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= ProtEG&nist Data: Full E. coli K12 PPI obtained from STRING (Szklarczyk et al, 2015) (9]
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Figure 1: ProtEGOnist uses ego-graphs for the visualization of small-world networks (in this case, the Escherichia coli protein-protein
interaction network). (a) The network of ego-graphs visualized as aggregated glyphs gives an overview of the network with edges visualizing
similarity. (b) A radar chart shows the similarity between a selected ego-graph (center, yellow node in (a)) and its neighbor ego-graphs
grouped by metadata. Circles representing ego-graphs that are included in the subnetwork are highlighted by an orange outline. (c) An
ego-graph subnetwork selected from the overview (orange nodes in (a)) provides details. Three ego-graph nodes are deaggregated forming
an ego-graph group for a detailed comparison. The ego-graphs contain all nodes with a maximum distance of two.

Abstract

Visualizing small-world networks such as protein-protein interaction networks or social networks often leads to visual clut-
ter and limited interpretability. To overcome these problems, we present ProtEGOnist, a visualization approach designed to
explore small-world networks. ProtEGOnist visualizes networks using ego-graphs that represent local neighborhoods. Ego-
graphs are visualized in an aggregated state as a glyph where the size encodes the size of the neighborhood and in a detailed
version where the original network nodes can be explored. The ego-graphs are arranged in an ego-graph network, where
edges encode similarity using the Jaccard index. Our design aims to reduce visual complexity and clutter while enabling
detailed exploration and facilitating the discovery of meaningful patterns. To achieve this, our approach offers a network
overview using ego-graphs, a radar chart for a one-to-many ego-graph comparison and meta-data integration, and detailed
ego-graph subnetworks for interactive exploration. We demonstrate the applicability of our approach on a co-author net-
work and two different protein-protein interaction networks. A web-based prototype of ProtEGOnist can be accessed online at
https://protegonist-tuevis.cs.uni-tuebingen.de/.
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1. Introduction

Networks are used to model a wide array of systems. Depending on
the underlying data, networks can differ in their parameters, size,
density, and connectivity. Many networks such as social networks,
biological networks, transportation networks, or citation networks
exhibit the small-world property, which means that most nodes can
be reached from any other node in a small number of steps [Mil67;
WS98]. A famous example of this property is the idea of the 6-
handshakes rule also known as six degrees of separation, stating
that every person in the world only has a distance of a maximum of
six handshakes from any other person [Kar29; NBWO06].

The small world property is also prevalent in many biological
networks [BO04] like protein-protein interaction (PPI) networks,
which play a crucial role in modeling and understanding the intri-
cate mechanisms governing cellular processes. In PPIs, proteins are
seen as nodes, while interactions are represented by edges. Tradi-
tionally, two proteins are considered interacting if they bind physi-
cally. However, the concept is often extended to other indirect con-
nections, such as the spatial proximity of the corresponding genes
in the genome or co-occurrence validated in the literature.

Typical visualizations for small-world networks include node-
link diagrams or matrix representations [FAM23]. Links in our case
represent any type of interaction, e.g., interacting proteins or “in-
teracting” researchers co-authoring a paper. Visualizing complete
networks with many thousands of nodes as node-link diagrams typ-
ically results in a cluttered, hairball-like structure, especially when
using standard force layouts [NOB14]. Moreover, the sheer num-
ber of nodes and interactions makes it challenging to find nodes of
interest and do a targeted comparison of their neighborhoods.

Oftentimes, single nodes serve as starting points when analyz-
ing small-world networks, such as oneself or a famous person in
a social network. Usually, it is meaningful to inspect not only im-
mediate contacts but also indirect ones. Social science studies have
shown that in social networks such indirect contacts can affect, e.g.,
a person’s happiness [FCO08] and their ability to find a job [Pel10].
In PPI networks, a node of interest could be a protein that is the
research focus of a biologist. Indirect connections are studied, e.g.,
when analyzing metabolic pathways. This is, e.g., important in PPIs
showing physical interactions. It has been shown that proteins with
the same interaction partners rarely interact directly [KLS*19].
Common path lengths for PPI networks are between four and
five [XBBY11], thus, contacts with a distance higher than two tend
to cover very large portions of the network [ARR*14].

To study such local subnetworks around nodes of interest, ego-
graphs can be used [Spr99]. Originally developed for the study of
social networks, this approach focuses on the local neighborhood of
an individual node, instead of showing all nodes and interactions.
An ego-graph consists of a central node of interest—the ego—
and its local neighborhood in the network—the alters. Degree-1
alters are alters with a direct connection to the ego. Degree-2 al-
ters have direct connections to degree-1 alters, but not to the ego.
That is, 1-level ego-graphs only consider degree-1 alters, and 2-
level ego-graphs consider degree-2 alters as well. Typically, 2-level
ego-graphs are used [ZGC*16], i.e., “friends-of-friends” networks.

We developed ProtEGOnist, a novel visualization approach for

the exploration of small-world networks that uses 2-level ego-
graphs to aggregate local neighborhoods represented by glyphs.
(Figure 1). Initially, ProtEGOnist was submitted as a contri-
bution to the Bio+MedVis Challenge 2023 [23a] for redesign-
ing the visualization of a specific PPI network by Gongalves et
al. [GPC*22]. The challenge dataset included a PPI network to-
gether with protein-drug associations predicted using a deep learn-
ing approach developed by the authors called DeeProM. The orig-
inal visualization was a static figure (Figure 7F in original pub-
lication) showing the PPI network as a node-link diagram with
8,395 nodes and 66,721 edges. The main point of the challenge
was to provide a less cluttered view of the network that includes
overviews as well as detailed visualizations that are enriched with
metadata. Moreover, the challenge specified the need to focus on
specific proteins and explore their relationship. Based on the vi-
sualization of this dataset, ProtEGOnist was awarded as the best
contribution to the Bio+MedVis Challenge 2023.

Our contributions can be summarized as follows: we present
a universal approach for the exploration of small-world networks
with many thousands of nodes. Our approach focuses on ego-
graphs, i.e., placing the individual in the center as the ego and thus
making it the “protagonist” of the graph (Section 3.1). To achieve
this, ProtEGOnist creates a network of ego-graphs from an input
interaction network and uses specifically designed glyphs to visu-
alize these ego-graphs (Section 3.2). The edges in the network of
ego-graphs are weighted by the similarity of the ego-graphs, which
is calculated as the Jaccard index of the node sets for each pair of
nodes. This concept allows for an exploration from an overview
level down to analyzing subsets of ego-graphs, comparing up to
three ego-graphs in detail, and inspecting single ego-graphs (Sec-
tion 3.3). Using the taxonomy proposed by Filipov et al. [FAM23],
we would position ProtEGOnist as a group network visualization,
since the ego-graphs represent groups of nodes based on neighbor-
hood. Using the Vertex Group Structure Taxonomy by Vehlow et
al. [VBW17], we would describe ProtEGOnist as an overlapping
hierarchical structure, which they found only in a single approach.

We demonstrate the effectiveness of our approach using three ex-
emplary use cases. The first one is a co-author network built from
IEEE VIS authors [IHK*17], i.e., a social network (Section 4.1).
The other two show that our approach can be used for domain-
specific datasets, such as visualizing PPI networks: we applied
ProtEGOnist to a PPI network of Escherichia coli (Section 4.2) and
a human PPI with metadata on drug-protein associations provided
for the Bio+MedVis Challenge 2023 (Section 4.3).

2. Related Work

Simple node-link diagrams are the most commonly used visualiza-
tion techniques for networks [NMSL19]. They are, e.g., popular for
visualizing PPIs and are used by STRING [SFW*15] and the well-
known network visualization tool Cytoscape [SMO*03]. Although
node-link diagrams are conceptually intuitive and powerful for vi-
sual analysis, they quickly suffer from overdraw, layout problems,
and clutter for larger networks [NOB14].

Therefore, approaches beyond force-directed node-link dia-
grams, different layouts [SKL*14] including hierarchical lay-
outs [AMAOQ7], on-node encodings [VV14], and hybrid network
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visualizations [HFMO07; ADM*19] have been developed. As an in-
depth review of the vast literature on network visualization is be-
yond the scope of our paper, we refer to the recent state-of-the-art
reports by Filipov et al. [FAM23] and Nobre et al. [NMSL19].

To reduce the amount of clutter created by the edges, various
approaches are used. Edges can be partially indicated [BVKW12]
or even omitted completely. An omission is only viable if edges are
implicit or not of interest in the applied layout, for example, when
applying containment to cliques. Both approaches can be enriched
by drawing the edges in full on-demand [SA06]. Moreover, edge
bundling can be used to use topological or semantic information to
merge edges into bundles [Hol06; ZPYQ13]

A general approach to reduce the clutter in a node-link diagram
is to reduce the number of elements via grouping, clustering, or
aggregation. Grouping can be utilized using underlying semantic
information to generate containment for groups sharing specific at-
tributes [SA06; BLGS06]. These approaches depend on semantic
metadata suitable to the applied grouping method and the under-
lying goal of the analysis. Alternatively, networks can be grouped
purely by topological measures, for example, grouping into subnet-
works of densely connected nodes or by creating ego-graphs for a
set of manually or computationally determined nodes of interest.

Aggregation is often used by merging nodes into distinct glyphs,
increasing readability [DS13]. In one such example, Vehlow et
al. [VRW13] visualize multiple overlapping hierarchical networks
using node-link diagrams. In their fuzzy-communities approach,
they display an overview using multiple levels of abstraction. De-
pending on the chosen level, some or all nodes are collapsed into
meta-nodes, which encode network membership-heterogenicity us-
ing the fuzziness of the shape.

Alternative techniques go further by substituting glyphs for other
standalone visualization types, like adjacency-matrices [HFMO7],
chord diagrams [ADM*19] or customizable plots such as line-
and bar-charts [VV14]. While these approaches aim at visualizing
groups in general, specialized visualization types have been devel-
oped for ego-graphs, aiming at displaying their inherent hierarchi-
cal structure with an ego and alters. The EgoComp approach uses
a hybrid network visualization for comparing ego-graphs in social
networks [LGD*17]. It applies both an implicit hierarchical layout
for the visualization of ego-graphs and a conventional node-link
layout for linking identical nodes between the compared graphs.
For the visualization of ego-graphs, nodes are placed around a cen-
ter in partial circles according to their distance from the ego. The
half-circles of the two compared ego-graphs are facing each other.
Since two ego-graphs can contain the same nodes, edges connect
the respective nodes to express identity.

Ego-graph visualizations are extensively used in the domain
of dynamic graphs, as shown in a recent review by Kale et
al. [KSP23]. While dynamic graphs represent a data structure with
specific tasks and use cases, some of the visualization concepts ap-
ply to static graphs. Visualizations of ego-graphs in dynamic net-
works include node-link diagrams using a stress-majorization lay-
out [QHS*15] circular glyphs [WPZ*16], radial layouts [PHW17;
Reil0], linear layouts [ZGC*16; FMW#*21] as well as combina-
tions of the aforementioned approaches [SWW#*15]. EgoSlider ag-
gregates an ego-graph into a pie- or bar-chart glyph- They encode
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changes in the properties of the graph at different time points. The
authors use the circular variant as default, arguing that the design
serves as a “metaphor of an ego surrounded by alters” [WPZ*16].
This metaphor corresponds to a radial approach to visualizing
target-based graphs, where the center node of the node-link dia-
gram effectively considers the graph as the root of a rooted tree. It
is an approach commonly found in the literature [Wil99; DLR09;
XWH#*23], especially in literature focused on ego-graph visualiza-
tion [BP10; FHQ11; LGD*17]. Differently, EgoLines is an exam-
ple of a technique applying non-circular layouts when comparing
an ego-graph at different states of a dynamic network [ZGC*16].
It visualizes ego-graphs as adjacency matrices, but as they grow
quadratically in size with an increasing number of nodes, they are
hard to interpret for large ego-graphs. The ego is placed in a central
position with alters placed outwards, inducing a hierarchy within
the alters even if not desired.

In addition to the general approaches, we also consider ego-
graph approaches for PPI networks relevant to our work as a
contribution to the Bio+MedVis Challenge [23a]. The STRING
database [vMHJ*03] is a popular resource for PPI networks. It uses
different interaction types to calculate a confidence score for each
protein-protein interaction. Ego-graphs are shown when searching
for a protein of interest [SFW*15]. The alters, are the proteins that
are directly connected with a query protein — the ego. This 1-level
ego-graph is shown as a node-link diagram with a force-directed
layout. By default, it displays only the 10 highest-scoring interac-
tions to reduce the network size. Optionally, a second shell of inter-
actions can be displayed, showing the highest-scoring direct neigh-
bors of the interactors of the target query (2-level ego-graph). In
contrast to STRING, BioLinker [DMF17] visualizes the entire net-
work in an overview, where nodes of interest can be selected and
visualized as a subnetwork consisting of ego-networks in a sepa-
rate view. Moreover, BioLinker highlights the egos such that they
are visually distinct from the alters.

Another application using ego-graphs in biological networks is
the EgoNet algorithm [YBQY 14], which identifies disease subnet-
works. EgoNet can be applied to PPIs where each protein is associ-
ated with protein abundances (also called protein expression) at dif-
ferent clinical outcomes, e.g., when comparing protein abundances
in healthy and cancerous cells. Starting with an ego, the tool itera-
tively adds alters and calculates if the contained proteins suffice to
predict the clinical outcome. This approach shows how ego-graphs
are used as a data structure to computationally reduce the network
size by focusing only on the most relevant nodes.

3. Approach

Based on the Bio+MedVis Challenge 2023 [23a] and aided by the
task taxonomy for graph visualization by Lee et al. [LPP*06], we
identified the following tasks for the development of ProtEGOnist:

Overviews can provide a starting point for the analysis [Shn96],
especially in previously unexplored datasets and when there is no
clear hypothesis about the data. For this, we want to simplify the
network and declutter it by aggregating groups of nodes into meta-
nodes. Then we can exploit the small-world property to facilitate an
overview showing the important meta-nodes, like those covering a
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large part of the interaction network. This can be described as an
Overview Task.

Often the global context of entities of interest identified before
exploration, such as specific known individuals within a social net-
work or proteins within a PPI is of special interest. Van Ham and
Perer [vP09] present an approach applying the “Search, Show Con-
text, Expand on Demand” principle, which focuses on nodes of in-
terest that can be interactively added to the visualization and shown
in the context of the graph. A central aspect of ProtEGOnist should
be the selection of nodes-of-interest, which is best described as an
Attribute-Based Task - On the Nodes. For this, we want to create
the meta-nodes based on the neighborhoods of nodes of interest
and need to find the nodes accessible from these nodes (Topology-
Based Task - Accessibility).

Moreover, we want to empower users to find similarities between
nodes, for example, by estimating the overlap between meta-nodes.
We also want to allow for a more meaningful and in-depth compar-
ison of meta-nodes. A user might want to find the nodes shared be-
tween the corresponding neighborhoods. Both actions correspond
to a Topology-Based Task - Common Connection. Finally, we also
want to allow the users to utilize the metadata layer to find nodes
fulfilling domain-specific criteria. For example, metadata should be
used for filtering nodes of interest and mapped to visual channels.
This can again be described as an Attribute Task - On the Nodes.

Based on these described tasks, we identified the following re-
quirements for ProtEGOnist:

R1 Overview: Apply filtering and aggregation techniques to pro-
vide a comprehensive overview showing the most relevant
meta-nodes(e.g., representing numerous interactions).

R2 Subnetwork context: Viewing meta-nodes in the local and
global network context.

R3 Detail: Allow a detailed analysis of meta-nodes, such as find-
ing shared nodes in subnetworks.

R4 Metadata: Provide the integration of further metadata on the
network, such as categories or measurements for the instances
represented by nodes.

We want to develop a layout that satisfies these requirements and
enables the defined tasks and thus results in a less cluttered visual-
ization in comparison to force-directed node-link diagrams like the
one of the Bio+MedVis Challenge.

3.1. Ego-graph Concept & Visualization Design

We address the requirements defined above with ProtEGOnist us-
ing ego-graphs. Interaction networks consist of nodes representing
entities, such as proteins in PPI networks or people in social net-
works, and edges representing interactions between them. Instead
of visualizing every node and interaction individually, ProtEGOnist
groups nodes and interactions into ego-graphs and represents them
as circular glyphs. Similarity values are calculated for every pair of
ego-graphs using the Jaccard index of the sets of contained nodes,
i.e., the intersection size divided by the size of the union. Using
the similarity values, an ego-graph network is created, where the
nodes are visualized using the ego-graph glyphs. The small world
property can be exploited to create an overview since a compara-
tively small set of ego-graphs is sufficient to cover a relatively large
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Figure 2: Ego-graphs and ego-graph networks, the concept of
ProtEGOnist. (a) A single ego-graph can be visualized in detail
or aggregated. The detailed view shows the ego in the middle of
a circular graph layout. Degree-1 alters are placed on the inner
circle, and degree-2 alters on the outer circle. Nodes are colored
corresponding to their number of interaction edges (few interac-
tions (M many interactions). The interaction edges are only dis-
played when hovering over a node. The aggregated view of an ego-
graph encodes the number of alters via the area of the glyph. (b) An
ego-graph subnetwork consists of single ego-graphs and ego-graph
groups. In this view, similarity edges connect single ego-graphs.
Their width and opacity encode the Jaccard index between the re-
spective ego-graphs. (c) Visualization of an ego-graph group. Ego-
graph groups are arrangements within the ego-graph network of up
to three detailed ego-graphs with identity bands connecting iden-
tical nodes. A darker blue indicates nodes occurring in all three
ego-graphs, while the lighter blue indicates only pairwise intersec-
tions.

set of nodes of the original network (R1). The glyphs provide ad-
ditional details about the ego-graphs contained in the network and
their relation to each other (R2,R3).

We use 2-level ego-graphs, i.e., all alters have at most a distance
of two to the ego, to achieve a reasonable reduction of the original
network as well as to offer visually feasible comparisons between
any two ego-graphs. Each node can be chosen as the ego of an
ego-graph. To represent a single ego-graph, we have designed two
types of radial glyphs: a detailed one and an aggregated one (Fig-
ure 2a). The detailed glyph (Figure 2a, top) visualizes the alters as
ring segments in two circular levels around the ego (R3). The cir-
cular layout highlights the central role of the ego and represents a
space-efficient layout for its alters. The first, inner level contains all
degree-1 alters, while the second, outer level contains all degree-2
alters. The ego is represented by a filled circle in the center. To
visualize the connectedness of the alters, the ring segments repre-
senting the alters as well as the ego circle are colored to represent
their node-degree in the network (few interactions (O many in-
teractions). To avoid clutter, the interaction edges of the alters are
only shown on hover. The aggregated glyph (Figure 2a, bottom) is
a simplified, abstract version of the detailed glyph. It consists of
two concentric circles to symbolize the two levels and a black dot
in the center to represent the ego. The background of the glyph can
be colored to represent a certain property of the underlying ego-
graph. The size of both the detailed and the aggregated glyph can
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be scaled to illustrate the number of elements in the ego-graph, that
is, the cardinality of the ego-graph itself. For the detailed glyph,
this is a deliberate double encoding that makes it easier to compare
the size of two ego-graphs instead of counting the circle segments
representing the nodes. Optionally, circular text labels on top of the
glyph can show the name of the ego (Figure 1). The font size is
scaled with the size of the glyph, and the text labels are automati-
cally discarded if the glyph is too small.

The glyphs can also be used as the nodes of an ego-graph net-
work (R2), where the size of each node encodes the cardinality of
the ego-graph and the edge widths encode the similarity using the
Jaccard index (similarity edges, Figure 2b). By default, ego-graphs
are represented as aggregated glyphs that can be expanded on de-
mand to show the detailed glyph for an in-depth analysis.

Connected ego-graphs can be selected to form an ego-graph
group to show in detail which alters are shared between the ego-
graphs or unique to an ego-graph (R3). The groups show the ego-
graphs as detailed glyphs and the numbers of shared alters as iden-
tity bands (Figure 2c). We restrict groups to three ego-graphs to
eliminate crossing bands. In the case of an ego-graph group with
three ego-graphs, we divide each ego-graph circle into four sec-
tions: one for alters unique to the respective ego, two for alters
shared between any two ego-graphs, and one for alters shared be-
tween all three ego-graphs. The three detailed ego-graph glyphs are
placed to form an equilateral triangle. The sections shared between
all three graphs are arranged to face towards the center of the imag-
inary triangle (dark blue), while the pairwise sections face towards
each other (light blue), and the section containing the unique nodes
faces away from the triangle center. The shared sections are illus-
trated by contour arcs covering the corresponding nodes of the de-
tail glyphs. The arcs on the glyph surfaces are connected via iden-
tity bands to visualize that the corresponding sections in the ego-
graphs contain the same nodes. These curved bands are optimized
to avoid sharp angles or crossings by positioning them off-center to
the corresponding arc. The colors of the bands match the arc color
and facilitate distinguishing the portions of nodes shared between
two and three ego-graphs. If the group only consists of two ego-
graphs, only a single section is generated for the shared nodes, and
the two ego-graphs are placed on a horizontal line.

The alters in the detailed ego-graphs are sorted separately.
Within the sections, they are sorted by three criteria: (i) Their dis-
tance to the ego, (ii) their average distance to the other egos in the
ego-graph group, and (iii) their node degree (R2). Thus, distinct
subsections within the sections emerge, facilitating the location of
shared nodes with a specific distance to the different egos.

3.2. Glyph and Ego-Graph Group Redesign

As an initial idea for the submission to the Bio+MedVis Challenge,
we followed the approach implemented in egoComp [LGD*17], in
which alters shared between two ego-graphs are connected using
edges (Figure 3a). While this is feasible for comparing two ego-
graphs in detail, we encountered several issues when using this in
the ego-graph network and for ego-graph groups (R3).

To avoid edge crossings, the sort order of shared alters in ego-

graph groups had to be identical in each graph. This caused some

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

-~ -
° - ® -
’|/ /\‘\
1,
,._

N

©) 4\

Figure 3: Different concepts for visualizing ego-graph groups:
(a) First concept as submitted to the Bio+MedVis Challenge 2023.
Nodes are encoded as circles and connected to the instances of
the same node with identity edges. (b) Redesigned concept, where
nodes are encoded as ring segments and identical instances are
connected with identity bands. (c) Shared-only mode, where alters
not shared with other ego-graphs in the group are filtered out.

proportions of the ego-graphs to remain in a non-logical order con-
cerning the node degree, and the general distribution of node de-
grees could not be deduced visually. Moreover, we could not use
the entire circle for displaying alters shared between ego-graphs
but only a portion to avoid edges crossing the nodes. In the case
of an ego-graph group of size three, it was hard to visually dis-
tinguish alters that are shared between all ego-graphs and alters
shared between only two ego-graphs. In addition, identity edges
could not easily be distinguished from similarity edges. Further-
more, alters were encoded by circles in the previous version. For
large ego-graphs, the available space to arrange alters around the
ego is limited, leading to tiny radii when displaying circles. This
in turn caused a very poor “ink-to-space” ratio, which then made it
very hard to properly distinguish single nodes.

With the introduction of colored curved identity bands (Fig-
ure 3b), we addressed all of these issues. The usage of identity
bands leads to the circle being split into sections, effectively creat-
ing a donut chart-like visualization of the grouping of nodes. Iden-
tity bands can be distinguished from the similarity edges through
the colors and the organic shape. By drawing bands instead of in-
dividual edges, we can now use the entire circle to display shared
nodes, allowing the creation of a second view mode that shows
only nodes shared by any of the detailed ego-graph instead of all
nodes for all ego-graphs (Figure 3c, shared-only mode). Lastly, the
problem of a low “ink-to-space” ratio was tackled using ring seg-
ments instead of circles to visualize the alters, as explained in Sec-
tion 3.1. Furthermore, as individual identity edges are no longer
drawn, more advanced sorting criteria could be introduced for the
segments leading to a natural partitioning into subsections.

3.3. Visual Interface & Application Design

ProtEGOnist uses three main visualization components (Figure 1):
a simplified overview of the original network showing a static ego-
graph network (Figure 1a), a radar chart showing information
about ego-graphs similar to one specific ego-graph (Figure 1b), and
an ego-graph subnetwork (Figure 1c), which applies the concept of
dynamically de-aggregating ego-graphs to a user-defined subset of
the ego-graph network for a detailed analysis and comparison.



6of 13 N. Brich, T. Harbig, M. Witte Paz, K. Nieselt, & M. Krone / ProtEGOnist

Network overview: 55 ego-graphs covering 78.83% of the nodes and 90.12% of the edges of the given network.
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Figure 4: Network overview using a set of 100 ego-graphs rep-
resenting authors in a co-authorship network, covering 83% of the
nodes and 95% of the edges of the original network. The color scale
from white to gray maps to the percentage of nodes in the ego-graph
currently visualized in the ego-graph subnetwork (0% 3 100%).
A node is colored orange ® when it has been selected for visualiza-
tion in the subnetwork view. A yellow node  represents the current
ego selected for the radar chart visualization.

3.3.1. Overview

The overview shows a network of the most relevant ego-graphs
(Figure 1a, R1). Depending on the dataset, the set of most relevant
ego-graphs is already known (Section 4.3). For a general solution,
we propose the following algorithm to extract an informative sub-
network of relevant nodes: provided that the input network has the
small-world property, it is possible to cover a large portion of nodes
and edges with a comparatively small subset of ego-graphs. That
is, the problem can be translated into the Set Cover problem. Since
this is an NP-hard problem [KV12], we use a heuristic approach.
We calculate the ego-graphs for every node in the network and sort
them by their cardinality. Then, we take the largest ego-graph and
remove the covered edges from the remaining ego-graphs. We re-
peat this step until either a specified threshold of interaction cov-
erage (default: 90 %) or a predefined maximum number of ego-
graphs (default: 100) is reached.

The resulting overview network of relevant ego-graphs is visu-
alized using the aggregated ego-graph glyphs (Figure 4). The per-
centage of nodes and edges in the original network covered by the
resulting overview ego-graph network is displayed as a text label
at the top. Following the “show context” and “details on demand”
principles, each node in the overview can be selected for further
inspection in the other views (R2). Moreover, the coloring of the
aggregated glyphs in the overview provides context for the current
selection for the visualizations. Glyphs are colored orange if the
corresponding ego is visualized in the ego-graph subnetwork, and
yellow if it is visualized in the radar chart. Ego-graph glyphs in
the overview that are not selected are colored using a white-to-gray
gradient, illustrating the percentage of nodes in the ego-graph that
are contained in the ego-graph subnetwork (0% 3 100%). This
allows users to either focus on ego-graphs that have a high over-
lap with the current selection (dark gray) or highly dissimilar ones
(white or light gray), depending on their current analysis task.
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Figure 5: Similar ego-graphs to a reference ego-graph (radar cen-
ter) in a co-authorship network classified by affiliation. The radar
chart shows the 25 ego-graphs most similar to the ego-graph in
the center. The distance to the center corresponds to the Jaccard
index. In addition to the similarity, categorical metadata is visu-
alized. In this example, each circle represents the ego-graph of an
author, while the colors represent their affiliation. Circles with an
orange outline correspond to ego-graphs selected in the ego-graph
subnetwork.

3.3.2. Radar Chart

The radar chart provides information about a metadata attribute of
egos whose ego-networks are similar to the one of the selected ego.
(Figure 1b, R4). Similar to the aggregated glyphs, each circle rep-
resents an ego-graph, with the area corresponding to its cardinality.
The radial distance to the center encodes the Jaccard index between
the ego-graphs, i.e., the closer a node is to the center, the more al-
ters it shares with the selected ego. This places the radar chart in
close relation to the concept of monadic exploration [DCD14]. The
core monadic exploration is to take the viewpoint of a subnetwork
and display other subnetworks with overlapping relevance radially
around it. Topics of higher relevance are placed closer to the cen-
ter than topics of lower relevance. To avoid clutter, we only show
the n ego-graphs with the highest Jaccard index (default n = 25).
The colors of the nodes represent the metadata associated with the
egos, such as author affiliation in a co-author network or the BRITE
functional hierarchy in the case of proteins [KAG*07]. Ego-graphs
that belong to the same category are put next to each other, and the
corresponding circular segment of the radar chart is colored semi-
transparently with the same color. Additionally, text labels nam-
ing the categories corresponding to the circular segments are put
around the radar chart. Users can select ego-graphs in the radar
chart to add them to the ego-graph subnetwork. Ego-graphs in the
radar chart that are also shown in the ego-graph subnetwork view
have an orange outline, as shown in Figure 5.

3.3.3. Ego-graph Subnetwork

Ego-graphs selected in the overview or the radar chart are visual-
ized in the ego-graph subnetwork (Figure 1c), showing different

© 2024 The Authors.
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Figure 6: Ego-graph subnetwork of a co-author network with five
ego-graphs. A group of three ego-graphs is shown in its detailed
view. The width of the gray similarity edges encodes the similarity
between ego-graphs outside ego-graph groups, while the blue iden-
tity bands link identical nodes within an ego-graph group.

levels of details of the respective ego-graphs. As mentioned in Sec-
tion 3.1, the ego-graphs are initially visualized using the aggregated
glyphs, but can be de-aggregated to the detailed glyphs on demand
(Figure 6, R3). The color of each aggregated ego-graph glyph in
this view encodes a quantitative metadata value associated with the
ego (min value T3 max value). Up to three connected ego-graphs
can form an ego-graph group, as explained in Section 3.1.

3.3.4. Selection Table

Groups of nodes in ego-graphs or intersections can be selected for
investigation in the selection table (Figure 7), shown on demand us-
ing a menu button. The table contains additional attributes for each
node, such as metadata (R4) and information on the nodes, e.g.,
whether they are present in the overview and the ego-graph sub-
network. The rows can be sorted by any of the columns containing
the attributes. The user can select any node for visualization in the
ego-graph network and the radar chart. For a detailed analysis of in-
tersections between ego-graphs, the user can select the correspond-
ing intersection band in the ego-graph subnetwork, which allows to
filter and sort the table by this subset.

)

Il COLUMNS = FILTERS

= Radar nodelD institution Documents - Citations Found in Ov...

O

Kwan-Liu Ma University of Califo.. 73 1931 Yes

M. Eduard Groller  TU Wien, Austria 69 1680 No
Huamin Qu Hong Kong Univer.. 68 2615 Yes

Arie E. Kaufman Department of Co... 61 788 Yes
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Hanspeter Pfister John A. Paulson S... 60 3568 Yes
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Figure 7: Excerpt of the selection table showing the top 5 entries
of the co-author dataset (sorted by Documents, i.e., number of pub-
lished papers). Only a subset of the columns is shown. The check-
box to the left adds the entry to the ego-graph subnetwork view.

© 2024 The Authors.
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3.4. Implementation

We implemented ProtEGOnist as a web-based application with
a client-server architecture. The server backend was written in
Python using Flask [10]. The user interface and the visualizations
in the frontend were mainly implemented in TypeScript using Re-
act [Facl3], Jotai [Kat23], Material-UI [23b], and D3 [BOH11].
In the backend, we use the Python library networkX [HSSO08] for
the extraction of relevant features from the graph structure. Prot-
EGOnist is available at https://protegonist-tuevis.
cs.uni-tuebingen.de/.

4. Use Cases

In this section, we demonstrate the applicability of our approach
using three use cases. The first one shows the utility of ProtEGO-
nist and the interaction of its components for exploring a co-author
network. The other two use cases show how it can be applied to
PPI networks. The PPI network of E. coli serves as a well-known
example dataset for domain experts from biology and highlights
the advantages of the glyph design. The second PPI network stems
from the Bio+MedVis Challenge 2023 and illustrates the applica-
tion of ProtEGOnist to metadata-enriched datasets.

4.1. Co-author network

To showcase the usefulness of our ProtEGOnist approach for ex-
ploring social networks, we applied it to the Visualization Pub-
lications Dataset [[HK*17]. This dataset contains all publications
of the IEEE VIS conference (SciVis, InfoVis, VAST) and its pre-
decessor symposia and conferences. The metadata for each entry
includes, e.g., the authors and the number of publications. The re-
sulting co-author network has 6,610 nodes and 22,220 edges. The
network and the metadata were extracted directly from the data,
and the citation count provided by CrossRef [HTLF20] was used.

A typical starting question when exploring a co-author network
could be to find out who the most well-connected researchers are,
and whether they are also the most prolific ones in terms of pub-
lications. Investigating the ego-graph network using the Network
Overview, the user can determine that the nodes for Huamin Qu,
Hanspeter Pfister, and Wei Chen are the largest, indicating that
they have the largest number of 1st and 2nd-degree coauthors (Fig-
ure 4, R1). We selected these three nodes for the ego-graph sub-
network view, which helps to visually compare node sizes (R2).
The color mapping (0 (3 max) in the ego-graph subnetwork re-
veals that they all have a high number of publications (R4). Sorting
the Selection Table by the number of documents (i.e., co-authored
publications) allows for a quantitative assessment of the number of
publications: all three are high-ranking, with Qu and Pfister being
#3 and #5, respectively. Interestingly, Chen is only #13 (Figure 7,
Supplementary Figure S2), despite having a high number of co-
authors. Adding the two top-ranking researchers concerning their
number of publications—Kwan-Liu Ma and M. Eduard Groller—
for an in-depth comparison reveals that Chen has a larger network
than Groller but also a higher percentage of unique co-authors that
are not shared by the two (Figure 8, R3). One reason for the compa-
rably large co-author ego-graph of Chen might be his joint publica-
tions with Qu and Pfister, thus benefitting from their large networks.
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Figure 8: Ego-graph subnetwork visualization with a detailed ego-
graph group of co-author networks of Groller and Chen. The de-
tailed glyphs reveal that Chen has not only a larger network in total
but also a higher percentage of unique second-level co-authors.

Exploring the radar chart reveals that Chen has also published with
other well-connected researchers like David Ebert, Benjamin Bach,
or Yingcai Wu (identified by hovering the largest nodes in the radar
chart shown in Figure 5). It also shows that the ego-graph of Chen
contains researchers from institutions from all over the world.

4.2. lac operon in E. coli Protein-Protein Interaction Network

For protein-protein interactions, specific proteins and their context
are often of interest. In the bacterium E. coli, the lactose operon
(short lac operon) is a well-studied set of proteins that is required
for the metabolism of lactose. It is active if glucose, the preferred
energy source, is not available but only lactose.

Here, we analyze the PPI network of the K12 strain of E.
coli as found in the STRING database [SFW*15] and demon-
strate the effect of the ego-graph layout for analyzing three pro-
teins in detail (R3). As a baseline, we loaded the PPI network into
Cytoscape [SMO*03]. Figure 9a shows the proteins lacZ, lacy,
and lacA of the lac operon and their degree-1 and degree-2 al-
ters in a simple node-link diagram created using the Cytoscape
StringApp [DMGIJ19]. The node-link diagram forms a hairball-like
structure due to the high number of nodes and edges. We can see
that there is only a comparatively low number of degree-1 alters to
the three proteins of interest (black nodes in Figure 9). Moreover,
an edge connecting lacA and lacY—indicating a direct interaction
between the two proteins—is visible. Any other conclusions about
the connectivity between the lac proteins or about the sizes of the
individual neighborhoods cannot be made due to occluding edges.

In comparison, with ProtEGOnist the neighborhood of the lac
operon proteins can be grouped into three ego-graphs (Figure 9b).
Strikingly, we can see that lacZ has by far the largest ego-graph of

(@)

(b)
\acZ

Figure 9: Visualizing the lac operon of E. coli using a node-link di-
agram created with Cytoscape (a). lacZ, lacA, and lacY are colored
in @, ® and ©, respectively. Nodes of distance one are colored @
while the ones of distance two are colored ®. The network consists
of 653 nodes and 8,435 edges. Only interactions with a confidence
score higher than 0.75 were considered. Visualizing the same pro-
teins in ProtEGOnist (b). The node corresponding to lacl is hovered
and shown in all ego-graphs.

which most degree-2 alters are unique. This shows that lacZ also
interacts with proteins not directly involved in the lac operon, indi-
cating that it has a more central role in the PPI network compared
to the other two proteins lacA and lacY. In contrast to lacZ, lacA
has no unique alters, indicating a role more restricted to the operon.

From the band coloring, we can conclude that a large proportion
of proteins is shared between all three ego-graphs. Notably, most
of them have a distance of one to lacZ, while they have a distance
of two to the other proteins. In fact, by hovering over the proteins,
we find that the only degree-1 alter shared by all three proteins is
lacl, which serves as the repressor for the operon.

Using the degree-2 alters, more distant associations can be in-
vestigated, for example, the relationship of the lac operon and the
citrate cycle. The citrate cycle is one of the central metabolic path-
ways providing energy to the cell. When comparing the ego graphs
of lacZ and aceF, a pivotal enzyme in the citrate cycle, by investi-
gating the respective degree-1 alters we can see that they only have
multi-degree associations (Supplementary Figure S4).

© 2024 The Authors.
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4.3. Human DeeProM Protein-Protein Interaction Network

We used the current version of ProtEGOnist to analyze the
dataset by Gongalves et al. [GPC*22] originally provided for the
Bio+MedVis Challenge 2023. Proteins are common drug targets,
i.e., drugs modify proteins to cause changes in the cell. In the
case of cancer, drugs aim at disturbing the molecular pathways in
cancer cells while leaving non-cancerous cells widely unharmed.
Gongalves et al. used a deep-learning approach to identify associa-
tions between drugs and proteins.

4.3.1. Analysis Using ProtEGOnist

For the overview, the ego-graphs of 91 proteins identified in the
original publication to have relevant drug-protein associations were
chosen (Supplementary Figure S1). This is an alternative approach
to the other use cases, where the ego-graphs were selected via our
set cover heuristic. Our analysis revealed that the union of proteins
contained in these ego-graphs covers 57.3% of the proteins (nodes)
and 91.6% of the interactions (edges) in the original PPI network.
That is, the ego-graphs based on the proteins identified by DeeP-
roM reflect most of the interactions in the original PPI network
(R1). The metadata loaded into ProtEGOnist containted the drug-
protein associations and the BRITE classification of the proteins.

Using ProtEGOnist, the results of DeeProM can be explored,
opening up the black-box deep-learning model. Users can explore
the proteins in the overview network in more detail, e.g., by se-
lecting those associated with one drug of interest and viewing their
BRITE functional classification. For the drug Ara-G, which pre-
vents the elongation of DNA of cancer cells, four associated pro-
teins are found in the overview network. Further inspection of these
proteins in the subnetwork reveals three highly connected ego-
graphs and a more distant one. The three most highly connected
ego-graphs were selected as an ego-graph group (Figure 10). The
lesser connected protein SMARCCI has been identified as a sup-
pressor in some types of cancers [XLY*21], while the others act
as possible drug targets or cancer biomarkers [YPY*23; WQH*20;
XNK22]. All three proteins are associated with the BRITE class
Spliceosome, i.e., these proteins are involved in the maturation of
mRNA before translation [WWLO09]. This association is even more
prominent when inspecting the proteins PPIH and RBM39 using
the radar chart (Supplementary Figure S3, R4). In the ego-graph
group, similarities of the highly connected ego-graphs can be ex-
plored in more detail by viewing shared proteins when selecting
the intersection of all three ego-graphs (R3). From this point, users
could, e.g., continue analyzing the found proteins using the KEGG
pathway annotations to see in detail how they relate functionally.

4.3.2. Expert Feedback

Due to the positive outcome of the Bio+MedVis Challenge
2023 [23a], we contacted the authors of the DeeProM dataset to get
their expert feedback on ProtEGOnist. We demonstrated our appli-
cation to three of them and got a very positive response. One of
the authors volunteered to test our application and to provide feed-
back. It consisted first of the free exploration and visualization of
the dataset using ProtEGOnist. Subsequently, we provided a struc-
tured questionnaire of ten questions based on the System Usability
Scale (SUS) framework [Bro96] and further open-ended questions.

© 2024 The Authors.
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Figure 10: Ego-graph subnetwork for all proteins of the overview
network associated with the drug ARA-G. The three most highly
connected ego-graphs (PPIH, HNRNPK, and RBM39) are shown
as an ego-graph group. The intersection between all three ego-
graphs has been selected (red outline).

The expert that evaluated our tool had explored similar datasets
using visualizations provided by STRING [SFW*15] and Reac-
tome [FIM*18]. ProtEGOnist was assessed as slightly cumber-
some, but they considered the complexity of our approach neces-
sary, and its learning curve not steep. Overall, the expert enjoyed
the exploration using ego-graphs. Nevertheless, they missed the in-
tegration of further information, e.g., which pathways a protein is
involved in. As ProtEGOnist is easily extendable with additional
arbitrary metadata, the pathway annotations were added as a new
column to the selection table by adapting the input data.

5. Discussion

We presented ProtEGOnist, an interactive approach that applies
ego-graphs to small-world interaction networks. Ego-graphs are a
concept often encountered in real life, for example, when thinking
about own friends or friends of friends in social networks. There-
fore, the application of ego-graph in other domains, such as bio-
logical networks, employs a well-known mental model. In our case
studies, we showed that this concept can be applied to datasets for
a broad audience, like social networks, as well as to more domain-
specific problems, such as PPI networks.

As shown in the co-author use case, the approach can be used
to explore the network from an overview level down to detailed
groups of ego-graphs. Furthermore, for the overview, we exploit
the small-world property, which states that the maximal distance
between two nodes is small compared to the network size. There-
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fore, it is possible to show a relatively small set of ego-graphs as
an overview while covering a large portion of the original interac-
tions. Although the co-author network consists of 6,610 nodes and
22,220 edges, 100 ego-graphs suffice to cover more than 90 % of
interactions and almost 80 % of nodes. Conceptually, even larger
networks could be displayed using ProtEGOnist, as long as it ful-
fills the small world property. However, for very large networks,
the overview might not be able to cover a large proportion of the
network as the average minimum distance between the nodes could
be too large. While 2-level ego-graphs are commonly used in prac-
tice, in the case of larger networks, ego-graphs with further levels
of alters might be more appropriate.

In contrast to the overview-first approach of the first use case, in
the second use case, we started the analysis with previous knowl-
edge and analyzed the lac operon of E. coli in the context of the
network. Here, we demonstrated the scalability of the glyph lay-
out. In contrast to the conventional node-link diagram, ProtEGO-
nist allows us to immediately assess the size of the ego-graphs, and
thus the centrality of the protein in the network. Even though the
lacZ ego-graph contains 620 nodes, the layout effectively groups
the nodes into sections containing unique or shared nodes, and alter
levels. The sorting within the sections subsets the data even further
and visualizes the distribution of the node degrees. We also illus-
trated the usefulness of 2-level ego-graphs for inspecting distant
associations.

As exemplified in the third use case, our approach can easily be
used with a user-defined set of nodes in the ego-graph overview
network. Moreover, this example shows how network exploration
in ProtEGOnist can be enhanced with different kinds of metadata.
For PPI networks, even more data can be included in the analy-
sis for visualization in the radar char or the aggregated ego-graphs
of the subnetwork. For example, further omics data, like gene ex-
pression data or genomic data on mutations, could be used to an-
alyze the proteins in more detail. This flexibility concerning the
input data shows that ProtEGOnist can be generalized to a wide
variety of application areas in which the small world property is
fulfilled, e.g., linguistics [CSO1], computer networking [XGO03], or
transportation networks [LMO1].

Apart from ProtEGOnist, only few approaches have been pro-
posed for comparing ego-graphs. However, their underlying goals
are only remotely related to our approach. Out of those approaches,
many are tailored to the visualization of dynamic networks. Ego-
Lines [ZGC*16], among others [SWW*15; FMW*21], utilizes a
linear layout of subsequent stages of the same ego-graph for a
direct comparison of a stage with its predecessor or successor.
ProtEGOnist aims at comparing different ego-graphs in a non-
dynamic context. While the comparison in dynamic networks is
often focused on the gradual changes of a single ego-graph, the dif-
ferences when comparing multiple ego-graphs can be substantial.
EgoComp [LGD*17] tackles this task for two ego-graphs. Our tool
extends this approach to compare up to three ego-graphs simulta-
neously and puts them in context with other ego-graphs. We delib-
erately chose the comparison of three ego-graphs, as this allows us
to use a layout of the setwise intersections without edge crossings.
Increasing the amount of ego-graphs would be possible but incur
edge crossings. Moreover, due to the usage of bands instead of a
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conventional node-link diagram, ProtEGOnist has a much clearer
layout for large ego-graphs.

6. Outlook & Conclusion

In the future, we plan to extend ProtEGOnist with more ways to in-
corporate metadata into the analysis process. One direction would
be to associate edges and bands with metadata and to include sepa-
rate visualizations for metadata, as well as network filtering options
based on the metadata.

Moreover, we plan to allow the upload of user-generated data.
By providing a network structure, metadata, and, if available, a set
of nodes of interest, our approach can then be used for many other
small-world network cases, such as transportation networks. We
also plan to generalize our approach to accept different distance
metrics to substitute the Jaccard index as the distance value. One of
the improvements we identified from the expert feedback was the
lack of connection between the visualization components and the
tabular view. To enhance this connection, we plan to include a pop-
up interaction for the selection table, where it is shown automati-
cally when selecting a specific ego-graph or intersections between
ego-graphs in the ego-graph subnetwork.

With ProtEGOnist, we provide a layout focused on ego-graphs
omitting edges and aggregating subnetworks into single glyphs.
We believe that the novel layout is one of the main reasons that
our approach was rated as being a bit cumbersome to use. Adding
a conventional node-link diagram to visualize one or more ego-
graphs (similar to STRING [vMHIJ*03]) could support the explo-
ration process by providing a less abstract visualization as a detail
view. These node-link diagrams could be shown either for the cur-
rently selected subnetwork or for a single ego-graphs, similar to
BioLinker [DMF17]. Without specialized layout techniques, how-
ever, even a small number of ego-graphs can lead to unreadable vi-
sualizations due to a high number of nodes and edges (Figure 9 a).

To conclude, ProtEGOnist fills a gap in the network research
space by combining established concepts for the analysis of small-
world networks to a novel visualization approach. While it was ini-
tially intended for a specific domain with well-defined tasks based
on the Bio+MedVis Challenge 2023, we show that this approach is
applicable to different small-world networks from various domains.
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