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Figure 1: Concept-Aligned Neurons (CAN) compares models trained on different types of data. (A) Concept hierarchy view compares the
fraction of neurons in each model that is responsible for each concept word, where the concept is arranged in a hierarchy. We observed that
the [model trained on artificial objects| (e.g., tools, furniture), compared to [mm/cl trained on natural u/)_/m'l,\'], fires up concepts of natural
objects (e.g., animals, vegetables) much less frequently. The brushed region in the neuron scatter plot (top right, C) highlights the neurons
in both models that capture underwater objects in images. Focusing on “snorkel” in the concept hierarchy view (A), CAN indicates that the
model trained on artificial objects captures concepts such as diving, snorkel, and oxygen mask, whereas the model trained on natural objects
detects sea lives such as anemone fish, sea slug and flatworm (bottom right). c.f. Sec. 6.2

Abstract

We present concept-aligned neurons, or CAN, a visualization design for comparing deep neural networks. The goal of CAN is
to support users in understanding the similarities and differences between neural networks, with an emphasis on comparing
neuron functionality across different models. To make this comparison intuitive, CAN uses concept-based representations of
neurons to visually align models in an interpretable manner. A key feature of CAN is the hierarchical organization of concepts,
which permits users to relate sets of neurons at different levels of detail. CAN’s visualization is designed to help compare the
semantic coverage of neurons, as well as assess the distinctiveness, redundancy, and multi-semantic alignment of neurons or
groups of neurons, all at different concept granularity. We demonstrate the generality and effectiveness of CAN by comparing
models trained on different datasets, neural networks with different architectures, and models trained for different objectives,
e.g. adversarial robustness, and robustness to out-of-distribution data.
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1. Introduction

The growing accessibility of deep neural networks has led to an
ecosystem of pre-trained models optimized to solve a variety of
tasks. This provides users such as machine learning practitioners a
wide variety of models from which to choose, in order to address a
given downstream problem, e.g., classification or generation. How-
ever, such a large collection of models brings its own problem: for
a set of machine learning models designed to solve a specific task,
which one should the user choose, and why? As part of making this
decision, a user will inevitably have to compare models.

There are many ways to conduct comparison [ZWM* 18], and
perhaps the most prominent is to summarize a model’s perfor-
mance on a withheld test dataset [RAL*16]. Yet, many models in
areas such as computer vision [DK17] and natural language pro-
cessing [KBN*21] are already shown to be highly performant, with
only marginal differences between models when summarizing their
accuracy. Beyond high-level performance comparisons, one may
wish to compare models by their functionality, or the organiza-
tion of knowledge that underlies a model’s prediction. Ideally, a
model’s functionality corresponds well to a human’s reasoning for
inferential tasks [KWG™ 18], and thus functionality can be a strong
basis for model comparison. Often, model functionality in neural
networks is represented by the functionality of neurons [BZK* 17,
KNLH19], and it is common to measure what aspects of data that
neurons respond to [BZK*17] in order to associate neurons with
human-interpretable concepts. Summarizing the resulting attribu-
tions, however, gives only a surface-level comparison of model
functionality. On the other hand, seeking a more fine-grained com-
parison of models presents a scalability challenge. Namely, it is
difficult to posit a priori what concepts should be used to interpret
models, and thus recent work [HSB*21,0W22,BKN*23] leverages
multimodal vision-language models [RKH*21] to measure neuron
functionality using open-vocabulary concept sets. This process can
yield thousands of concepts, making it difficult to perform model
comparisons at varying concept granularity, e.g. from high-level
summaries, down to detailed concept-based analyses.

This work aims to address such challenges in comparing neural
networks via neuron functionality. We present CAN, or concept-
aligned neurons, a visualization design that aims to support users in
comparing modern deep neural networks, specifically computer vi-
sion models. CAN builds on prior works [OW22] that aim to inter-
pret neurons along human-interpretable concepts. However, rather
than treating concepts as a single unstructured set, CAN organizes
concepts in a hierarchical manner, by hypernyms [Mil95], thus pro-
viding a multi-level analysis of neuron functionality. Such a hier-
archy permits us to compare neural networks along two main axes:
(1) concept granularity, and (2) neuron level of detail. The visual-
ization design of CAN is informed by these axes, as summarized
in Fig. 1. We visually encode concept granularity horizontally in
our interface, allowing for comparisons of models at different lev-
els of detail, e.g., alignment of models along the concept of “dog”,
or subcategories of dogs. We depict the level of detail of a neu-
ron vertically, showing an aggregated, focus+context view of neu-
ron alignment with concepts (A), a finer-grained summary showing
concept-conditioned neuron distributions and neuron-conditioned
concept distributions (B), as well as a detailed view of individual

neurons (C). CAN further provides linked-and-coordinated views
to support comparing models along a subset of concepts, as well as
model comparisons based on a chosen subset of neurons.

By leveraging the proposed visualization design, we demonstrate
its usability in a number of comparison tasks of practical impor-
tance in computer vision. Specifically, we aim to answer the follow-
ing questions that often arise in ML research: 1) Do models trained
with different types of data learn similar visual representations? 2)
How do models of different architectures compare in terms of con-
cepts that are captured by neurons (e.g., ViT vs. CNN)? 3) How do
models trained with different objectives (e.g., adversarially trained)
compare in their semantic coverage of neurons? Lastly, by answer-
ing these questions originated from machine learning researchers,
we facilitate in-depth look at the practical usage of concept-level
model comparison and evaluate the efficacy of the tool by the ob-
tained insight and direct feedback from the experts. Through a se-
ries of case studies, we observed 1) functional difference between
neuron groups when comparing models trained on different im-
age domains, 2) sparsity difference in their neuron-representation
between different neural network architectures, 3) interpretability
difference when comparing models with and without adversarial
robustness. The key contributions of the proposed work are sum-
marized below:

e We introduce a novel perspective for model comparison through
the concepts captured by individual neurons;

e We introduce a scalable concept-centric visual analytic tool tt
for exploring the neuron semantics at different granularity;

e We demonstrate the effectiveness of the proposed method
through real-world ML research questions, revealing novel in-
sights and obtaining encouraging feedback from ML experts.

2. Related work

CAN draws from two main areas of research: (1) model inter-
pretability, and (2) model comparison. We discuss each in turn,
with approaches coming from the machine learning and visualiza-
tion communities.

2.1. Model interpretability

It is a common theory that deep neural networks, optimized to per-
form visual recognition, contain knowledge about the visual world
that is encoded within their learned representations [BJY*17], usu-
ally over a model’s set of neurons. To test this theory, prior works
often rely on human-annotated datasets of concepts, either at the
categorical level of an image [KWG™ 18] or object-based segmen-
tation masks [BZK™17], to test whether neurons are associated with
given concepts [BZK*17,FV18,BZS*18, MA20]. By aligning neu-
rons with concepts, one may assess how many unique concepts are
detected by a set of neurons, indicating the semantic coverage of
a model. This provides a means of comparing models in an inter-
pretable manner, e.g. as summarized over concept detection counts.

1 https://github.com/tigal23 1/can-concept-aligned-neurons
¥ https://observablehq.com/@tigal231/can-concept-aligned-neurons
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Probing neurons with human-annotated datasets, however, is of-
ten costly, as it requires extensive human effort to produce image-
level labels or detailed image segmentation masks. More recent
works [HSB*21, OW22, BKN*23] have sought to address this
burden by replacing human annotations with multimodal vision-
language models, e.g. CLIP [RKH*21]. Although such models can
sometimes be incorrect, these works nevertheless demonstrate ro-
bustness in aligning neurons with concepts that can originate from
an open vocabulary of concepts [MGS*22]. Such a zero-shot ap-
proach has the promise of scaling up model interpretability to, in
principle, an unbounded set of concepts, with the only human su-
pervision being (1) an unlabeled collection of images on which to
probe neurons, and (2) a specification of concepts. Yet the increase
in scale presents its own set of interpretability challenges: if we
wish to go beyond merely summarizing concept detection, then we
must analyze how hundreds-to-thousands of neurons relate to thou-
sands of concepts. It is this problem that we aim to address in CAN.

The visualization community has developed numerous ap-
proaches for analyzing the representations learned by neural net-
works. Often these methods are distinguished by whether they are
supervised, e.g. images with class labels/semantic segmentation
masks, or completely unsupervised. Unsupervised methods for in-
terpreting neurons often rely on projecting neurons and/or data in-
stances into a 2D embedding space, using either the raw neuron
activations [PHVG* 17, KAKC17] or by measuring the overlap be-
tween feature maps produced by CNNs [PDD*21]. By not relying
on supervision, these methods are quite general, but at the cost of
interpretability: understanding precisely why neurons are related
can be a challenge without a means of expressing neurons along
human-interpretable concepts.

In contrast, supervised methods for visually analyzing represen-
tations can more easily provide insight into why neurons are re-
lated to one another, e.g. as shown in Blocks [BJY*17] and Sum-
mit [HPRC19]. Other works leverage per-instance concept-based
explanations [GWZK19] to analyze model behavior across a col-
lection of images [HMKB22], while Zhao et al. [ZXSR21] employ
interactive visualization as a means of incrementally finding inter-
pretable concepts. Moreover, Hoque et al. [HHS*22] demonstrate
the use of discovered concepts to build customized classifiers with
minimal human effort. Our approach similarly takes a concept-
based approach for analyzing and comparing models, but does so
at a much larger scale than prior works, in that we aim to support
neuron interpretability with open vocabulary concept sets. We note
that our approach to leveraging external hierarchies bears similarity
to Bilal et al. [BJY*17], but we assume arbitrary concepts, rather
than relying on class labels used for the prediction task.

2.2. Model comparison

Comparisons of deep learning models have been explored both
in terms of model predictive performance (i.e., external behavior)
and their learned representations (i.e., internal behavior). The most
straightforward way to compare models is based on their perfor-
mance summary statistics, e.g., prediction accuracy. Despite be-
ing the de facto standard in the ML domain, however, the sum-
mary nature hinders a detailed understanding of their fine-grain
behavior. Visualization can provide powerful and interactive so-
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lutions to compare model predictions beyond summary statistics.
Squares [RAL*16] adopted a parallel coordinate-like visual en-
coding to capture class prediction score distribution of different
models and how they wrongly classify samples. More recently,
manifold [ZWM™* 18] presents a more scalable interface that facil-
itates the comparison of multiple models’ predictive performance
spontaneously across different slices of the data space. Similarly,
boxer [GBYH20] allows users to assess classifiers’ performance
by composing different views for specific subsets and data. Beyond
simple class labels, Neo [GHM*22] generalizes the confusion ma-
trix visual encoding for understanding the hierarchical and multi-
label output of classifiers.

Apart from performance-only comparison, substantial interests
have also focused on comparing model internal representations.
By looking beyond model performance one can shed light on why
models behave differently. Understanding and comparing feature
representation help us understand learning mechanisms, and enable
us to obtain a deeper understanding of model architecture. Some of
the most notable works from the ML community includes metric
for comparing feature space similarity, e.g., Central Kernel Align-
ment (CKA) [KNLH19], where a quantitative distance can be ob-
tained between high-dimensional feature space by evaluating them
on the same of input samples. By utilizing such metrics, we can
not only study similarities between different layers or how inter-
nal representations evolve during model training but also explore
the difference between learned representations of different archi-
tectures [RUK*21].

Despite their effectiveness, the global quantitative metric-based
approaches are likely ignoring many interesting or important local
variations, which is where visualization approaches shine. Several
recent works have been proposed to visually compare different fea-
ture representations in deep learning models. The Embedding com-
parator [BCS22] facilitates neighborhood and localized compari-
son by adopting a small multiple visual encoding for comparing
word embedding spaces. The embcomp [HKMG20] work, is tai-
lored for a more general vector space comparison task. By utilizing
a collection of metrics that summarized the different type relation-
ships between encoding and set algebra operations for selection,
the proposed method introduces a flexible novel visual encoding to
compare different aspects of embedding at various scales. Besides
directly comparing feature representation, another way to study
model differences is through peaking into the decision-making pro-
cess. The VAC-CNN [XZKM22] is proposed to utilize the saliency
map as the basis for comparing CNN models.

The proposed work is fundamentally different from all the pre-
viously discussed approaches from both ML and visualization do-
mains, as it approaches the comparison from a concept-centric per-
spective. It aims to provide a comparison of the model’s inter-
nal representation by exploring concepts of individual neurons and
their aggregation.

3. CAN Design Objectives

In this section, we describe the problem domain of interest, outline
the objectives of CAN, and identify the necessary tasks we need to
support in the visualization design to achieve these goals.
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Figure 2: CAN illustrated. CAN requires four ingredients: (1) a
probing image dataset, (2) a pair of neuron sets to compare (3)
a hierarchy of concepts, and (4) the association between neurons
and concepts. The arrows point to the interface layout where the
ingredients are used.

L)

Our work is focused on helping users conduct comparisons be-
tween models, specifically deep neural networks. We assume users
performing the comparison have a basic understanding of model
architectures, and specifically the layered representation of neu-
ral network models and the notion of neurons in each layers rep-
resenting visual features captured in the images. For each model,
we presume the user has selected a particular layer that they wish
to analyze. With the common understanding that the model cap-
tures low-level features in early layers and high-level concepts in
later layers [ZF14], we expect user choose the layer based on the
granularity of features they wish to compare. We assume that each
layer can be represented by its set of neurons, and thus, model
comparison amounts to the comparison of two sets of neurons.
Though it is possible to derive measures of similarity between
sets of neurons [KNLH19,RUK*21], such similarity measures lack
sufficient context to understand why a pair of neurons, or a pair
of neuron subsets, might be related, or different, from one an-
other. Therefore, methods that seek to align neurons with con-
cepts [OW22, BKN*23] can provide a way to help users reason
about why models are related, and ultimately, draw more mean-
ingful conclusions. In particular, methods that rely on multimodal
vision-language models [RKH*21] to conceive of concepts give,
in principle, an unbounded set of concepts with which to com-
pare models, thus ensuring sufficient coverage for contextualizing
model similarities/differences.

Nevertheless, the sheer size of the data presents challenges for
analysis. Specifically, the number of neurons under inspection can
be in the thousands [HZRS16]; likewise, the number of concepts
to use in understanding a model can also be in the order of thou-
sands. Thus, in designing a comparison-oriented visualization, it’s
essential to enable users to understand data at varying levels of de-
tail. By detail, we mean the granularity of concepts, as well as the
granularity at which we analyze neurons. Specific to tasks of com-
parison [Gle17], we wish to perform the following:

e (G1) Understand the alignment of a single neuron with just a
single concept.

e (G2) Discover subsets of neurons that are well aligned to a single
concept, suggestive of redundancy in knowledge learned by a
network.

e (G3) Discover individual neurons that are aligned with multiple
concepts, suggestive of multi-semantic neurons.
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Figure 3: CLIP-Dissect illustrated. CLIP-Dissect estimates
concept-neuron alignment by: (1) Given a list of concept words, the
CLIP model estimates likelihood of concept presence across an im-
age set. (2) Neuron activations is generated from passing images to
the model. Through these two sets of data, CLIP-dissect estimates
concept-neuron similarity based on estimations of mutual informa-
tion between concepts and neurons.

e (G4) Obtain a general understanding of how groups of neurons
relate to groups of concepts, and in particular, at different levels
of concept granularity.

To support these analysis goals, the design of CAN aims to ad-
dress the following tasks:

e (T1) Identify concepts associated with neurons, this can be a
many-to-one, or one-to-many relationship.

e (T2) Summarize neural network functionality through an aggre-
gate measure of concepts associated with neurons within a con-
cept hierarchy.

e (T3) Explore the relationship between neurons through their
concept-based descriptions.

4. Neuron-Concept Alignment

In this section, to fulfill T1, we describe the processing methods
used to acquire neuron-concept alignment data for CAN’s visual
analytic interface. The CAN visualization requires four main in-
gredients (Fig. 2 ) to be specified beforehand: (1) a set of images
with which to probe neurons, (2) a pair of models and the layers
that one aims to compare, (3) a hierarchy of concepts used for ex-
plaining/annotating neurons, and (4) the association between the
neurons and the concepts in the hierarchy, and the ways to enhance
the robustness of such estimation. We discuss each in turn.

4.1. Probing Dataset

A probing dataset serves the purpose of gathering neuron activa-
tions, and ultimately, forms the basis of concept-neuron alignment
scores. The dataset is a simple collection of images without any
additional data. If the intention is to probe a model for broad cover-
age of visual concepts, a probing dataset that faithfully represents
the visual world should be used. On the other hand, if the inten-
tion is to study certain types of data, e.g. of a particular scene,
certain types of objects, or images that are known to be out-of-
distribution [HMD18] or adversarial [UKE*20] to standard deep
networks, then the probing dataset should be created with the spe-
cific task in mind.

© 2024 The Authors.
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4.2. Neuron Sets

We start from a pair of models that one aims to compare, each
of which are deep neural network that is tasked to perform visual
recognition. We assume that a user selected a layer from each net-
work, one that is comprised of a set of neurons. Provided an image,
the layer forms 2D grids of activations as part of the model’s com-
putation, specifically, the learned representations necessary in mak-
ing a prediction. We use the maximum value over a neuron’s grid
of activations, following CLIP Dissect [OW22], as the representa-
tive value of a neuron. CAN does not make any further assump-
tions about the types of models for comparison, e.g., the neurons
between models need not be aligned in any way, the number of
neurons in each set can vary, and we do not make any assumptions
about the network architecture, e.g., CNN and ViT.

4.3. Concept Hierarchy

Using a large, unstructured concept set for downstream visual anal-
ysis can present problems in spotting salient patterns between neu-
rons and concepts. For instance, we expect related concepts, e.g.
similar dog breeds, to be associated with similar sets of neurons,
but without an organization of concepts that reflects this relation-
ship, we may never find such a pattern. To this end, we propose the
use of a concept hierarchy to better anchor one’s analysis. Specif-
ically, we map the provided set of concepts into WordNet [Mil95]
and build a hierarchy based on hypernym relations. Namely, for
each concept, we look to see if its hypernym corresponds to a con-
cept already provided in the set. If it does not, then we add this word
to the concept set, and continue traversing hypernym relations, un-
til we reach the root concept (‘entity’). Upon completion, we obtain
an augmented set of concepts, arranged in a hierarchy; we then run
CLIP-Dissect on this collection of concepts. See the supplemen-
tary material for details. Using a concept hierarchy enables us to
perform analysis at different levels of detail: nodes near the root of
the hierarchy correspond to abstract concepts, while nodes deep in
the hierarchy often refer to rather specific concepts. Moreover, con-
cepts will be naturally grouped by their semantics, e.g., dog breeds
will live in a particular subtree. This type of organization is useful
in spotting patterns at different levels of detail, e.g. whether a neu-
ron can capture an abstract visual concept, or identifying if a group
of neurons captures a semantically related group of concepts.

4.4. Associating Concepts with Neurons

Equipped with a set of neuron activations over a probing dataset,
the main processing method underlying CAN is the alignment of
neurons with a predefined set of concepts. The concept set is sim-
ply a list of objects, object properties, scenes, etc., in general, an
unbounded, open vocabulary of visual concepts identified by text
descriptions. CAN requires a way to compute an alignment score
between a given concept and a neuron. In principle, numerous
existing methods can be used for this purpose [HSB*21, OW22,
BKN*23]. We use the scoring mechanism of CLIP-Dissect in this
paper, wherein a variant of pointwise mutual information (PMI),
soft weighted pointwise mutual information (SoftWPMI) between
a concept and a neuron is computed. For a set of given concepts, a
collection of CLIP [RKH*21] scores are computed over the prob-
ing images. As a feature of CLIP, the cosine similarity between

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.
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Figure 4: Cases of concept and neuron coverage levels and their
implications. Together, levels of concept and neuron coverage enu-
merate four interesting neuron representational behaviors of a
model and help users in assessing models in comparative tasks.

the textual embedding of the concept words and the feature of the
images (see Fig. 3, top left) are computed. Next, to capture neu-
ron functionality on images, CLIP-Dissect records the activation
for all the probing images (Fig. 3, bottom left). Till this end we
gathered a pair of image-aligned matrices, one against all concept
words and one with all neuron activations, as depicted in the middle
of Fig. 3. Finally, by computing SoftWPMI between concepts and
neurons, CLIP-Dissect derives concept-neuron alignment scores
(Fig. 3, right), which serves as the data feed into CAN’s visual ana-
lytic interface. SoftWPMI aims to estimate the mutual information
between a concept and a neuron. A Soft WPMI value is positive and
large magnitude indicates a strong level of co-occurrence between
concept and neuron over the probing image dataset. The concept-
neuron alignment scores are used in deriving neuron similarities
in the neurons view, displaying neuron top concepts in the detail
view, and is further processed in estimating neuron and concept
coverages.

Estimating Neuron and Concept Coverage: As one of CAN’s
design objectives, we aim to facilitate users in identifying neurons
by their type of concept alignment (T1). Toward this purpose, we
estimate the neuron and concept coverage over a given layer of
a model. Intuitively, the neuron coverage of a concept counts the
number of neurons that detect a given concept. Conversely, the con-
cept coverage of a neuron counts the number of concepts that a
certain neuron detects. Concepts with a high neuron coverage are
captured by a large number of neurons in a model, indicating a cer-
tain level of neuron redundancy or multi-dimensionality; a concept
with low neuron coverage, on the other hand, indicates the concept
being sparsely covered by neurons.

As summarized in Fig. 4, (1) When a concept is uniquely de-
tected by a single neuron, giving low neuron coverage as well as
low concept coverage, there is a 1-1 correspondence between the
neuron and concept. When this is prevalent among neurons in a
model, the neurons sparsely represent concepts; (2) When a con-
cept is densely covered by multiple neurons, giving high neuron
coverage, the model requires multiple neurons to encode a concept.
For example, a generic concept can have finer, multidimensional
representations: instead of the concept of all dogs, the neurons rep-
resent individual breeds of dogs; (3) When multiple concepts fire
up the same neuron, the model contains multi-semantic neuron(s);
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(4) When a large group of neurons jointly captures the large group
of concepts, giving both high concept and high neuron coverage,
a compressed and possibly entangled neuron representation may
have transpired in the model.

One approach to derive a measure of neuron or concept cov-
erage involves applying a threshold to the neuron-concept align-
ment scoring function. For a given concept, we collect neurons
with alignment scores surpassing a threshold, then normalize the
retained neuron count by the total, yielding the fraction captur-
ing the concept in a neural network layer. The sensible thresh-
old is inspired by CLIP-Dissect [OW22]. Through a user study,
CLIP-Dissect found an interpretability cutoff value for the concept-
neuron alignment scoring function (SoftWPMI). Interpretability
cutoff value aims to filters out uninterpretable neurons. A neuron
is deemed uninterpretable if evaluators, on average, found virtually
none of the top 10 activated images correspond well to the top con-
cept assigned to the neuron. Their optimal threshold largely ensures
that, on average, more than 75% of the top-10 activated images for
a neuron that is well-explained by the top concept. In general, one
should likewise calibrate the threshold over multiple models and
match up the model’s predictive performance, which we consid-
ered out of scope in this work. We found the interpretability cutoff
point reasonable as the threshold for estimating neuron and concept
coverage. A higher threshold in general leads to a more conserva-
tive assessment of whether a neuron detects a concept. This results
in higher precision but lower recall when identifying neurons cap-
turing a specific concept. CAN incorporates an interactive slider for
adjusting this threshold. In practice, users can increase the thresh-
old if the captured concepts fail to explain highly activated images
and decrease it when no neurons explain any concept, contradict-
ing model’s high performance. In our case studies, we maintain
the threshold at the optimized interpretability cutoff (Soft WPMI >
0.16) determined by the user study in CLIP-Dissect.
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Figure 6: Features in the concept hierarchy view. Left: Clicking on
concepts in context view centers the concept. Right: When space

permits, the closest concept in context view is snapped to the focus,
giving a sample preview of the context out of focus.
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5. Design

In this section, we elucidate the visualization design of CAN. Fol-
lowing the goals/tasks analysis in Sec. 3, specifically T2, T3, our
visual design aims to help users:

e Explore a hierarchy of concepts captured by the models, and as-
sociate these concepts with their corresponding neuron groups;

e Identify similar and unique neuron(s) from two models and ex-
plain the similarity and uniqueness through the concepts they
capture.

To facilitate these explorations, the interface bifurcates into two
components, concept hierarchy view and neuron view, as illustrated
in Fig. 5. The bottom of the interface displays the concept and neu-
ron coverage, summarizing and comparing at each concept level the
semantic coverage of neurons in the two neural network models.

5.1. Concept Hierarchy View

In the concept hierarchy view (Fig. 6, right), we graphically repre-
sent the concept hierarchy as a tree structure (T2), with high-level
concepts positioned on the left and low-level concepts on the right.
From the concept view, the user can pan over the concept hierar-
chy and examine and compare the semantic coverage of neurons
between the two models. Under the concept names in the hierarchi-
cal structure, the view compares neuron coverage of concepts be-
tween the two models using bar plots. Examining neuron coverage
of concepts enables the users to discern and compare the semantic
coverage of model layers.

Due to the sheer size of the concept set, one is constrained from
observing the entirety of the concept hierarchy. Due to this con-
straint, we utilize a focus+context embedding of the tree structure.
The in-focus concepts are displayed as a tree in the center; out-
of-focus concepts are densely packed on the top and bottom con-
text view. The user can scroll through the concept around the focus
view, or click concepts in the top or bottom context view to jump
to the clicked concept (Fig. 6, left). To further facilitate a sense of
context, when space permits, the closest concepts on both context
views are snapped to the edge of the tree view in focus, giving a
preview of the hierarchy that is out of focus. (Fig. 6, right).

5.2. Neuron View

The neuron view compares neurons from two models. The goal
of the neuron view is to systematically discern commonalities and

© 2024 The Authors.
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distinctions in neurons between two models, elucidating both the
shared attributes and unique characteristics through the concepts
they capture. Specifically, the user would be able to explore neurons
via their concept-based descriptions (T3) and validate their findings
by tracing back to the images that highly activate the neurons.

As an overview for the comparison, we project neurons in a
two-dimensional space and plot them in a scatter plot (top right,
Fig. 5), with color encoding the model a neuron comes from. The
projection is given by UMAP [MHSG18] where between-neuron
distances are defined as the Euclidean distances in their concept
alliance scores. By design, neurons that detect a comparable set of
concepts are grouped in the projection scatter plot. In the context of
comparing models, users would seek to examine two distinct cases:

@®  As neurons with comparable functionalities are clus-

.. tered, the alignment of two models predominantly mani-

® fests as a composition of colored dots in the scatter plot.

". e . .

O Conversely, neurons furnishing distinct functionalities in

one model, while absent in the other, will coalesce into
a cluster of uniformly colored dots.

To facilitate an examination of these groupings and to validate
the inferred similarity among neurons as derived from the projec-
tion plot, the bottom of the neuron view comprises a details-on-
demand display of concepts captured by individual neurons in text,
as well as a small sample of images which elicit a high level of acti-
vation in each neuron (bottom right, Fig. 5). When a set of neurons
is brushed (step 3, Fig. 5) in the neuron projection plot, neurons in
the detail view are sorted according to the relevance to the concept
if a concept is clicked (step 1, Fig. 5) in the concept view.

5.3. Concept and Neuron Coverage View

Concept and neuron coverage views summarize the semantic cov-
erage of neurons and duplicity of neurons respectively. Recall that
the neuron coverage of a concept counts the number of neurons that
detect a certain given concept. Similarly, the concept coverage of a
neuron counts the number of concepts that the neuron detects. To-
gether, combinations of neuron and concept coverage cover four in-
teresting neuron representational scenarios in neural network mod-
els, as summarized in Fig. 4.

To compare models in terms of their semantic coverage of neu-
rons, we juxtapose vertically a histogram of neuron coverage over
all concepts and a histogram of concept coverage over all neurons
in the two models. As, in theory, concepts on a single level of gran-
ularity partition the space of all concepts in the visual world, the
concept coverage should be computed per level in the concept hi-
erarchy. Therefore, we plot a histogram for each level of concept
granularity. That is, the concept and neuron coverage plot on each
column is restricted to the set of concepts on that level.

When comparing the distribution of neuron coverage between
two models, the difference in the number of neurons between two
models can bias the judgment: a model layer with a larger number
of neurons is more likely to have functional redundancy or mul-
tidimensional representations. We define neuron coverage as the
proportion of neurons in a given layer, that detects a given concept,

© 2024 The Authors.
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giving a fraction of neurons ranging from O to 1. For a similar rea-
son, the concept coverage counts could be biased towards levels
which has more concepts in the hierarchy, therefore, we also nor-
malize the concept coverage counts by the number of concepts in a
concept hierarchy level.

5.4. Linked-and-coordinated Interactions Between Views

The layout of CAN aims to help users relate concepts to neurons.
Therefore, we implemented coordinated views where the left por-
tion is dedicated to exploring concepts and the right to exploring
neurons (c.f. Fig. 5). A typical workflow goes back and forth be-
tween identifying a concept of interest and looking up neurons that
capture it, and identifying neurons of interest and looking up the
concepts they capture. The concept hierarchy view and the neuron
view are linked and coordinated for this purpose. In a typical work-
flow, CAN supports interactions as numbered in Fig. 5:

1. Semantic difference is observed from the concept hierarchy;

2. Clicking on a concept resizes neuron marks in the neurons view
by the concept-neuron alliance scores of the clicked concept.
Neurons that are more aligned with the given concept are shown
as larger marks in the neuron plot;

3. Brushing over neurons of interest in the neuron view popu-
lates the neuron detail view with top concept words and high-
activating images for each neuron, where neurons are ranked by
alliance to the concept clicked in step 2;

4. Clicking on concept words in the neuron detail view re-centers
the concept hierarchy to the selected concept. This helps the user
contextualize the detected concept with other related concepts in
the hierarchy.

Note the interactions complete a loop between concept and neuron
exploration. A variant of the workflow starts from the exploration
of neurons view in step 3, where the user first identifies groups of
neurons of interest, either from the mixture or isolation of neurons
in the view or from simple exploratory browsing of neuron regions
(cf. Sec. 5.2), then looks up concepts in the hierarchy.

6. Case Studies

We demonstrate the effectiveness of CAN in four use cases in rela-
tionship to the ML questions raised at the end of the introduction.
First, as a sanity check, we compare different layers of the same
model, and we expect this example to showcase the tool’s capabil-
ity to capture the evolution of concepts in the neural network. Next,
we compare models trained on different data. We split images from
ImageNet into two sets based on the class labels and the word-
net hierarchy [Mil95], and trained two CNN models (ResNet-50)
[HZRS16] independently. One set contains 550 classes of artificial
objects (e.g., cooked food, and furniture), and the other contains
450 classes of natural objects (e.g., animals, plants, and fungi).
For this example, we speculate on how the training data affect the
model’s internal representation and the concepts they capture. After
that, we compare models with different architectures. Specifically,
we compare a pre-trained convolutional neural network with resid-
ual connections (ResNet-50) to a vision transformer (ViT-B/16)
[DBK*20]. Finally, we compare models with different adversarial
robustness. Specifically, we compare a ResNet-50 trained on the
regular image set to an adversarially-trained one [UKE*20].
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(resnet34 (conv1)) vs. [resnet34 (layer4[2]))
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(Lifting dovics

Diving )

Figure 7: Concept evolution from to
[/ulvr layer (/(1,\'0/‘4/_7/)] within the same network. We show that
early layers are more irregular in terms of the concepts they learn.
Such irregularity is caused by the limited association of the early
layer with only a specific set of concepts and the complete absence
of certain concepts. We find that early layers learn representation
limited to color-related concepts. We also find that early layers of-
tentimes fail to learn representation of instance-level objects such
as acoustic device.

6.1. Explore concept evolution in the same model

In this case study, we look at different layers and how concepts
emerge or disappear deeper down the network. To accomplish this
objective, we conduct a comparative analysis across distinct layers
within a singular neural network, aiming to discern potential dis-
parities in the conceptual coverage they encapsulate.

We showcase a comparison of an early and late layer of ResNet-
34. While comparing learned concepts at different depths of the
network, we find that concepts learned in the early layers show ir-
regularity. Such irregularity divides into two specific observations.
First is that neurons in the early layer have a very high association
with a very limited set of concepts — in the ResNet case, these are
colors. As can be seen in Fig. 7, most of the neurons in the early lay-
ers are associated with color or color-related concepts. The second
observation is that there are oftentimes concepts that early layers
do not pick up at all. These concepts tend to be specific objects
such as names of specific instruments or machinery. This is proba-
bly more strategic for the later layers to learn as the representation
of such specificity will be more beneficial for downstream tasks for
neural networks, such as classification tasks. These observations
align well with our existing knowledge regarding the functionality
of different layers of CNN models, and thus provides a meaning-
ful baseline check to see whether the proposed method fulfilled its
design objectives.

6.2. Comparing models trained on different data

In this case study, we compare two ResNet-50 models, one trained
on artificial objects and the other one on natural objects. We hy-
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Figure 8: For the concept “sled dog”, CAN indicates that neu-
rons from a [model trained on artificial objects] detect working sled

dogs and the sleds, while a [model trained on natural objects| cap-
tures sled dogs, Alaskan malamutes, and huskies in a residential
area.

pothesize that models trained on different datasets should exhibit
different representational power. According to our design goal
(G3), the visualization should be effective in verifying the afore-
mentioned hypothesis.

At a glance, the concept hierarchy shows a diverging trend of
the represented concepts within two different models. In Fig. 1, the
collapsed bottom of the hierarchy, we can see that neurons inside
the model trained on natural objects represent natural concepts sig-
nificantly more compared to the other model. Similarly, the neuron
projection shows a color grouping of neurons from the two distinct
models . Even though some neurons from the two models seem to
detect the same concepts, as evidenced by the overlap in the neu-
ron view, a closer examination reveals more nuanced differences. In
Fig. 1, neurons under the brushed area are related to underwater ob-
jects. Neurons from the model trained on artificial objects captures
concepts of “snorkel” and “oxygen mask” - man-made artifacts.
On the other hand, neurons from the model trained on natural ob-
jects capture underwater creatures (c.f. Fig. 1). As another example,
among neurons activated by dogs in both models, on the concept
“sled dog”, CAN indicates that neurons from a model trained on
artificial objects detect working sled dogs and the sleds, while the
model trained on natural objects more directly captures dog con-
cepts such as sled dogs, Alaskan malamutes, and huskies that are
mostly photographed in a residential area. (c.f. Fig. 8)

6.3. Comparing models with different architectures

CAN is also useful in studying different representational power
of two different neural network architectures. Previous stud-
ies [RUK*21] find that ViT represents spatial or location-based
concepts better compared to ResNet models. Also, from the supe-
rior accuracy that the former has over the latter, one may hypothe-
size that ViT has a better overall representation of concepts. From
the collapsed bar plot in CAN, we observe that the most salient
difference between the vision transformer (ViT) and convolutional
model (ResNet-50) is their neuron representational sparsity. As ev-

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



M. Li & S. Jeong & S. Liu & M. Berger / CAN

resnet50 (layer4(2])| vs. |vit

x artifact
- animals - 0.20

—

—

Hunting dog -
g

Leonberg (a large dog) -0.15 |
G)

Aquatic bird §
c

Q

Senegal g
(African Country) ) 010 g
x * ]

* T

(=}

S

f=

. 0.05 ¢
©o

—

= Q
.‘§

o
=3
S

0.00 0.05 0.10 0.15 0.20
resnet50_layer4[2]

Figure 9: Between CNN ((ResNet50)) and Vision Transformer
( ), we found that ViT, despite a much lower neuron coverage on
average, dedicates a comparable fraction of neurons to living ob-
Jects. As an example, compared to man-made items such as sports
equipment, ViT dedicates more neuron to concepts such as dogs
(e.g., Leonberg), aquatic birds, and lively African countries such
as Senegal. The scatter plot compares the neuron coverage over
concepts between the two models, where color represent concept
type (X artifact vs. ® animals).

ident from the concept and neuron plots (Fig. 9), we find that com-
pared to CNN models with skip connections (ResNet-50), vision
transformer (ViT) comprises neurons that sparsely cover the con-
cept space. Despite an overall lower neuron coverage among con-
cepts, ViT seems to dedicate a comparable portion of neurons to
living objects with respect to a convolutional model, such as ani-
mals, insects, and fruits. To validate this hypothesis, in Fig. 9 we
compare the neuron coverage between the two models in a scat-
ter plot where dots are colored by concept category (artifact or
animals). Compared to previous comparison effects for ViT and
CNN that focus on global observation, this sheds new light on dif-
ferences between these models that has not been documented be-
fore [ZHP*17,LSL*16](to the best of our knowledge). The combi-
nation of sparse concepts and more natural concept concentration
may spark further hypotheses and experiments that lead to a deep
understanding of these model architectures.

6.4. Comparing models with different adversarial robustness

In this case study, we examine the effectiveness of CAN in com-
paring models of different adversarial robustness. We used the
fast gradient sign method [GSS14] to generate a set of adversar-
ial examples in the ImageNet validation set. On each of the 1000
classes on ImageNet, we reassigned the image label of the cor-
rect class i, for i € {0,...999} to a distant, unrelated wrong class
i+ 500 mod 1000, and look for adversarial examples on the scram-
bled labels. Under this set of adversarial attacks, the non-robust
pre-trained ResNet-50 model drops to 31.79% classification accu-
racy, while the robust counterpart retains an accuracy of 69.49%.
With CAN, we find that due to adversarial attacks, non-robust
model misses, and sometimes misinterprets concepts, as depicted

© 2024 The Authors.
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Figure 10: Compared to an , adversar-

ial examples confuse the by muting some of its
concept detectors. As an example, under adversarial attack, no neu-
ron from the non-robust ResNet-50 activates on the “seat” concept,
while the adversarially robust model detects concepts such as “bar-
ber chair” and “rocking chair”. Moreover, the non-robust model
sometimes mis-interprets the concepts, such as interpreting image
of a cake as “minibus”, “vehicle” or “police van”. Upon click-
ing on the “seat” concept, selecting and sorting all neurons in two
models by the neuron alliance to “seat”, neurons from the non-
robust model do not detect chairs, and sometimes mis-classified the
concepts in the images.

in Fig. 10. The neuron coverage bar plots under and on top of the
hierarchy view serve the purpose of identifying missing concepts
(Fig. 10, left). Looping through the concepts that report very low
neuron coverage on the non-robust model, we are able to identify,
and verify, that a large number of neurons in the non-robust model
fail to recognize certain concepts.

7. Usability Study

We interviewed three individuals (E1-E3) from our institute with
varying machine learning and visualization experience to assess
our interface’s usability. Of the three interviewees, E1 had 5 years
of experience in graph machine learning and data mining, while E2
and E3 specialized in data visualization. E1 has working knowl-
edge in visualization, and actively uses visual idioms and charts
for learning and reporting purposes. E2, despite less than one year
of experience in machine learning, is interested in utilizing Al for
visual analytics. E3, with 4 years of experience in machine learn-
ing, specializes in explaining deep learning through visual analyt-
ics. Overall, all interviewees recognized the importance of model
comparison, found the interface well designed and intuitive, while
having mixed views on the design of concept hierarchy.

During the walk-through, including CLIP-Dissect and the CAN
interface, all interviewees recognized the importance of model
comparison. E1 highlighted comparing methods in the expert do-
main, focusing on model quality and performance. E1 noted chal-
lenges in interpreting quality differences, often due to a lack of do-
main knowledge or visual encoding strategies. E2 shared the expe-
rience visualizing neural network weights with heatmaps. E3 em-
phasized the importance of model selection, expressing interest in
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identifying the best model for specific tasks. Overall, interviewees
found CLIP-Dissect valuable, with E1 and E3 seeing its potential
in concept-level interpretability for guiding model pruning.

All interviewees found the interface intuitive. E1 and E2 partic-
ularly found the neuron UMAP view intuitive. During the explo-
ration they selected different regions of the scatter plot, checking
concepts and images in the detail view, and summarizing neuron
functions. For example, when brushing over the dog neurons, E1
recognized the region as “animals”. E1 also noted the non-expert
friendly nature of the interface compared to verbal summaries. In-
terviewees had mixed views on the concept hierarchy. E1 viewed
it as complementary to the neuron view, suggesting enhancements
for exploring same-level concepts. E2 raised concerns about the
fairness of vertical space allocation in the compact view for deeper
concept levels. In contrast, E3 found concept view and neuron cov-
erage views most useful, taking a top-down approach from the most
generic concept (“entity”) to specific concepts (e.g. “dogs”) only
when necessary. E3 recognized the semantic coverage of neurons
and various neuron-concept relationships. Additionally, E3 desired
a brush-over feature for the neuron coverage histogram to examine
representational sparsity in the concept hierarchy.

8. Limitations and Future Directions

As demonstrated in Sec. 6, by utilizing the proposed tool we are
able to answer a set of very specific and detailed questions from the
ML community. Despite its effectiveness, it is also important to ex-
plore and discuss potential limitations, and the mitigation strategy
for them. Additionally, we also want to discuss future directions.

CLIP-based concept detection: CAN relies on CLIP-based align-
ment model, namely CLIP-Dissect, to automatically detect and
align concepts with neurons. As a result, the quality of findings
presented by CAN depends heavily on the accuracy and specificity
of concepts as well as how concepts are interpreted by CLIP. While
many of the concepts captured by CLIP appear to be logical, we
found some quality issues with CLIP and CLIP-Dissect. For ex-
ample, we found some overly generic concept words reported by
CLIP, such as “juvenile”, “female”, and “adult” reported on a lot
of animals and birds images. With CLIP-Dissect, we found certain
names (e.g., Tyson, Leo, Bailey) highly associated with neurons
highly activated by dog pictures. We speculated this was influenced
by the training data of CLIP (dog pictures captioned with their pet
names). See figures in supplementary material for a sample of con-
cepts captured by CLIP and CLIP-Dissect. Nevertheless, with the
ongoing advancements in artificial intelligence research, we antic-
ipate the development of more sophisticated models and concept
probing techniques that can better handle ambiguity.

Sensitivity regarding thresholds: One important concern when
carrying out comparison tasks of vastly different entities through
an intermediate representation is whether the mapping from each
of their original space to the shared space is comparable and stable.
This is particularly true when the number of neurons may differ
drastically across architecture and layers. We specifically explored
the sensitivity of using different thresholds to determine the type
of concepts captured by a given neuron and incorporated various
designs to mitigate its impact (see Sec. 4). However, ideally, we
may want to develop methods with built-in self-calibration.
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Layer selection: During exploration, we need to select a layer from
each neural network for comparison. This can turn into a non-trivial
task when the number of layers is high in both of the networks we
intend to compare. However, the same challenge does also exist
for other methods as well. For comparison in the activation space
using CKA or other high-dimensional space comparison methods,
we also need to identify the layer, i.e., where to measure the acti-
vation, for comparison. Interestingly, the concept-centric approach
we propose can provide more flexibility and guidance, as we can
select the layer based on the concepts they capture, which allows
us to narrow down the comparison task to more meaningful pairs.

Future Directions: We believe the concept-centric approach can
provide a fundamentally new perspective on various network-
related comparison tasks. As a robust and reliable way to esti-
mate concept captured by neurons is at the heart of the challenge,
one important future direction is to improve the reliability of the
concept estimation techniques. One avenue for improvement is
through adopting more recent developments [DNR*23] in multi-
modal models beyond CLIP, as they may provide a better founda-
tion for concept neuron alignment. Additionally, in the current im-
plementation, we use the word itself as our concept set to guide the
discovery of concepts. A full word definition likely contains more
nuance semantics that a single word can not convey, so we plan
to use these descriptions as an input to CLIP-dissect method. This
theoretically could provide better concept association. The other
area we plan to improve is the readability of the hierarchy con-
cept abstraction. Although the WordNet provides a principal ap-
proach for obtaining a hierarchy, the organization at times can com-
pose more instance-level concepts. To make the discovery of trends
more streamlined between the two networks in terms of high-level
concepts, we plan to refine our current hierarchy and optimize the
structure to highlight more distinct high-level concepts.

9. Conclusion

We presented CAN, a visual analytic framework that compares
neural networks from the perspective of the functionality of indi-
vidual neurons. To the best of our knowledge, it is the first visual-
ization work that focuses on the concept-level comparison of neu-
ron networks, which provides a unique perspective for understand-
ing the difference among complex models through a more human-
accessible medium. From our case studies, we demonstrate the
capability of the proposed approach for investigating challenging
questions from ML communities. Apart from confirming existing
knowledge of the network behavior (Sec. 6.1), we also obtain new
insights regarding the difference in concept representations across
model architecture as well as in relationship to model robustness.
By summarizing the concept-level interpretation of all neurons in
the network, we provide ML researchers with a powerful tool for
the efficient exploration of a large collection of neurons and con-
cepts at the same time, which facilitates hypothesis generation.
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