unsaid, relative to the prompt (top). A. Objects with unspecified
properties are assigned with properties in reference to other objects
(left) or unspecified properties in the prompt (right) B. Unspecified
objects are assigned with arbitrary properties not specified in the
prompt.

the prompt. Last, for low-density regions, we find that our density-
based method conveys the absence of a couch.

6.2. Discovery: unspecified objects and properties

For discovery purposes, one may use CUPID to not merely report
objects mentioned, or unspecified, in the prompt, but also find dif-
ferent properties of those objects, using our density-based explo-
ration method. To demonstrate, in Fig. 7 we show an image distri-
bution corresponding to a prompt describing an indoor scene, e.g.
a cozy bedroom. We summarize two types of scenes discovered
by CUPID that contain unexpected objects or properties, given the
prompt. As shown in scenario (A), the images faithfully contain
“curtains” which are specified in the prompt, with unstated color.
However, they are assigned to (left) light-yellow color which is
made in reference to pillows in the prompt. This indicates a po-
tential bias of the model, using a specified color in the prompt, for
an unspecified object. On the other hand, on the right we find a blue
color is applied, e.g. an arbitrary color not mentioned in the prompt.
In scenario (B), the unspecified objects “carpet” and “mirror” are
both generated with their common characteristics unrelated to the
prompt, which introduces more diversity in the synthesized images,
without bias. By exploring these types of images on CUPID, users
can have a better understanding the properties that a model decides
on, in the absence of the user making these decisions.

“A photo of a fjord with lush foliage in Autumn, abundant sunshine, 
small house scattered on the periphery, and boats out on the water.”

Figure 8: We study object relationships in this distribution of out-
door scenes, wherein upon brushing trees estimated as low density,
we find images that contain trees in close view. By selecting an im-
age and showing the PMI between the prompt’s objects (right), we
find a potential bias in perspective: such trees that are close to the
camera are limited to scenes of wide-ranged views.

6.3. Discovery: scene composition

In this section we attempt to discover whether any potential biases
might exist in scene composition. We organize this by (1) scene
perspective, and (2) spatial relationships.

Scene perspective: in Fig. 8 we show an image distribution cor-
responding to a prompt describing an outdoor scene, effectively,
a fjord in autumn. The model faithfully synthesizes many prompt
objects, but also discovers objects not mentioned, e.g. trees, moun-
tains, a harbor. Here we aim to select rare types of trees, shown as a
highlighted green selection under the tree’s 1D density embedding,
where the area mark is indicating a small number of scenes. We
find images corresponding to trees that are in the foreground, e.g.
close to an envisioned camera that is taking the supposed photos.

By hovering over one of the images, CUPID then selects the par-
ticular tree in this scene to understand potential dependencies in the
prompt objects. Specifically, the PMI scores between this specific
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“A child’s bedroom with cozy sheets, fluffy purple pillows, plush toys, a ceiling 
fan, and a curved window through which sunlight is illuminating the room.”

Figure 9: For this distribution of bedroom scenes, we first select a
group of objects of teddy bears, finding these correspond to large-
sized toys (top). Selecting an image (top left), we see a set of win-
dow objects (red color) that contain a strong dependency with the
teddy bear. Selecting this group, we find a potential bias in spatial
relationships, e.g. teddy bears positioned against or near windows.

tree object, and all prompt objects, are computed, and visualized
as a color map in the left column. In turn, the projections are up-
dated based on the conditional distribution, to give a better group-
ing of objects that have similar dependencies (e.g. grouping objects
of similar co-occurrence with the tree object). In particular, for the
house object we see two salient groups of points, which reveal dif-
ferent types of perspective biases in the model. Specifically, house
objects that have negative PMI are shown to be at a far distance
from the camera; at the same times, these are scenes for which no
trees are close to the camera. Such an exclusion is not an intrinsic
property of the environment, rather, a potential bias learned by the
diffusion model based on training data.

Spatial relationships: Fig. 9 shows an image distribution cor-
responding to a prompt that describes a child’s bedroom. Through
specification of “toys” in the prompt, we find a more precise de-
scription synthesized by the model: “teddy”, or teddy bears. Upon
selecting a mode in the distribution for this object, we find that this
group of teddys are of large size (top). Through hovering one of
the images, shown in the top-left with the circle indicating the lo-
cation of detection, we then compute the PMI of all prompt objects,
relative to the teddy in this scene. We find a group of scenes cor-
responding to windows that indicate a strong co-occurrence, e.g.
a PMI value that is positive and large magnitude. Upon selecting
this group, we indeed find teddy bears that tend to be positioned up
against, or near, a window. This indicates a potential bias in spa-
tial relationship, e.g. without explicitly specifying where such big
teddy bears should be positioned, we would not necessarily expect
so many to appear against windows.

7. Discussion

We have shown how our method, CUPID, provides a way to
better understand the space of images produced by a text-to-
image generative model. Although we have highlighted the ben-
efits of CUPID, namely the exploration of objects through their
densities and discovery of object relationships, we acknowledge
several limitations with our method. The design of CUPID is
object-centric: we assume images consisting of objects that can
be named, and localized. As such, CUPID is not designed for ar-
bitrary prompts. For instance, organizing images along more ab-
stract qualities is not possible, ranging from scene aesthetics, en-
vironmental conditions (e.g. weather), and more broadly, image-
level rather than object-level features. We believe such limitations
can be addressed by using image-level representations, for instance
derived by CLIP [RKH∗21, GCV∗21], but this requires a differ-
ent strategy to derive a textual description. Moreover, the use of
RAM [ZHM∗23] places limits on what aspects of an object we can
represent. For instance, we cannot easily deploy object representa-
tions for a fine-grained understanding of human faces, which would
necessitate an adjective (e.g. types of emotion) rather than noun-
driven (e.g. anatomical features) approach. Last, detections found
via RAM are imperfect, with the primary issue being false positive
detections of objects. As we demonstrate (c.f. Fig. 6), these often
manifest as outliers in low-density regions. This inhibits us from
distinguishing anomalies from outliers, but not at the cost of cap-
turing common objects found in the distribution.

We see a number of promising research directions for future
work. First, we plan to integrate CUPID within existing interfaces
for human-AI co-creation [BWS∗23, FWW∗23]. Although the de-
sign of the CUPID interface is centered on images drawn from a
single prompt-conditioned distribution, our proposed density-based
embeddings are a more general approach for deriving visual rep-
resentations of object-based density. Such objects can be found
in images sampled from multiple distributions, spanning different
prompts and model parameters. Our methods for organizing, and
exploring, a distribution can easily extend to more elaborate use
cases, e.g. helping a user find a desired image amongst a larger im-
age set, generated under a collection of prompts [BWS∗23].

Additionally, we plan to extend CUPID for model interpretabil-
ity purposes. A natural question to consider is the following: what
are the similarities/differences between two conditional distribu-
tions? The object-centric approach taken by CUPID lends well to
this type of study. As an example, the distributions might be com-
prised of the same objects, but the images could vary based on
subtle differences in scene descriptions. We think that purposing
CUPID towards comparative visualization designs can help shed
light on how language differences manifest as differences between
image distributions, and consequently, point towards better guide-
lines on prompt design. Moreover, it is often necessary to set model
parameters that govern the adherence of generated images to the
prompt. Comparative parameter studies, e.g. comparing two distri-
butions that vary by the strength in guidance scale, can further be
investigated via the analysis proposed in CUPID. More broadly, we
believe the methods & design of CUPID have significant potential
for addressing, both, end users in image creation, and model inter-
pretability challenges.
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