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Figure 1: visualization displays the number of interactions in Game of Thrones — a multivariate network, with attributes on nodes (age of the
character, number of episodes they appear in) and attributes on edges (number of interactions per season). On the visualization’s left side are
five edge encodings, followed by four kinds of on-node encodings. At the bottom and right are juxtaposed visualizations for edges and nodes.

Abstract
The visual analysis of multivariate network data is a common yet difficult task in many domains. The major challenge is to
visualize the network’s topology and additional attributes for entities and their connections. Although node-link diagrams
and adjacency matrices are widespread, they have inherent limitations. Node-link diagrams struggle to scale effectively, while
adjacency matrices can fail to represent network topologies clearly. In this paper, we delve into the design space of BioFabric,
which aligns entities along rows and relationships along columns, providing a way to encapsulate multiple attributes for both. We
explore how we can leverage the unique opportunities offered by BioFabric’s design space to visualize multivariate network data
— focusing on three main categories: juxtaposed visualizations, embedded on-node and on-edge encoding, and transformed node
and edge encoding. We complement our exploration with a quantitative assessment comparing BioFabric to adjacency matrices.
We postulate that the expansive design possibilities introduced in BioFabric network visualization have the potential for the
visualization of multivariate data, and we advocate for further evaluation of the associated design space. Our supplemental
material is available on osf.io.

CCS Concepts
• Human-centered computing → Empirical studies in visualization; Graph drawings;

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Associa-
tion for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial
License, which permits use, distribution and reproduction in any medium, provided the original work
is properly cited and is not used for commercial purposes.

DOI: 10.1111/cgf.15079

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-5474-4214
https://orcid.org/0000-0003-1116-8450
https://orcid.org/0009-0001-5825-8077
https://orcid.org/0000-0001-7966-9740
https://orcid.org/0000-0001-9517-3526
https://osf.io/8j42t/?view_only=ab69785be4bc48608d64c2a0550f4b04
https://doi.org/10.1111/cgf.15079


2 of 12 J. Fuchs & F. L. Dennig & M.-V. Heinle & D. A. Keim & S. Di Bartolomeo / Exploring the Design Space of BioFabric Visualization

1. Introduction

Network visualizations are useful for understanding and exploring
relationships between real-world entities. For instance, researchers
commonly utilize node-link diagrams and adjacency matrices for
displaying social [ACJM03], communication [BFN04], or biolog-
ical networks [BMGK08], among many others. In addition, many
real-world networks contain nodes or edges with one or multiple
attributes. Multivariate network visualizations are helpful for repre-
senting network typologies showing the general structure, such as
densely connected groups and sparse links between entities together
with associated attributes. In Biology, for instance, visualizing net-
work topologies together with experimental multivariate data helps
to understand cellular processes [PLS∗12] by visualizing protein
interactions, chemical reactions, and catalyzing enzymes.

A key task for multivariate network visualizations is effectively
visualizing network topologies along with their node or edge at-
tributes. In a social network, an example task can be identifying
the oldest person and their longest-lasting friendship with another
person. However, there is a trade-off between effectively visualizing
the network topology and displaying the associated multivariate
attributes. Thus, researchers proposed various tailored visualiza-
tions and encoding for displaying multivariate networks, such as
node-link diagrams and matrices, where additional information is
visualized alongside the basic visualizations by juxtaposing the ad-
ditional attributes in a table or encoding them directly in the cells of
matrices.

For a comprehensive overview of multivariate network visualiza-
tion, one can refer to the work of Nobre et al. [NMSL19], which
delineates these visualizations into categories such as node-link,
implicit tree, and tabular layouts. Specifically, the paper points out
the efficacy of tabular layouts like BioFabric [Lon12] for delineating
sparse networks that are laden with a multitude of node and edge
attributes, which can be cumbersome to interpret in sparse matrix
forms. BioFabric itself is highlighted for its ingenuity, offering a
unique method to encode attributes of both nodes and connections.

BioFabric reimagines the visualization of complex net-
works—imagine a fabric woven with data where each row in a
grid corresponds to a network point, and each column signifies a
connection. A connection is marked by a colored spot on the grid,
crafting a visual fabric that simplifies the identification of patterns
and relationships within the network.

Despite the promise shown by BioFabric, it remains underex-
plored, particularly in the breadth of design possibilities it presents
for embodying multivariate attributes. Because of this grid-like struc-
ture, additional attributes for nodes and edges can be visualized on
the borders of the network visualization, as visible in Figure 1. Our
research seeks to bridge this gap with an in-depth exploration of the
design potential within BioFabric. Examining how multivariate data
is visually encoded, we intend to scrutinize the influence of different
design methodologies on the interpretability of the visualization.
This endeavor not only aims to affirm BioFabric’s utility but also
strives to push the envelope in visualizing complex data structures.
Therefore, we contribute:

• A design space exploration of BioFabric for multivariate net-
works.

• A discussion regarding how to effectively encode multivariate
attributes into BioFabric visualizations.

• A quantitative comparison of BioFabric to matrix visualizations.

Our supplemental material, which includes an interactive imple-
mentation, the user study, the results from the study, the anal-
ysis and an appendix with some further observations, is avail-
able on osf.io, at https://osf.io/8j42t/?view_only=
ab69785be4bc48608d64c2a0550f4b04.

It should be taken into account that the effectiveness of BioFabric
is also affected by node and edge ordering [VBP∗21, DBPB∗22] —
an aspect that is not considered in the scope of this paper. Instead,
we focus on the encoding of additional data dimensions into the
visualization, which can be applied to any ordering of nodes and
edges.

2. Related Work

Multivariate Network Visualizations: In their survey, Nobre et
al. [NMSL19] surveyed and categorized eleven multivariate net-
work visualization approaches for displaying network topologies
and their associated attributes. According to the authors, the most
frequent multivariate network representations are node-link lay-
outs, including on-node/edge encodings, attribute-driven faceting,
and attribute-driven positioning. The recommended usage of mul-
tivariate node-link layouts is for small networks (< 100 nodes)
with a limited number of node and edge attributes, for instance, on
node-encodings for social networks [ACJM03] or overlaid edge
bar-charts [SSSE16]. Implicit tree layouts are useful for hierarchies,
including inner nodes & leaves and leaves visualizations, such as
TreeMaps [SDW09] or SunBurst [SZ00] visualizations. Yet, such
implicit tree layouts do not support displaying multiple attributes
simultaneously.

Tabular layouts display the network topology and the at-
tributes in a table-based layout, encompassing adjacency matrices,
quilts [BW11], massive sequence views [CHZ∗07], and BioFab-
ric [Lon12]. For instance, BioFabric visualizes nodes as horizontal
rows and vertical lines (columns) representing edges between nodes.
The advantage of such tabular layouts is that the row- and column-
based visualizations can be easily used to depict additional attributes.
Moreover, Nobre et al. discuss different view operations, describing
how multiple coordinated views can be combined through juxta-
posed, integrated, and overloaded views. In particular, the authors
emphasize that BioFabric has a unique potential for visualizing a
large set of attributes using different view operations, such as a jux-
taposed view, similar to Liniage [NGCL19] and Juniper [NSL19],
which leverage a Tree+Table approach for multivariate network
analysis. However, up to this day, the design space for visualizing
multivariate network data with BioFabric is insufficiently explored
and empirically studied.

Evaluation of Multivariate Network Visualizations: There is a
large body of empirical studies for network visualizations without
multivariate attributes [YAD∗18]. However, most empirical studies
focus on the relationship between network topology and tasks. For
instance, Ghoniem et al. [GFC05] compared topology-based tasks
on node-link diagrams and adjacency matrices for networks with

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://osf.io/8j42t/?view_only=ab69785be4bc48608d64c2a0550f4b04
https://osf.io/8j42t/?view_only=ab69785be4bc48608d64c2a0550f4b04
https://osf.io/8j42t/?view_only=ab69785be4bc48608d64c2a0550f4b04


J. Fuchs & F. L. Dennig & M.-V. Heinle & D. A. Keim & S. Di Bartolomeo / Exploring the Design Space of BioFabric Visualization 3 of 12

varying sizes and densities. Only a few empirical studies investigate
multivariate networks and attribute-based tasks.

First, Alper et al. [ABHR∗13] investigated comparison tasks for
weighted networks and showed that adjacency matrices outperform
node-link diagrams for overloaded views. Next, Abuthawabeh et al.
and Wybrow et al. [WEF∗13, ABZD13] compared and showed that
participants could identify the same graph structures for multi-type
edges in adjacency matrices and parallel node-link visualizations.
Schöffel et al. [SSSE16] compared node-link diagrams encoding
multiple edge attributes as bar charts and partially filled bar charts,
showing their usefulness for comparison tasks. In another publica-
tion by Nobre et al. [NWHL20], the authors compared node-link
diagrams with on-node encodings with adjacency matrices with
juxtaposed tables. Their crowd-sourced empirical study showed that
both approaches perform similarly on edge attribute tasks. More-
over, the authors showed that node-link diagrams with few attributes
are suitable for path- and neighbor-related tasks and that adjacency
matrices help identify clusters, providing less distraction for larger
sets of attributes.

Most of the existing related work empirically investigated network
topology tasks, with a few studies investigating multivariate analysis
tasks on node-link diagrams and adjacency matrices. BioFabric was
originally designed and evaluated in the domain of Bioinformat-
ics through case-studies [Lon12]. Valdivia et al. used BioFabric
to visualize hypergraphs and evaluated their design with a small
scale usability study [VBP∗21]. Until today, none of the possible
alternative multivariate network visualizations described by Nobre
et al. [NMSL19] have been comparatively evaluated, including Bio-
Fabric. Thus, we explore techniques to encode multivariate data
with BioFabric, describing edge encodings for a high number of
attributes and providing empirical guidance on the visualization
design for multivariate analysis tasks.

3. Techniques to Encode Multivariate Data on BioFabric

BioFabric visualization primarily represents nodes as horizontal
lines and edges as vertical line segments connecting these horizontal
lines. This method was developed to help better understand and
represent large-scale biological networks, as traditional node-link
diagrams can become overly cluttered and challenging to inter-
pret [Lon12]. BioFabric combines the table-line structure of adja-
cency matrices with the visual appearance of node-link diagrams
and, thus, reads like a combination of the two. Relations are shown
via edges, just like in a node-link diagram. However, horizontal
lines represent nodes, allowing for a tabular arrangement like in an
adjacency matrix. The combination of these techniques can offer a
vast amount of opportunities to encode additional, multivariate data
on the visualization.

In their survey about multivariate data visualization, Nobre et
al. [NMSL19] explored a few options for this specific task — en-
coding multivariate data on BioFabric. In this chapter, we delve
deeper and expand their proposed techniques and the affordances of-
fered by them, categorizing the design options into three categories:
embedding, transformation, and juxtaposition.
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Figure 2: Example of a double encoding in BioFabric. Edge at-
tributes are simultaneously encoded as embedded bars on-edge
lines and in the juxtaposed table.

3.1. Embedding

The embedding of multivariate attributes is defined as integrating
glyph-like attribute visualizations into a network’s topology visu-
alization. An example is to display a histogram-like glyph on the
edges of BioFabric, as shown in Figure 2. These attribute visualiza-
tions can be subject to translation, rotation, and scaling to place
them on top or close to network entities, i.e., nodes and edges.

Embedded on-node encoding: The overall idea is to include a small
visualization on top of node lines to encode attributes. A similar con-
cept exists in node-link diagrams where nodes are replaced or substi-
tuted by visualization such as bar and line charts [JKS06,NMSL19],
although in node-link — because nodes are not represented as lines
— the possibilities for encoding are very different.

Adding more complex representations requires more space for a
detailed analysis. However, increasing network size (i.e., the number
of nodes) shrinks the visualization space since more horizontal
lines (i.e., rows) must be displayed. The tabular topology layout
introduces such a limitation, which is also true for the adjacency
matrix. As a result, complex visualizations or detailed glyphs can
hardly be added to networks with many entities.

Embedded on-edge encoding: Like node attributes, edge attributes
can be represented as an embedded visualization. Schöffel et al.
introduced an encoding for multiple edge attributes in node-link
diagrams [SSSE16]. The most supportive variation encodes these as
bars of varying height beside each other and on a common baseline.
However, this technique is limited for standard node-link diagrams
since edge crossings can introduce clutter affecting the attribute
visualization, which may overlap. Thus, integrating this encoding
into node-link diagrams is only effective on planar graphs.

Due to the parallel arrangement of edges, BioFabric avoids this
restriction and allows for a smooth integration of on-edge encoding.
The orthogonality provides more clarity to the viewer when differen-
tiating the lines. All bars can be arranged in the same direction. Thus,
the attribute values cannot be falsely interpreted as negative, which
may be another problem in the node-link diagram. The on-edge
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(a) One node attribute is encoded
using line width
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(b) Multiple node attributes en-
coded using dashes on parallel
lines in close proximity.
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(c) The thickness of the back-
ground lines maps to values in the
attributes.
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(d) The curvature of the lines maps
to values in the attributes.

Figure 3: Examples of transformed node encodings in BioFabric.

encoding is even more suitable for the adjacency matrix. Multiple
edges can be represented in the same row, sharing the same baseline.
This simplifies the value comparison of edge attributes when ana-
lyzing a node’s neighborhood. However, increasing the number of
vertices in the adjacency matrix negatively influences the available
space to display an on-edge encoding.

3.2. Transformation

Our definition of transformation is the modification of the visual
appearance of edges or nodes. Attributes might alter, for example,
the color, texture, thickness, or saturation of a network entity, i.e.,
edge or node [BDT21]. We want to highlight that their position and
start and end points remain the same.

Transformed node encoding: BioFabric allows for a different set
of node transformations since nodes are represented as horizontal
lines. Figure 3a provides examples of the on-node encoding of one
attribute.

Increasing network size shrinks the visualization space for size-
based encodings. Therefore, the network properties must be con-
sidered during design to allow a good differentiation of the en-
coded attributes. The horizontal node lines in BioFabric provide
a unique possibility to visualize attribute encodings. One node at-
tribute transforms the line by varying width, color, texture, or other
visual attributes (see Figure 4). This approach can be extended to the
representation of multiple attributes. In Figure 3b, we show straight
parallel lines with varying dashes and differentiate them by color. In-
dependent of its dashed texture, each bundle of lines has a noticeable
distance to its neighboring node lines, allowing a clear comparison.

em
bedded

Figure 4: Transformed node and edge encoding refers to using
visual variables like color, texture, shape, thickness, saturation, and
transparency to represent information on the edges of a visualiza-
tion [BDT21]. Embedded on-edge encoding describes labels and
glyphs added to enhance the representation of multiple attributes.

However, this node attribute encoding loses expressiveness with an
increasing number of node attributes or nodes.

The best use of those visual variables depends on the underlying
data. For example, the curvature is influenced by the number of
possible values and might cause more overplotting if attributes share
the same value (see node D in Figure 3d); on the other hand, texture
or dashed lines are influenced by the number of attributes; and
width is influenced by both the number of attributes and the possible
values.

Such node transformations are also common in node-link dia-
grams by coloring nodes or changing their size. Varying the graphi-
cal representation of rows or columns in an adjacency matrix will
negatively impact the tabular setup of the visualization. Therefore,
only interactive approaches allow for a structural distortion of the
matrix.

Transformed edge encoding: Edges have a high visual impact in
node-link approaches. Many applications using node-link diagrams
transform the visual appearance of edge lines to communicate addi-
tional information like direction [vdEvW14], uncertainty [GHL15],
or dynamic changes [ABHR∗13]. These design variations can be
adopted since BioFabric also communicates relations via vertical
lines. Different design alternatives can be seen in Figure 1 or Fig-
ure 4. Since edges may vary in length, a color encoding might be
perceived differently due to the strong interplay between color and
size.

3.3. Juxtaposition

We define the juxtaposition of attribute visualizations as a combi-
nation of displaying the network topology and an accompanying
attribute visualization with an unambiguous alignment of node and
edge representations and their respective attributes. Since BioFabric
enforces a tabular layout on networks, it offers the opportunity to
juxtapose more visualizations right next to the network topology.
Therefore, we can separate the network topology from the multivari-
ate attributes with juxtaposed views. The usefulness of this approach
has already been shown with adjacency matrices representing addi-
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Figure 5: Juxtaposed visualizations show node attributes (right) and
edge attributes (bottom) with aligned tabular views. The figure also
illustrates the definitions of the measures used throughout Section 3.

tional node attributes [NWHL20]. Node-link diagrams do not offer
such an arrangement.

Unlike adjacency matrices, in BioFabric, it is also possible to
represent edge attributes in a separate view. Thus, without interac-
tion, the tabular topology layout allows the alignment of node and
edge attributes in a juxtaposed view (Figure 5). Since the represen-
tation of attributes and the topology do not overlap, multiple edge
or node attributes can be displayed, offering a scalable approach
regarding the number of attributes. However, with an increasing
number of nodes, the space to represent edge attributes shrinks.
Likewise, increasing the number of edges limits the space to show
node attributes. Another major benefit of this view is the application
of node- and edge-orderings based on an attribute value’s value
through simple table interactions, e.g., selecting an attribute in a
juxtaposed visualization.

Juxtaposition is flexible, so any visualization that is tabular in
structure can be used to accompany BioFabric. If both a node and
an edge attribute visualization are used to show multivariate at-
tributes, free space is available at the bottom right corner to display
additional information, for example, detail-on-demand or summary
visualizations (Figure 5).

3.4. Other Design Considerations

In this section, we discuss other design considerations which do not
deal with the representation of multivariate data, but are important
to take into account when designing BioFabric visualizations.

Double Encoding: Each attribute visualization technique can be
used to embed the representation properties more than once. Fig-
ure 2 combines the encoding of attributes on the vertical line and
juxtaposed tables. Although this perceptually complementary view
is redundant, it provides support for analysis tasks [CBDM17]. View-
ers can choose the preferred technique, and the views can be used to
counter-check their findings. Other combinations are also possible,
such as juxtaposition with transformation or embedding and trans-
formation. This high degree of flexibility is impossible in node-link

diagrams or adjacency matrices. However, double encoding may
have distinct drawbacks: increasing the required screen space, es-
pecially for juxtaposed views, and increasing clutter and decreased
readability.
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Figure 6: Shadow
links added are
colored in light gray.
The red polygon
highlights a stair-
case pattern.

Shadow Links: Given the approach used
in BioFabric, the edges incident on a node
are, by design, distributed along the full
length of the horizontal node line. One
disadvantage of this approach is that an
edge is more closely tied visually with
only one of the endpoint nodes and can be
conceptually disconnected from the other
node. To address the issue of edges of
a single node being potentially visually
far apart, Longabaugh [Lon12] introduced
shadow links — copies of the original
edge, such that every edge is drawn twice.

Shadow links allow all edges of a node to be in one location next to
each other, enabling a more direct visual tracing and comparison of
the degree of nodes by the size of these groups. The main drawback,
however, is that the width of the BioFabric plot doubles with respect
to the number of edges and reduces the space available for edge
encodings.

Background Highlighting: The background of a node or edge
line can be highlighted, as it is typical for tables. According to the
“Common region” Gestalt Law [Ban94], coloring the background
helps to group rows or columns. Therefore, this design variation
provides guidance while following a node or an edge line, either
for retrieving an associated value or determining the neighborhood.
This technique can also be applied to adjacency matrices if the cells
do not contain a color-transformed edge encoding.

Interactive Highlighting: Interactive highlighting or filtering
is another technique explored in previous literature [LTdSPR17,
EHBvW14, vdEHBvW13] in combination with BioFabric visual-
ization. A straightforward approach is to highlight connected nodes
when hovering over an edge (Figure 7a) and/or highlight incident
edges when hovering over a node (Figure 7b). This method of
highlighting makes path tracing easier since lines that need to be
followed are more accessible to focus on. Especially, highlighting
incident edges of a node is an alternative to shadow links.

Reordering Among the elements that most definitely will influence
the perception of network topology in BioFabric, there is the or-
dering of the nodes and edges. The problem has been mentioned
— although without proposed solutions — already in previous re-
search [VBP∗21, DBPB∗22]. Indeed, the superficial and inattentive
combination of the order of the two sets of network elements can
produce unnecessarily longer, harder-to-track edges — while, con-
versely, using clever sorting strategies might create structures in the
visualization that can help highlight topological features, such as the
staircase pattern shown in Figure 6. While we believe that BioFabric
could benefit from many matrix reordering strategies, it is important
to consider the unique properties of the visualization at hand, and
we believe that this task would require its own in-depth paper. For
this reason, we deem this to be future work.

Space Considerations In a comprehensive discussion about design
decisions related to BioFabric, it would also be important to consider
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(a) Hovering over an edge
highlights the nodes connected
to it.
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(b) Hovering over a node high-
lights the edges incident to that
node.

Figure 7: Examples of interactions on BioFabric visualization.

the amount of data that can be displayed on such a visualization and
how the available screen estate influences the effectiveness of the
various encodings. For instance, the number of edges and nodes to be
displayed will determine the maximum size allowed for embedded
and transformed encodings, which can influence the separability of
their colors and/or shapes [SS19].

4. Quantitative Evaluation

We conducted a quantitative user study to reveal the strengths and
weaknesses of BioFabric for multivariate network analysis. Our
inspiration was drawn from Nobre et al.’s survey, which empha-
sized the unexplored potential of utilizing BioFabric for displaying
edge attributes with juxtaposed views [NMSL19]. For the experi-
ment design, we took inspiration from the most recent experiments
about node-link diagrams and adjacency matrices from Nobre et
al. [NWHL20]. We partially replicated their evaluation by trans-
ferring the visual encodings to an adjacency matrix and BioFabric.
Since we see the high potential of BioFabric in communicating
multiple edge attributes, we focused solely on this aspect in our
experiment. Furthermore, interaction techniques were not supported
since the ability to highlight the network topology would consider-
ably reduce the difficulty of completing analysis tasks.

4.1. Experiment Factors

We considered the factors visualization technique, task, size and
density of a network. Based on the recent experiment conducted
by Nobre et al. [NWHL20], we chose the adjacency matrix (AM)
and BioFabric (BF) due to their similar tabular structure avoiding
overplotting. The authors used a bar chart to visualize node attributes
in the node-link diagram. This representation can be replicated as
an edge encoding for AM. We embedded a bar chart within the
intersection cell to visualize multiple edge attributes. Nobre et al.
further aligned a table to the rows of AM to represent node attributes.
We transferred this approach to BF and visualized each edge attribute
in a separate column of a juxtaposed table. Figure 8 illustrates an
example of both techniques from our study.

We reordered the nodes using the Reverse Cuthill McKee-
Algorithm [GL81]. This method uses a heuristic for reasonable
bandwidth reduction at a very low computational cost [dOC15]. As
a result, distances between adjacent nodes in AM and lengths of

Figure 8: Visualization design for our user study. The examples
visualize a network of friendships with 10 nodes and a density of
10%. AM (left) encodes four edge attributes in a bar chart within
the cells. BF (right) encodes multiple edge attributes in a juxtaposed
table below the topology visualization.

the edges in BF are minimized [VBP∗21]. BF further provides the
opportunity to vary the ordering of edges. We tried to provide an
optimal ordering for each task to benefit most from this advantage
for BF. For topology-based tasks, we sorted the edges based on the
appearance of adjacent nodes. For tasks focusing on only one edge
attribute, we sorted the edges of the specified attribute in descending
order. The edges in tasks including two attributes are represented in
descending order of the first specified attribute. Edges that agree in
their values on the first attribute are sorted in descending order of the
second attribute. We further applied the ordering based on adjacent
nodes when edges agreed on all specified attributes. Feedback from
our pilot studies implied that this approach allows a better estimation
of the attribute value ranges in large and dense networks. Figure 9
presents an ordering example based on two attributes.

For each task, the visualization was drawn at a resolution of
2050× 1300 pixels. The juxtaposed table for visualizing edge at-
tributes in BF occupied one-third of the provided space. We re-
frained from visualizing attributes when the analysis did not involve
the inspection of attributes. In both techniques, we designed the
representations of the network topology to remain monochrome.
This allows the use of color for the visualization of edge attributes.
We employed a qualitative color map from ColorBrewer [BH] to
differentiate the attributes within an edge.

4.1.1. Tasks

In our experiment, we aimed to analyze various attributes within a
network. As such, we narrowed down our task selection to those
focusing on attribute-based analysis [LPP∗06,PPS14]. While earlier
user studies mainly focused on analyzing node attributes or a limited
set of edge attributes, we focused on multiple edge attributes.

T1 - Neighborhood Inspection: Given the visualized network,
participants are asked to select all adjacent nodes of a target node.
This task involves identifying the target node, scanning all outgoing
edges, and retrieving the source nodes.

© 2024 The Authors.
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Figure 9: Interface of our user study. The panel on the left provides the task description, legend, and answer field. The visualization of the
network is displayed to the right. In this example, participants on the BF condition had to solve task 3 on a network with 50 nodes and 10%
density. The correct answer is selected on the left.

T2 - Extreme Value Detection: Given the visualized network,
participants have to select the adjacent node of a target node with the
second highest data value for a specified attribute. After identifying
the target node, this task requires comparing the target attribute
value across all adjacent edges of the target node. The values are
judged based on the length of the corresponding vertical bar. Then,
the source node has to be selected. As identifying the highest
value is trivial on BF when the edges are ordered accordingly, we
refrained from using that task.
T3 - Within-Edge Comparison: Given the visualized network, we
ask participants to select all adjacent nodes of a target node whose
edge has a higher value in a first specified attribute than in a second
specified attribute. Similar to task 1, all outgoing edges of the target
node must be scanned, but the node selection includes comparing
the attribute values based on the lengths of the bars.

4.1.2. Network Size & Density

We created synthetic data of undirected networks without self-loops
using Python’s networkX package [HSS08]. To test the scalability
of each visualization technique, we used network data of varying
sizes and densities. We selected network properties according to
both a comprehensive survey on network visualization [YAD∗18]
and our experimental limitations. Since interaction or aggregation
techniques were not allowed, we came up with 20 nodes for the
small network, 50 for a medium-sized network, and 80 for the largest
network.

In our experiment, density is defined as d = e
n(n−1) where n de-

notes the number of nodes, and e is the number of edges [YAD∗18].
Given previous studies on attribute-based tasks, we chose a mini-
mal density of 2.5%, a medium density of 6.25%, and a maximum
density of 10% [NWHL20, CBDM17].

To provide more context for the participants, we decided to rep-

resent networks of friendships. A person in this network is illus-
trated as a node. An edge represents the friendship between two
persons. Each friendship is described by four edge attributes (i.e.,
years of friendship, distance, interactions per week, and common
hobbies) whose values were assigned randomly. We chose a num-
ber equal to the numerical node attributes evaluated in Nobre et
al. to allow the hypothetical transfer of results [NWHL20]. Like
in related experiments, we varied the attribute values between 6
levels [ABHR∗13, CBDM17].

4.2. Experiment Design

We used a split-plot design with the variable visualization technique
as the between-subject to directly compare the designs (i.e., AM
and BF) on the same tasks. The within-group design was applied
to the independent variables task, size and density. The dependent
variables were the measured accuracy and completion time.

4.2.1. Hypotheses

Based on experience, previous pilot studies, and literature [Lon12,
NMSL19, NWHL20], we derived the following hypotheses:
H1 - Scalability Hypothesis: BF is more scalable concerning the
size and density of the network than AM. This hypothesis is based
on Longabaugh’s work, which introduced BF to address scalability
issues of networks [Lon12]. Adding an edge to a visualized network
does not decrease the quality of the existing topological structures.
Thus, the authors describe BF as a precise technique for displaying
networks apart from their scale. In direct contrast, they mention that
visualization space in AM increases quadratically with the number
of nodes. As most networks are relatively sparse, this space usage
is considered less efficient.
H2 - Neighborhood Hypothesis: AM outperforms BF in accuracy
and completion time on the neighbor search when no edge attributes

© 2024 The Authors.
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are involved. Although both techniques allow for a systematic
approach to scan adjacent edges, we expect BF to be more
error-prone and take more time to retrieve a neighbor as multiple
lines with changing directions must be followed. Nobre et al. share
the same assumption in their extensive survey about multivariate
network visualization [NMSL19].
H3 - Edge Sorting Hypothesis: The judgment on attribute values
on BF results in a better accuracy and completion time than in
AM. The topological structure of BF benefits from sorting the
edges by attribute values. Also, the separate view provides more
space to visualize attributes. Compared to embedded bar charts, the
sorted table representing node attributes is strongly favored when
searching for an extreme value [NWHL20].
H4 - Within-Edge Comparison Hypothesis: For tasks involving
the comparison of attributes within individual edges, AM is more
accurate and requires less completion time than BF. The bar
chart in the cells of AM supports a direct comparison of multiple
attributes as the bars are arranged beside each other and use the
same baseline. In BF, we expect the effect of sorting the edges on
multiple attributes to be outweighed by the juxtaposed layout of the
edge attribute visualizations. This hypothesis is based on previous
research on embedded bar charts that resulted in better performance
when comparing attributes of neighbors [NWHL20].

Participants: We recruited 28 volunteers from our local student
population to participate in our study. 17 identified themselves as
male, 11 as female. All participants had normal or corrected-to-
normal vision and did not report color weakness. Their ages ranged
from 20 to 31 years (M: 22.96, SD: 2.56). Most participants finished
high school. Only four had obtained their Bachelor’s, and one partic-
ipant had a Master’s degree. 13 participants were currently engaged
in the field of computer science. The others represented diverse aca-
demic backgrounds (biology, economics, law, mathematics, sports,
and psychology). Based on a self-assessment, almost all participants
were generally familiar with computers (M: 4.04, SD: 0.96, on a
range where 1 means not familiar at all, and 5 means very familiar).
However, fewer participants had experience with data visualization
(M: 2.57, SD: 1.26). While our recruitment process favored univer-
sity students, we aimed to balance their academic backgrounds and
prioritize individuals with strong computer knowledge but limited
experience in data visualization, representing a broader population.

Procedure: The study was conducted in a quiet setting at our univer-
sity. The participant sat in front of a 27 inch display of 2560×1440
pixels. At approximately 60 cm distance, participants interacted
with a web-based application ( Figure 9) using a mouse. The experi-
menter guided the participants through an introduction, introducing
them to the dataset. This structured approach allowed for interme-
diate examples of identifying nodes, tracing edges, and assessing
edge attributes. In the condition of BF, the experimenter additionally
drew the participants’ attention to the ordering of edges, which we
took advantage of in the study.

After this introduction, the experimenter explained the structure
of the study. We divided the experiment into three sessions, each
presenting a different task type. We began with the topology-based
task, continued with the task on one attribute, and finished with
comparing two attributes. Each session started with an introduction
to the task in the web-based application, giving caution to possi-

ble misunderstanding. Nevertheless, the experimenter was present
throughout the participation and encouraged participants to ask ques-
tions if a task was unclear. The participants got familiar with the task
type by solving three training tasks on networks of 20 nodes and
a density of 2.5%. These tasks were designed to train them on the
technique and become comfortable with this study’s interface. To
ensure their understanding, participants had to answer at least two
of the training tasks correctly to proceed with the study. After the
training, nine tasks of the same type were presented in increasing
order of difficulty. We first increased the density on a fixed-sized net-
work, then continued with the next larger size. Overall, this resulted
in 36 trails. Finally, a form collected demographic information and
feedback on the study anonymously. We compensated each volun-
teer with 10C for one hour. We estimated the completion based on
pilot experiments.

5. Results

This section reports significant results (p < .05) from our quanti-
tative analysis. We recorded the performance in terms of accuracy
and completion time. The accuracy was calculated by summing
the number of correctly selected nodes, subtracting the number of
falsely selected nodes, and dividing by the total number of correct
nodes. We report mean values (M) for both measures with a 95%
bootstrapped confidence interval (CI). We use the format [LL,UL]
where LL is the lower limit, and UL is the upper limit of the interval.

As assessed by Levene’s [Lev60] and Shapiro-Wilk [SW65]
tests (with p < .05), the data on accuracy and completion time
is non-parametric. Thus, we used Spearman’s rank correlation coef-
ficient [Dan87] to explore the relation of the performance to size and
density. Since the tasks varied in purpose and accomplishment, we
analyzed the differences between the visualization techniques within
each task independently. We based our analysis on Mann-Whitney U
tests [MW47] and reported U statistics, p-values, and the Common
Language Effect Size [MW92]. Detailed results are reported and
discussed in Table 1.

5.1. Scalability

Figure 10 illustrates the effect of network size and density on each
technique’s performance. Independent of the task type, the perfor-
mance of BF seems less scalable with respect to network size than
AM. The accuracy of participants working with BF decreased dras-
tically when the network size was increased from 50 to 80 nodes.
The computed Spearmans’s ρ revealed that size and accuracy had
a moderate correlation (ρ =−0.41, p < .0001). Further, Figure 10
indicates a linear relationship between the network size and com-
pletion time on BF. These factors correlated strongly (ρ = 0.59,
p < .0001). For AM, the accuracy and the network size correlated
only weakly (ρ =−0.15, p = .003). However, the increase in net-
work size led to increasing completion time. We identified an even
stronger correlation compared to BF (ρ = 0.74, p < .0001).

BF was also more affected by network density than AM. Partici-
pants working with BF were less accurate and required more time
when the density was increased. Tests revealed that the number of
edges correlated weakly with accuracy (ρ =−0.27, p < .0001) and
time (ρ = 0.25, p < .0001). AM was less affected in the completion
time (ρ = 0.14, p = .0067).
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Figure 10: Effect of network size and density on the
performance independent of the task. The error bars
are confidence intervals.

Figure 11: Experiment results regarding accuracy and completion time
for all three tasks. The mean is encoded as a point, and the error bars
indicate confidence intervals.

Task 1 - Neighborhood Inspection
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Although both techniques provide high accuracy, participants working with AM are significantly
(U = 6701.5, p = .0002, CLES = 0.58) more accurate (M = 97.64, CI = [95.71,99.22])
compared to BF (M = 92.33, CI = [88.67,95.56]). The results reveal that the difference in
performance is affected by size. While it did not differ in small networks, AM outperformed BF
on networks with 50 and 80 nodes. Also, AM showed fewer errors than BF on networks with
2.5% and 10% density. Results did not significantly differ on networks with a density of 6.25%.

Size 20 U = 882.5 p = .5135 CLES = 0.5
50 U = 697.5 p = .0025 CLES = 0.6
80 U = 659.0 p = .0056 CLES = 0.63

Density 2.5% U = 776.0 p = .0245 CLES = 0.56
6.25% U = 819.5 p = .1236 CLES = 0.54
10% U = 649.5 p = .0036 CLES = 0.63

Ti
m

e

Participants were significantly (U = 10166.0, p = .0001, CLES = 0.64) slower when working
with BF (M = 1.69, CI = [1.38,2.03]) compared to AM (M = 0.92, CI = [0.75,1.1]). Similar
to the accuracy, the difference in completion time was affected by size and density. AM required
significantly less time than BF.

Size 20 U = 1347.0 p < .0001 CLES = 0.76
50 U = 1204.0 p = .002 CLES = 0.68
80 U = 1267.0 p = .0003 CLES = 0.72

Density 2.5% U = 1103.0 p = .0243 CLES = 0.63
6.25% U = 1350.0 p < .0001 CLES = 0.77
10% U = 1271.0 p = .0003 CLES = 0.72

Task 2 - Extreme Value Detection

A
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y There were no significant differences between the visualization techniques. The overall similar
accuracy of AM is M = 92.06, CI = [87.3,96.07], while BF has M = 90.48, CI = [84.92,95.24].
When considering network size, AM was more accurate than BF for larger networks with 50 and
80 nodes.

Size 20 U = 882.0 p = 1.0 CLES = 0.5
50 U = 1008.0 p = .0272 CLES = 0.57
80 U = 714.0 p = .0203 CLES = 0.4

Density 2.5% U = 882.0 p = 1.0 CLES = 0.5
6.25% U = 945.0 p = .1725 CLES = 0.54
10% U = 777.0 p = .1588 CLES = 0.44

Ti
m

e

Again, no significant differences existed between visualization techniques. Participants needed
slightly more time with BF (M = 0.62, CI = [0.55,0.69]) than with AM (M = 0.58, CI =
[0.53,0.63]). The longer completion times are more apparent in smaller networks (20 nodes) or
really dense networks (10%), resulting in significant effects.

Size 20 U = 1253.0 p = .0005 CLES = 0.71
50 U = 653.0 p = .98 CLES = 0.37
80 U = 847.0 p = .6246 CLES = 0.48

Density 2.5% U = 936.0 p = .3161 CLES = 0.53
6.25% U = 653.0 p = .98 CLES = 0.37
10% U = 1082.0 p = .0372 CLES = 0.61

Task 3 - Within-Edge Comparison

A
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y Participants were significantly more accurate (U = 6461.5, p = .0005, CLES = 0.59) with
AM (M = 92.0, CI = [88.44,95.14]) compared to BF (M = 79.9, CI = [74.27,85.26]). The
accuracy is further affected by size and density. The results reveal that analysis results in
networks with 50 and 80 nodes, or highest density(10%) were more accurate with AM than with
BF.

Size 20 U = 948.0 p = .8663 CLES = 0.46
50 U = 683.0 p = .0066 CLES = 0.61
80 U = 490.5 p = .0001 CLES = 0.72

Density 2.5% U = 917.5 p = .6903 CLES = 0.48
6.25% U = 750.5 p = .0759 CLES = 0.57
10% U = 486.5 p < .0001 CLES = 0.72

Ti
m

e

There is a significant effect (U = 11843.0, p < 0.0001, CLES = 0.75) of completion time on
visualization technique with participants working with AM (M = 0.97, CI = [0.85,1.08]) being
faster than with BF (M = 1.95, CI = [1.68,2.23]). As the results indicate, this is also true for all
different sizes and densities.

Size 20 U = 1544.0 p < .0001 CLES = 0.88
50 U = 1632.0 p < .0001 CLES = 0.93
80 U = 1428.0 p < .0001 CLES = 0.81

Density 2.5% U = 1264.0 p = .0003 CLES = 0.72
6.25% U = 1390.0 p < .0001 CLES = 0.79
10% U = 1397.0 p < .0001 CLES = 0.79

Table 1: Accuracy and completion time for each task split by network size and density. Significant results are highlighted in bold font.
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6. Discussion

H1 - Scalability Hypothesis: We conjectured that BF is more
scalable with respect to network size and density than AM. However,
the analysis revealed that working with BF led to more error-prone
results on complex networks than AM. Representing nodes as
horizontal lines instead of points was new to all participants and
added additional difficulty to accomplishing the analysis tasks. Also,
participants had problems following individual edges. Increasing
network size and density shrank the space between the node
and edge lines, significantly impacting the visualization. Most
participants commented on losing the focus of the target node. They
proposed interactive highlighting or alternating colors for the edge
lines as a solution. However, this approach requires careful consid-
eration for the color encoding of additional attributes, especially
when interactive highlighting is available. Although BF uses the
visualization space more efficiently compared to AM in terms of
the number of nodes, it does not preserve the legibility of complex
graphs well. This result contrasts the objective of Longabaugh to
address the scalability issue [Lon12]. Thus, we cannot confirm H1.
H2 - Neighborhood Hypothesis: Our results of task 1 sup-
port the recommendation of Nobre et al. on the neighborhood
inspection [NMSL19]. When no edge attributes are involved, AM
outperforms BF. We believe retrieving a neighbor in BF is impeded
because the alignment of multiple lines to trace might change.
As some participants mentioned, this is not true for the edges of
the upper nodes. In this case, the representation of adjacent edges
resembled a waterfall pattern, so a longer edge connects the next
neighbor to the right. To reveal these kinds of patterns for all nodes,
Longabaugh introduces shadow links [Lon12], which duplicate
the number of edges, jeopardizing scalability. In AM, the aligned
headers help keep track of inspected neighbors. Some participants
working with AM tried to minimize the error by memorizing the
number of cells between multiple adjacent edges and retrieving
corresponding neighbors in the header simultaneously. This
approach is not possible with BF. For small networks, BF provides
an overview as good as AM. Overall, AM has a better performance.
Therefore, we confirm our hypothesis H2.
H3 - Edge Sorting Hypothesis: Across all networks, we could
not identify differences in performance between AM and BF for
task 2. This is surprising since participants using BF perceived the
ordering of edges as helpful for detecting an extreme value. Also,
Nobre et al. identified the ordering of attributes as highly beneficial
for nodes in AM [NWHL20]. Thus, we explain the discrepancy
in our findings due to the erroneous differentiation of lines during
neighbor retrieval. As the juxtaposed table covered one-third of
the visualization space for BF, differentiating between node lines
was even more challenging than in task 1. Further, we believe that
the spatial separation of the edges and their attributes hampered
their correct association (see the gap between the topology view
and the corresponding attributes Figure 9). Again, an interactive
highlighting might help to connect edges with their corresponding
attributes better. The integrated approach in AM provided more
accurate results on large networks and significantly decreased the
time for identifying attributes in dense networks. Based on this, we
cannot confirm H3
H4 - Within-Edge Comparison Hypothesis: The embedded bar
chart in the matrix cells is more amenable when multiple attributes

need to be inspected. AM showed better performance in task 3
than BF. These results are in line with recent research [NWHL20].
For BF, the juxtaposed view counteracted the benefit of sorting
the edges on multiple attributes. On large and dense networks,
participants were uncertain when following edges at the boundaries
of the attribute value ranges. Also, comparing attributes over
adjacent rows took longer and resulted in less accurate answers.
In AM, the encoding as a bar chart made it possible to spot the
difference between the target values easily due to the identical
baseline. Thus, we can confirm our hypothesis H4.

7. Design Considerations

We propose the following design considerations based on our design
space exploration, user experiment results, and discussion.

For assessing a node’s neighborhood, analysts should consider
AM. Although BF and AM share an overall high accuracy, the results
of task 1 indicate that AM scales better for network size and density.
When analyzing few edge attributes, AM should be preferred.
Participants performed better when working with AM. This is true
for all network sizes and densities.
For small network sizes and densities, both visualization tech-
niques can safely be used. Participants performed equally well with
both visualization techniques in all three tasks.
When there is sufficient space, designers should introduce
shadow links for BF. Qualitative feedback has shown that par-
ticipants prefer a staircase pattern for neighborhood inspection. The
grouping of related edges facilitates reading neighborhoods.
With an increasing number of attributes, juxtaposed views might
be preferable. Overplotting becomes more likely when many at-
tributes are visualized using embedded or transformed views, irre-
spective of the chosen visualization technique (AM or BF).
Independent of the visualization technique, interactive high-
lighting should be implemented. In the qualitative assessment,
participants commented on the usefulness of interactive highlighting
to avoid losing track of following individual edges.

8. Conclusion & Limitations

In this paper, we explored the design space of BioFabric for multi-
variate network analysis. We conducted an experiment with 28 par-
ticipants to assess the performance of BioFabric for edge attribute-
based analysis tasks compared to the well-established adjacency
matrix. The results show that the adjacency matrix is more scalable
and better suited for adjacency tasks with and without additional
edge attributes. However, both visualizations achieved an overall
high accuracy. From our qualitative feedback, the ordering of edges
in BioFabric was helpful for the inspection of attributes. However,
the benefits of juxtaposed tables proved in other studies did not
prevail in our experiment. Therefore, our results did not support the
potential ascribed to BioFabric [NMSL19].

Our design exploration offers various visual encoding and arrange-
ment possibilities for BioFabric. Although previous experiments
inspired our designs, alternative design considerations could produce
different results. This is especially true for double encodings, which
profit from redundant mappings [Kop79], or sorting the nodes and
edges differently. In our experiment, the chosen tasks focused only
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on edge attributes. In multivariate network analysis, node attributes
and the combination of the two might also be interesting. Especially
for the latter use case, BioFabric might profit from the possibility
of sorting two juxtaposed tables (i.e., nodes and edge attributes).
The underlying data in our user study contained up to four edge
attributes. However, when increasing the number of attributes, we
expect the juxtaposed tables used in BioFabric to profit from their
aspect ratio. At the same time, integrated representations like the
bar charts in adjacency matrices would drastically decline in visual
quality. In other visualizations, interaction techniques are helpful
for different tasks. Thus, we suggest the integration of interaction
possibilities like visual highlighting are provided.

In the future, we want to investigate the performance of BioFab-
ric in other topology- and attribute-based tasks when increasing
the number of attributes and testing alternative design variations.
The application of edge- and node-sorting algorithms, as already
discussed for Massive Sequence Views [EHBvW14, vdEHBvW13]
also seems promising. This study complements the multivariate net-
work analysis research field with the first quantitative evaluation of
BioFabric and a set of design considerations for practitioners.
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