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Abstract

Diffusion-weighted magnetic resonance imaging (D-MRI) is a technique to measure the diffusion of water, in biological tissues.
It is used to detect microscopic patterns, such as neural fibers in the living human brain, with many medical and neuroscience
applications e.g. for fiber tracking. In this paper, we consider High-Angular Resolution Diffusion Imaging (HARDI) which
provides one of the richest representations of water diffusion. It records the movement of water molecules by measuring diffusion
under 64 or more directions. A key challenge is that it generates high-dimensional, large, and complex datasets. In our work,
we develop a novel representation that exploits the inherent sparsity of the HARDI signal by approximating it as a linear sum
of basic atoms in an overcomplete data-driven dictionary using only a sparse set of coefficients. We show that this approach
can be efficiently integrated into the standard q-ball imaging pipeline to compute the diffusion orientation distribution function
(ODF). Sparse representations have the potential to reduce the size of the data while also giving some insight into the data.
To explore the results, we provide a visualization of the atoms of the dictionary and their frequency in the data to highlight the
basic characteristics of the data. We present our proposed pipeline and demonstrate its performance on 5 HARDI datasets.

1. Introduction

Diffusion-weighted magnetic resonance imaging (D-MRI) de-
scribes a class of imaging techniques measuring diffusion-related
signals in biological tissues [CEX88]. The resulting data contains
much valuable information about tissue microstructures, e.g., fiber
structures in the brain white matter. However, the data is com-
plex, and this information is not directly accessible and requires
a careful reconstruction and representation of the diffusion sig-
nal [Lee19, CT20]. In this process, visualization has also played
an important role [SV19]. Optimizing the respective imaging pro-
tocols and models to derive directional information from the raw
D-MRI data is still ongoing research [CT20]. Probably the best-
studied model is diffusion tensor imaging [BML94], assuming a
Gaussian diffusion. While it has been used successfully in many
applications and many visualizations, it also has its limitations, e.g.,
in areas of fiber crossings [JPGJ12]. High angular resolution dif-
fusion imaging (HARDI) is one of the methods that has been in-
troduced to overcome these challenges. Thereby, a high number of
diffusion directions are measured. Thus, potentially more complex
tissue structures can be resolved [MHGP∗21]; however, it also in-
creases the data size and complexity significantly. A question that
has been debated since the introduction of HARDI is the required
or optimal number of diffusion directions. In this context, ideas
from the field of compressed sampling [RMS∗11] were used to ad-
dress this question. However, although the underlying assumption

in compressed sampling is that the signal under consideration is
sparse, the concept of sparsity has so far neither been investigated
in detail nor exploited in the processing, analysis, or visualization
of HARDI data.

Sparse representations provide a concise yet precise data repre-
sentation, with the underlying idea of finding a coordinate transfor-
mation of the data into a sparse domain. This means finding a basis
(also called a dictionary) such that the number of non-zero coeffi-
cients becomes as small as possible. It has been shown that sparse
representations preserve the main features of the data well and are
robust with respect to noise and small fluctuations in the signal,
while reducing the required storage costs significantly [ZXY∗15].
There are many examples of successful applications in signal pro-
cessing and computer vision [HWG∗21]. A property that makes
sparse representations especially interesting in the context of med-
ical imaging and analysis is their potential to detect semantic in-
formation [WMM∗09]. As the first step towards sparse modeling
of HARDI data, we analyze the main characteristics of sparse rep-
resentations and investigate questions related to the sparseness of
the data, the accuracy of the sparse representation, and its potential
for data compression. As the central goal is to develop applications
for visualization and detailed analysis, we also investigate the pos-
sibility of efficiently integrating such representations into standard
analysis pipelines such as q-ball imaging [Tuc04] to compute the
diffusion orientation distribution function (ODF). Specifically, this
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means estimating the sparse representation of the ODF coefficients
directly from the raw HARDI data using pre-trained dictionaries.
Since in practice the reconstruction of ODFs from HARDI data of-
ten involves very large groups of patients and thus large data sizes,
a key benefit of our approach is that it can significantly acceler-
ate this process. Therefore, we present a sparsity-based pipeline
that can represent and process both raw HARDI data and ODF, see
Figure 2, which only requires Funk-Radon transformation at the
atom-level instead of the voxel-level. Our main contributions can
be summarized as follows:

• An analysis of the sparsity of HARDI data concerning accuracy
and compression capabilities

• A novel sparse pipeline that can represent both raw HARDI data
and ODF

• Efficient computation of ODF coefficients directly from a pre-
trained dictionary on raw data

The paper is organized as follows: In Section 2, we give an
overview of the related work regarding diffusion imaging, HARDI,
and sparse representation for high-dimensional data. Section 3 in-
troduces the underlying concepts used in the paper. In Section 4,
we present the proposed pipeline and methods in detail. Results of
experiments are presented in Section 5. Finally, in Section 6, we
conclude this manuscript and address challenges in future work.

2. Related Work

This paper builds on work from two research fields, diffusion MRI
(D-MRI), with more than 20 years of history, and sparse represen-
tations. This section is structured accordingly.

A: Diffusion MRI (D-MRI) has developed to become a widely
used tool in neuroscience applications. It enables access to struc-
tural data in fibrous tissue, such as the white matter in the brain,
which was previously unavailable [AJBTdS19], and has become
a main method for noninvasive mapping of connectomes [SZ19].
In clinical research, it supports the diagnosis, e.g., of Parkin-
son’s disease [HKDMS17] or detection of traumatic brain in-
juries [AAB∗15]. In the area of visualization, it has significantly
influenced tensor field visualization, but the contributions go be-
yond that. Examples include glyphs for encoding local diffusion
characteristics, fiber tractography, and exploratory environments.
Current activities focus on integrating uncertainty [GvdVS22]
into the methods and visualizations as well as cohort compar-
isons [ZCH∗17]. For an overview of recent developments, we refer
to the article by Schultz and Vilanova [SV19]. Most of these meth-
ods are designed for Diffusion Tensor Imaging (DTI) and use a
second-order tensor to approximate the diffusion orientation distri-
bution functions (ODFs) [BML94].

There is also a large body of work that deals with the visualiza-
tion of HARDI (High-Angular Resolution Diffusion Imaging) data.
HARDI data provides more details about fiber distribution but is
also more complex, and despite the increasing amount of informa-
tion, reliable and accurate modeling of fiber orientation is still a
challenging and active area of research. Modeling the signal as a
sum of individual fiber compartments is one approach to estimat-
ing the number and orientation of fibers, e.g., by using constrained
spherical deconvolution [SWK10]. Other approaches directly es-
timate the diffusion orientation probability function (ODF), e.g.,

with q-ball imaging [Tuc04], which is often the first step in the vi-
sualization pipeline and at the center of our work. An example is
the work of Peters et al. [PPvA∗09] on interactive glyph render-
ing for exploring HARDI data. Recent work on PDE-based com-
pression of diffusion MR images combining image space and Q-
space, presented by Jumakulyyev and Schultz [JS23], partly pur-
sues similar goals to our work. However, their focus is on lossless
compression, while we provide an approximation of the data while
preserving its key characteristics. Machine learning-based methods
for reconstructing fiber structures are also gaining increasing atten-
tion [KVJ∗21]. These are just examples of current research trends,
as a complete overview is beyond this section, and we refer to some
review articles [Des15, NDH∗15].

B: Sparse representations have been utilized for several tasks
within the fields of image processing and computational imaging;
examples include medical imaging [RB11], classification and clus-
tering [JLD13], and image denoising [YSL13]. A related field to
sparse representation is compressed sensing, where the goal is to
derive provably optimal sampling algorithms for sparse signals.
Compressed sensing, has been used for designing a digital cam-
era with a single pixel [DDT∗08], light field imaging [AN10],
and Magnetic Resonance Imaging (MRI) [LDP07]. Schwab et al.
[SVC18] have utilized compressed sensing using separable dictio-
naries to reduce the number of measurements for HARDI. We de-
marcate our method from that of Schwab et al. by noting that our
focus is on the problem of sparse representation with learned dic-
tionaries to investigate their application for identifying structures in
the HARDI data, while Schwab et al. present a compressed sensing
algorithm using analytical dictionaries [VRG22].

C: Compression of volume data within the field of visualiza-
tion aims to enable a faster and more scalable visualization for
rendering, data transmission, and storage. Balsa Rodríguez et al.
[BRGIG∗14] provide a comprehensive overview of existing meth-
ods in compressed GPU-based direct volume rendering (DVR).
Schneider et al. [SW03] proposed hierarchical vector quantizations
to represent volumetric data, Gobbetti et al. [GIGM12] utilized K-
SVD to learn a dictionary for representing sampled subsets of large
volumes, and Díaz et al. [DMG20] utilized quantized variable-
length sparse representation for each octree-based frame. Due to
the unique properties of HARDI data, e.g. the high dimensional-
ity, these techniques cannot be directly applied without significant
modification. We demarcate our method from the techniques above
by noting that we propose a novel q-ball imaging pipeline rather
than a HARDI data compression algorithm.

3. Background

This section provides the background for our work, the HARDI
data, and the analytical q-ball imaging pipeline.

3.1. HARDI Data description

Diffusion MRI (D-MRI) describes imaging methods for measuring
water diffusion in biological tissues, which enable conclusions to
be drawn about the local tissue microstructure. High Angular Res-
olution Diffusion Imaging (HARDI) is a special variant (protocol)
of D-MRI that produces diffusion-weighted volumes that represent
a large number of diffusion directions. The different directions are
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(a) Example 1 (b) Example 2

Figure 1: Two examples for the Funk-Radon Transform: The left side of each example shows the raw HARDI signal with spherical harmonics
representation, and the right side shows their corresponding ODF. The color represents the corresponding value projected on the set of
modified spherical harmonic bases, where red indicates a lower value and blue suggests a higher value.

obtained by sampling the space of possible diffusion-sensitizing
magnetic field gradients, spanning the so-called q-space [ST65]. In
single-shell HARDI the magnitude of b is fixed and only the direc-
tion is varied [MT14]. Important parameters are the number of sam-
pled directions and the choice of the b-value. The HARDI datasets
we used were downloaded through the Laboratory of Neuro Imag-
ing Image Data Archive (https://ida.loni.usc.edu) [F∗16], collected
by the Human Connectome Project (HCP) database [CCFa]. All
participating subjects provided informed written consent prior to
participation in the study, approved by the institutional review
board approval and procedures [CCFb]. The diffusion MRI brain
images were acquired using a 3 Tesla Siemens Connectome scan-
ner. The imaging parameters for each subject were set as follows:
image matrix= 140×140×96 and voxel resolution = 1.5×1.5×
1.5 mm3, 64 and 128 diffusion-weighted volumes were acquired
for each of the b = 1000,3000 s/mm2 values and one non-diffusion
weighted image was acquired (b = 0 s/mm2).

In this work, we use the 64 diffusion-weighted volumes with b =
1000 s/mm2 The data is represented as 4-D data of size w× h×
s × d, and the first three dimensions represent the spatial extent:
width w, height h and a section s of the volume; The last dimension
contains a vector with the measured diffusion values.

3.2. Q-ball imaging pipeline

Q-Ball Imaging (QBI) is a method for reconstructing the diffusion
orientation distribution function (ODF) from the HARDI data. It
has been shown that the ODF can be approximated by the Funk-
Radon transform (FRT) of the diffusion signal [Tuc04]. We use a
fast and robust method for estimating the ODF, which has been
proposed by Descoteaux et al. [DAFD07]. The main idea is to first
approximate the raw HARDI data with a set of modified spherical
harmonics (SH) and then combine the FRT with the Funk-Hecke
theorem, which reduces the calculation of the Funk-Radon integral
over the sphere to a scaling of the SH coefficients.

3.2.1. Modified spherical harmonics for HARDI

The spherical harmonics (SH) basis function of degree l and order
m, denoted Y m

l , is defined by:

Y m
l (θ,φ) =

√
2l +1

4π

(l −m)!
(l +m)!

Pm
l (cos(θ)eimφ), (1)

where (θ,φ) and θ ∈ [0,π], φ ∈ [0,2π] correspond to the spherical
coordinates, and Pm

l denotes the associated Legendre polynomials.

The modified SH functions [Tuc04] only consider even orders {k =
0,2,4, . . . , l} with m = {−k, . . . ,0, . . . ,k} to guarantee the required
symmetry of the HARDI data:

Y j =


√

2 ·Re(Y m
k ), if − k ≤ m < 0

Y 0
k , if m = 0 ,√
2 · Img(Y m

k ), if 0 ≤ m < k

(2)

where Re(Y m
k ) and Img(Y m

k ) denote the real and imaginary parts of
Y m

k respectively, and j represents the index in the modified basis,
defined as j = j(k,m) = (k2 + k+2)/2+m.

Let X ∈ Rd×n denote the matrix form for diffusion values from
the raw HARDI data, where d is the number of diffusion gradient
directions and n = whs is the number of voxels. The matrix X is
obtained by unfolding the HARDI data tensor along the fourth di-
mension. The SH representation, which is a linear transformation,
can be given in matrix form as

X = SC =

Y1(θ1,φ1) . . . Yr(θ1,φ1)
...

. . .
...

Y1(θd ,φd) . . . Yr(θd ,φd)


c1,1 . . . c1,n

...
. . .

...
cr,1 . . . cr,n

 ,

(3)
Hence, S ∈ Rd×r contains the SH basis functions, with r = (l +
1)(l +2)/2 is the number of modified SH basis functions, and C ∈
Rr×n contains the SH coefficients. To directly solve (3) for C, we
would have to invert S. However, since in practice d > r, the matrix
S is not invertible. Descoteaux et al. [DAFD07] have shown that the
linear system in (3) has the following closed-form solution:

C = (ST S+λL)−1ST︸ ︷︷ ︸
S+

X = S+X , (4)

where λ is the weight on the regularization term and L ∈ Rr×r is
a diagonal matrix, called the Laplace-Beltrami smoothing matrix,
with entries l2

j (l j + 1)2. Moreover, l j = {0,2, · · · , l} is the order
associated with the jth coefficient, j = {1,2, · · · ,(l +1)(l +2)/2}.

3.2.2. Funk-Radon transform of modified SH

The Funk-Radon transform (FRT) of diffusion values Xi, i.e., a col-
umn in X , in a unit direction uuu, is obtained by computing the inte-
gral over the great circle that is perpendicular to uuu:∫

|www|=1
δ(uuuTwww)Xi(www)dwww, (5)
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Figure 2: Sparse pipeline for q-ball imaging: (a) illustrates the training phase, where we feed our pipeline with raw HARDI datasets and
train a dictionary D. The dictionary D is a collection of basis functions (atoms), which capture representatives of the data. Then the corre-
sponding dictionary for the ODFs D̂ is computed on an atom-level using a transform T combining the spherical harmonics representation and
funk-radon transform. By using OMP (orthogonal matching pursuit) to compute sparse coefficients α we obtain the sparse representations
of the raw HARDI data and for the ODF. (b) exhibits the process of computing sparse ODF for new unseen raw HARDI data. With a trained
dictionary from the training phase, one only needs to compute its sparse coefficients voxelwise to get sparse ODF.

where δ(.) is the Dirac delta function. By replacing the signal Xi
with its modified SH approximation, denoted Hl for degree l, the
above equation is reformulated as∫

|www|=1
δ(uuuTwww)Hl(www)dwww = 2πPl(0)Hl(uuu), (6)

where the Dirac delta function is replaced with a delta sequence
δn(x) = (n/

√
π)exp(−n2x2) to ensure continuity in the interval

[−1,1]. Moreover, Pl(0) is the Legendre polynomial of degree l
evaluated at 0. Hence, the Funk-Radon transform of a voxel Xi in
the HARDI data on a unit vector direction uuu with the modified SH
approximation is as follows:

G[Xi](uuu) =
r

∑
j=1

2πPl j (0)C j,iY j(uuu). (7)

Since we are typically interested in the SH coefficients of the ODF,
we may rewrite (7) in matrix form as follows:

Ĉ = PC =


. . .

2π(−1)
l j
2

1·3·5·7···(l j−1)
2·4·6·8···(l j)

. . .

C, (8)

where the diagonal elements of P are 2πPl j (0), with Pl j (0) be-
ing the Legendre polynomial of degree l with nonzero values only
when l is even and evaluated at 0. Fig 1 shows 2 examples of FRT.

4. Sparse Representation for raw HARDI data

A linear signal model, or representation, for the raw HARDI data
X ∈Rd×n is expressed as X = DA, where D ∈Rd×k is called a dic-
tionary, i.e., a matrix where each column is a basis vector, referred

to as an atom. In essence, the dictionary, D, constructs a linear map-
ping from Rd to RK , and each column in the matrix A contains the
representation coefficients. An example of such a representation is
given in (3), where D contains SH basis functions and A is SH
coefficients. When the matrix A is sparse, we achieve a sparse rep-
resentation of X . To measure the sparsity of the representation, we
use the ℓ0 pseudo-norm, denoted ∥.∥0, which counts the number of
non-zero elements in a vector. To achieve a sparse representation,
we often require the dictionary to be overcomplete, i.e., k > d. Typi-
cally, the more overcomplete a dictionary, the sparser the represen-
tation. However, an overcomplete dictionary implies that solving
the linear system X = DA for A is underdetermined with infinitely
many solutions. Therefore, we add a sparsity regularizer and solve
the following sets of equations instead:

min ∥Ai∥0 s.t. ∥Xi −DAi∥2 ≤ ε, (9)

for all i = {1, . . . ,n}, i.e., for each voxel, where ε is a user-defined
threshold for the representation error. Equation (9) can be solved ef-
ficiently using, e.g., Orthogonal Matching Pursuit (OMP) [PRK93].

It is well known that learning-based dictionaries achieve a higher
level of sparsity in the representation as compared to analytical
bases. The problem of dictionary learning is formulated as

min
D,A

∥X −DA∥2
F s.t. ∥Ai∥0 ≤ T0, ∀i ∈ {1, . . . ,n}, (10)

where T0 is a user-defined sparsity parameter, and, with a slight
abuse of notation, X is a HARDI training set. An efficient and
commonly used algorithm for solving (10) is K-SVD [AEB06].
The K-SVD algorithm takes as input a training dataset, X ∈ Rd×n,
the number of atoms, k, and a sparsity parameter, T0, in order to
compute an overcomplete dictionary D ∈Rd×k. According to (10),
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since the optimization problem has two unknown variables, we iter-
atively optimize for each variable until convergence. First, for each
voxel in the training set, we compute a sparse representation with a
maximum of T0 nonzero coefficients. Next, we utilize the training
set and the dictionary estimate from the previous iteration to update
each atom of the dictionary in the current iteration. For the first it-
eration, the dictionary is typically initialized with random numbers.
We refer the reader to [AEB06] for more implementation details.

4.1. Sparse representations and the q-ball imaging pipeline
In practice, the reconstruction of ODFs from HARDI data for of-
ten large patient groups is an expensive operation using the tradi-
tional numerical q-ball imaging pipeline. To overcome this limita-
tion, we propose a novel pipeline shown in Figure 2 that combines
q-ball imaging and sparse representation to estimate the ODF coef-
ficients directly from the sparse representation of the raw HARDI
data. Since our method relies on dictionary learning, we assume
that the HARDI data is divided into a training and a testing set. The
training set is used for learning an overcomplete dictionary, while
the test set is used for utilizing the trained dictionary to obtain ODF
coefficients. As a first step, we train an overcomplete dictionary D
using a training set of raw HARDI data, denoted X ∈ Rd×n, with
a user-defined sparsity parameter T0. Note that the training set may
contain voxels from multiple patients. Accordingly, we have

Xi = DAi, ∥Ai∥0 ≤ T0, ∀i ∈ {1, . . . ,n}. (11)

The analytical q-ball imaging proposed by Descoteaux [DAFD07],
as described in Section 3, computes SH coefficients of the ODF by
evaluating

Ĉ = PC = P(ST S+λL)−1ST︸ ︷︷ ︸
T

X = T X (12)

A key observation in our proposed method is that one can trans-
form the dictionary atoms using (12). This transforms the atoms of
the original dictionary, trained on raw data, to reside in the ODF
coefficient space. As such, we can write:

D̂ = P(ST S+λL)−1ST D = T D, (13)

where each atom of D̂ contains ODF coefficients of the correspond-
ing atom in D.

Let J ∈ Rd×m be a HARDI data for one patient in the test set.
Using (12) and the trained dictionary on raw HARDI data, we have
Ĉ = T J = T DA′, where, with a slight abuse of notation, Ĉ now
denotes the ODF coefficients of the test set. Moreover, A′ is the
sparse coefficient matrix of the test set. Hence, to obtain A′, we
need to solve

min ∥A′
i∥0 s.t. ∥Ji −DA′

i∥2 ≤ ε (14)

for each voxel Ji, i = {1, . . . ,m} to obtain A. An important outcome
of (14) is that each voxel in J will have an adaptive sparsity defined
over the error threshold ε. Such per-voxel sparsity can be utilized
for visualizing the volume, where low sparsity voxels (i.e., a high
number of nonzero coefficients) will mark regions of interest.

Once the sparse coefficients A′ are recovered using (14), the
ODF coefficients of Y are computed efficiently via

Ĉ = T DA′ = D̂A′, (15)

and therefore the ODF of J is Jod f = SD̂A′. Since SD̂ can be pre-
computed in the training phase, obtaining the ODF becomes a mul-
tiplication of a dense matrix by a sparse matrix, which can be com-
puted efficiently using a GPU or CPU implementation. Most im-
portantly, we only have to apply the q-ball imaging pipeline, i.e.,
the transformation T , on the atoms of the dictionary and not for
every voxel of the HARDI data, which reduces the computational
cost significantly. As an example, a dictionary has typically 102

atoms, while the HARDI data contains 107 voxels. The computa-
tional complexity of Analytical QBI is O(whsdr), while for our
pipeline is O(whsβr), where β is the average sparsity of voxels.
Since β < d, and in most cases β ≪ d, our method is significantly
faster than traditional QBI. Another important aspect of our method
is that the dictionary can be computed once and then reused for
each any HARDI dataset. This leads to a significantly reduced stor-
age cost, since only the sparse coefficients A are required for new
HARDI datasets; see Section 5. Finally, according to (15), we ob-
serve that the sparse coefficient matrix A′ is shared between the raw
HARDI and ODF coefficient fields. This implies that an analysis of
the sparse coefficients, e.g., for fiber tracking, holds for both fields.
We have left such in-depth analysis to future work.

5. Experimental results and visualization

This section presents an evaluation of sparse modelling of HARDI
data. First, we explore the distribution of diffusion values, both vi-
sually and statistically, by comparing different regions within the
same volume. We study the choice of parameters and evaluate the
performance of our pipeline using both efficiency-related metrics
evaluating the computational complexity and quality-related met-
rics evaluating the visual performance. Finally, we present a vi-
sual evaluation of the dictionaries in ODF space exploring how the
sparse coefficients are dynamically distributed for different data de-
pending on voxel complexity.

Figure 3: Volume rendering of the brain showing one of the 64 dif-
fusion values. The red color represents low diffusion values mostly
outside the brain, while the higher values are shown in gray high-
lighting regions within the brain. Inviwo [JSS∗19].

© 2024 The Authors.
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We used

Figure 4: Comparisons of the distribution of diffusion values over
the original data of size 140× 140× 90× 64, trun1 of size 70×
70× 50× 64, and trun2 of size 100× 100× 60× 64. The original
data has a large peak near the zero-value, which can be associated
with out-of-bound voxels. The close-up only shows the distribution
of the two cropped datasets. As trun1 does not include any out-of-
bound voxels the histogram does not show a peak around zero.

5.1. Exploration over diffusion values

To get a full picture of the performance of our proposed pipeline we
decided not to use a mask for the brain but use the full raw dataset.
We start by exploring the data visually and build an overview of
the distribution of the diffusion values. The visualizations explore
the 64 diffusion values as well as the magnitude of the signal cor-
responding to the different directions, see Figure 3 for an example.
As expected, there is noise present outside the brain with generally
quite low diffusion values, however, there is also a region around
the brain with extremely high values. To get a better understand-
ing of the influence of noise on the resulting dictionary and the
reconstruction quality we constructed two truncated datasets with
different sizes by removing the outer parts of the dataset as shown
in Figure 4. We label the resulting volumes as trun1 and trun2.
The histogram of diffusion values from the original data, trun1,
and trun2 are also shown in Figure 4 which also shows a close-up
for trun1, and trun2 since the dynamic range of the original data is
very large dominating the histogram. The maximum value of raw
data for full data, trun1, trun2 is about 2000, 1200, and 1500, re-
spectively. The maximum value of ODF for full data, trun1, trun2
is around 4000, 2000, and 3800, respectively.

5.2. Performance Evaluation of our pipeline

We evaluate our pipeline with respect to efficiency, in Section 5.2.1,
and quality, in Section 5.2.2. For efficiency, we utilize two metrics.
The first is the total time it takes for the pipeline to complete the
task of obtaining ODF coefficients from raw data. The second met-
ric is compression ratio, which is the ratio between the original
data size and the size of the compressed data, which in our case
corresponds to the sparse coefficients. The compression ratio is an
important metric for data transmission and storage. For quality, we
use Root Mean Square Error (RMSE), which measures the aver-

Figure 5: Illustration for training and testing dataset choices for
cross-validation. Blue represents training data, and orange stands
for test data for this group. For each run, we take 4 volumes for
training and 1 volume for testing. The five different train/test divi-
sions are labeled as No. 1, No. 2, No. 3, No. 4, and No. 5.

age differences between original data and reconstructed data after
sparse representation is applied.

We run two types of experiments to test our pipeline. The first
type of experiment, denoted as Exp : Individual means the train-
ing and test datasets are identical. The second type of experiment,
denoted as Exp : Group is to train and test from different datasets
to see how robust the pipeline will be when fed with new unseen
data. And here we choose to use the cross-validation method for our
available five different pre-processed datasets, as shown in Figure
5, where the pre-processing involves motion correction for gradient
directions. Cross-validation is commonly used in machine learning
to evaluate and compare different models over new unseen datasets
by using different portions of data to train and test.

5.2.1. Efficiency

In Table 1, we report timing results for our pipeline, taking into
account the original data, trun1, and trun2. The last column rep-
resents the main timing results, where the total computation time
includes obtaining sparse coefficients using the OMP algorithm
[PRK93], i.e. solving (14), as well as computing the ODF coef-
ficients, i.e. by evaluating (15). We would like to emphasize that
since the training is a one-time process, it cannot be included in the
total computation time of our QBI pipeline. However, for complete-
ness, the table also includes the total computation time for training.

Figure 6 shows the compression ratio with respect to RMSE for
Exp : Individual and Exp : Group. We compare results in both the
raw data field and the ODF field. The compression ratio is defined
as the ratio between the size of uncompressed data and compressed
data, e.g. a compression ratio of 4 means the compressed data is 4
times smaller. Specifically, since we are compressing the diffusion
values using sparse coefficients, it is the ratio between the total
number of diffusion values over the total number of nonzero co-
efficients of the sparse representation. Moreover, because the size
of the dictionary D and the transformation matrix T are negligible
with respect to the size of the HARDI data, we have not included
them in the compression ratio calculation.
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Figure 6: Depending on the chosen accuracy by the RMSE, different compression ratios can be achieved. For the minimal RMSE close to
zero, the compression rate is about 2 in all cases. For a fixed RMSE, we observe that different datasets show distinct compression ratios,
implying that their coefficients have different sparsity levels. The data range for different data sets is presented in Section 5.1. For (c) and
(d) we use trun1.
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Figure 7: Comparisons of RMSE with respect to the error threshold ε in (14) for raw HARDI data and their ODF. For (c) and (d) we use
trun1.
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Figure 8: Exp : Individual. Comparisons of sparsity level of coefficients under different error threshold levels for expressing full and trun-
cated data. Both full and trun2 have a peak for zero coefficients and show higher sparsity under eps10000.

5.2.2. Quality

Root Mean Square Error (RMSE) is a common evaluation met-
ric for evaluating the quality of reconstructed data by investigating
how much the reconstruction deviates from the original data from
the perspective of the standard deviation. It measures the difference
globally between the original and the reconstructed data. A smaller
reconstruction error indicates a better reconstruction. We compare
reconstructions of raw HARDI data and ODF over three different
data sizes (full data, trun1, and trun2) with respect to the error
threshold ε in (14). We label the experiments as e.g. eps10, im-
plying that ε = 10. Figure 7 demonstrates our pipeline’s RMSE for
a variable threshold ε. Indeed, as the error threshold for the sparse

reconstruction increases, the RMSE also increases. This pattern is
evident for raw and ODF data, as well as different cross-validation
sets, although the rate of change in RMSE with respect to ε varies
between different experiments. Figure 13 illustrates a reconstructed
raw HARDI slice followed by an error distribution map computed
from the original slice, where it can be seen that the error is uni-
formly distributed regardless of the error threshold, ε. In Figure 8,
we plot the histogram of sparsity, i.e. the number of nonzero coeffi-
cients in A′. As expected, for a small ε, the majority of voxels use a
large number of coefficients, hence the represetation is less sparse.
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Figure 9: Illustrates a dictionary for raw HARDI data trained with full data. The glyph uses a Voronoi diagram of the sphere, assigning
regions to every direction. The length and color of each region indicate the magnitude of the diffusion direction. Blue indicates a low value,
and red suggests a high value.

Figure 10: Illustrates a dictionary for ODF trained from Group 2 with trun1 since it produces the lowest RMSE among 5 groups. These
per-atom glyphs represent projected ODF coefficients on spherical harmonics bases, i.e. ST D = SD̂, hence they are symmetric.

5.3. Visual inspection of HARDI dictionaries
As a first step towards evaluating the dictionaries, we provide vi-
sualizations of the atoms of the dictionary. Glyph representation is
commonly used in medical and scientific data visualization to rep-
resent multi-dimensional data. While there are glyphs for HARDI
data [SV19], we first introduce a glyph that directly renders the raw
data without applying any interpretation. The glyphs highlight all
64 diffusion directions. Each direction is represented by a corre-
sponding Voronoi cell on the sphere. The radius is scaled by the
diffusion value of this channel. The color contains redundant infor-
mation. This representation does not respect the symmetry of the
data with respect to diffusion directions. Figure 9 shows the dic-
tionary D trained on raw data with 128 atoms and using the same
glyph representations. Each glyph represents one atom in the dic-

tionary for the full dataset. Figure 10 shows the atoms of the dic-
tionary D as ODFs using spherical harmonics from Group 2 with
trun1. In other words, we use glyphs to visualize ST D = SD̂. Here,
as expected, the atoms demonstrate symmetry due to the spherical
harmonics representation.

In the next step, we are interested in how frequently the atoms
are used in the dataset. In the sparse representation literature, see
e.g. [Ela10], the index of atoms used for a representation is called
the support. The histogram of the support taken over all the voxels
in the data can reveal the importance of atoms in the dictionary. Fig-
ure 11(a-c) demonstrates the histogram of support for Exp : Group
for three distinct values of ε. Figure 11(d-f) shows the results for
Exp : Individual under a similar setup. Interestingly, in both cases,
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(a) Exp : Group, eps10
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(b) Exp : Group, eps100
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(c) Exp : Group, eps1000
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(d) Exp : Individual, eps10
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(e) Exp : Individual, eps100
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(f) Exp : Individual, eps1000

Figure 11: Histograms of the frequency of atoms using different error levels for reconstructing the raw HARDI data.

(a) raw data (b) sparsity map (c) transfer function

Figure 12: Exp : Individual. illustrate the sparsity of voxels in trun1 region. The sparse coefficients follow a symmetric Gaussian distribution.
We use colors to represent different sparsity levels, e.g., green represents the region with the most sparse coefficients followed by blue, yellow,
and red stands for the region that requires the densest coefficients.

we observe that by changing the threshold, the importance of the
atoms, demonstrated by their frequency of usage, does not change.
This implies that the importance of atoms in the sparse representa-
tion does not vary with respect to the desired reconstruction qual-
ity. We also observe, in both figures, that the frequency becomes
lower when the error threshold is increased, which is expected since
sparsity increases and fewer atoms contribute to the representation.
Apart from the support, another informative quantity is sparsity, i.e.
the number of atoms used in the representation. In Figure 12, we
visualize the distribution of the sparsity of HARDI voxels, high-
lighting four separate regions of sparsity in the volume.

6. Discussion and future work

This paper demonstrated a novel sparse signal model for visual ex-
ploration and analysis of diffusion MRI HARDI data. We showed
that sparse modeling can be efficiently integrated into the q-ball
imaging pipeline, yielding high-performance and high-quality re-
sults. Sparse representations lead to significant reductions in the
amount of data required to represent the HARDI data. The com-
pression is not lossless, however, even with very small error thresh-
olds already good compression ratios can be achieved. Our evalu-
ation and results showed that the computational complexity of the
analytical QBI of our pipeline in comparison to the standard ap-
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Figure 13: Error distribution maps of a slice of the reconstructed HARDI data under different threshold levels. The left image for each
threshold value is the reconstructed slice and the right image is the error distribution map. Left color bar indicates the range of values for
signal magnitude, and the right color bar shows relative error normalized using the maximum error of eps1000.

Dataset Size(w×h× s×d) Time (sec) for
training dictionary

Time (sec) for com-
puting Coefficients
(eps1)

Time (sec) for
computing Coeffi-
cients(eps100)

Time (sec) for com-
puting Coefficients
(eps10000)

Full data 140×140×96×64 413.39 17.17 14.58 3.52
trun1 70×70×50×64 57.68 2.72 2.63 0.94
trun2 100×100×60×64 150.94 6.46 6.04 1.82
Group 1-full data 140×140×384×64 1619.56 17.92 14.88 3.33
Group 1- trun1 70×70×200×64 256.78 2.66 2.41 1.25
Group 2-trun1 70×70×200×64 260.76 2.80 2.53 1.02
Group 3-trun1 70×70×200×64 245.66 2.74 2.47 1.21
Group 4-trun1 70×70×200×64 250.47 2.91 2.44 1.08
Group 5-trun1 70×70×200×64 252.57 2.83 2.52 1.31

Table 1: Comparisons of computing time for dictionary and sparse coefficients over different datasets under different error threshold levels.
All experiments are run with SH basis of order l = 8. Computation is performed on a 16-core processor at 3.40 GHz.

proach is β/d, where β is the average sparsity of voxels and d is
the number of measured diffusion directions. Since β < d, in most
cases β << d, our approach is significantly faster than traditional
QBI. An additional advantage is that the sparse coefficient matrix
A′ is shared between the raw HARDI and ODF coefficient fields.

The promising results from our experiments show that there is
great value in exploring sparse modelling of HARDI data further.
There are several venues for future work. For example, in our eval-
uation, we used an overcomplete K-SVD dictionary. There are a
wide variety of dictionary formulations with different pros. and
cons., and we believe that it would be interesting to further inves-
tigate different choices, especially in the context of data analysis
directly from, e.g., clustering in coefficient space. Looking at the
dictionary we can see that many atoms appear in a similar form
in a similar orientation. This behaviour can be avoided by enforc-
ing rotationally invariant atoms. This would also lead to an even

more compact representation and open up for novel data analysis.
A trained dictionary and its sparse coefficients benefit both data
transmission and storage. A long-term goal is to exploit sparse rep-
resentations and data-specific dictionaries for the extraction of pat-
terns usable in visualization.
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