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Figure 1: Four views of our tool used to analyze differences between 3D graph viewpoint layouts and their 2D graph layout counterpart for
the same graph. (a) and (b) depict the 3D layout and 2D layout, respectively, (c) portrays the projection scatter plot of the viewpoint metric
space, (d) shows the quality metric sphere.

Abstract
Node-link diagrams are a widely used metaphor for creating visualizations of relational data. Most frequently, such techniques
address creating 2D graph drawings, which are easy to use on computer screens and in print. In contrast, 3D node-link graph
visualizations are far less used, as they have many known limitations and comparatively few well-understood advantages. A key
issue here is that such 3D visualizations require users to select suitable viewpoints. We address this limitation by studying the
ability of layout techniques to produce high-quality views of 3D graph drawings. For this, we perform a thorough experimental
evaluation, comparing 3D graph drawings, rendered from a covering sampling of all viewpoints, with their 2D counterparts across
various state-of-the-art node-link drawing algorithms, graph families, and quality metrics. Our results show that, depending on
the graph family, 3D node-link diagrams can contain a many viewpoints that yield 2D visualizations that are of higher quality
than those created by directly using 2D node-link diagrams. This not only sheds light on the potential of 3D node-link diagrams
but also gives a simple approach to produce high-quality 2D node-link diagrams.

CCS Concepts
• Human-centered computing → Graph drawings;

1. Introduction

Node-link diagrams are one of the most popular methods for visu-
alizing relational data or so-called graphs. These graph drawings
can aid users in the understanding and interpretation of data. Yet,
the quality of the drawings can heavily impact how well users can
perform certain tasks and understand the visualized data [PCJ96].
As such, much research has been done for measuring the quality of
such drawings via several quality metrics that can capture various
aspects of goodness of a node-link diagram [Pur02].

Conventionally, node-link diagrams are constructed as static two-
dimensional images, due to their ease of use on computer screens and
in print. However, our daily experience is rooted in a 3-dimensional
world, and this familiarity with 3D spaces, combined with advance-
ments in Virtual Reality (VR) technology, makes exploring 3D data
visualizations more intuitive. This naturally leads to an interest in
examining how node-link diagrams could benefit from a 3D repre-
sentation. Although 3D graph drawing has been around for a couple
of decades, with the popular Fruchterman-Reingold drawing tech-
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nique [FR91] being among the first to also provide 3D drawings,
it was mostly cast aside for 2D graph drawing. Three-dimensional
node-link diagrams are used far less than 2D ones as they have many
known limitations and few well-understood advantages. A key issue
of 3D visualizations is that they require interactive exploration. More
specifically, users need to interact with the visualization to search
for suitable viewpoints that e.g. provide a clear view of the graph’s
structure. As such, the availability of high-quality viewpoints is
crucial to the effectiveness of 3D node-link diagrams.

The importance of good viewpoints of 3D graph drawings
has been acknowledged by previous studies [KK88, PMER97].
There are also a few attempts to find such good viewpoints effi-
ciently [PMER97, HW98]. However, the question whether the state-
of-the-art 3D graph layouts contain many such good viewpoints
has not been addressed in the literature. Furthermore, up to our
knowledge, it remains uncertain whether such viewpoints yield visu-
alizations that are perhaps of even better quality than the 2D layouts
constructed by 2D versions of the same algorithms. To address the
above, we examine the following research questions

RQ1: Do viewpoints acquired from 3D node-link diagrams created by
state-of-the-art graph layout algorithms lead to higher quality
layouts than their 2D counterpart?

RQ2: In case such viewpoints exists, how much better are they than
the 2D counterparts?

In order to answer these questions we rely on a set of nine quality
metrics that allow us to measure and compare the goodness of 2D
viewpoints of 3D layouts with that of 2D layouts. Separately, we
collect quality metrics for a large sampling of viewpoints, graphs,
and layout techniques to additionally explore how the space of the
metrics varies across the graph classes and layout algorithms. This
addresses the following question:

RQ3: Are changes in quality metrics across viewpoints consistent for
different graphs and layout techniques?

The paper is structured as follows. Section 2 covers related work.
Section 3 describes the overall structure of our experiments in terms
of used quality metrics, datasets, and the interactive tool we con-
structed to analyze our data and build our hypotheses. Section 4
discusses the obtained data and our answers to the research ques-
tions. We conclude with future work in Section 6.

2. Related Work

2.1. 3D drawing algorithms

One of the first algorithms capable of drawing straight-line 3D node-
link diagrams is the Fruchterman-Reingold algorithm [FR91], al-
though it was primarily developed for 2D drawings. While fast, this
algorithm would often converge at a local minimum of its cost func-
tion. Davidson and Harel [DH89] pioneered the use of Simulated
Annealing to achieve often higher-quality results than force-directed
methods. The Simulated Annealing technique, however, had longer
computing times. To tackle this limitation, Kosak et al. [KMS94]
looked at parallel computing, which was later picked up by Monien
et al. [MRS96] who made use of a parallel simulated annealing al-
gorithm to construct 3D graph layouts. Similarly, Cruz et al. [CT96]

also developed a Simulated Annealing drawing algorithm for 3D
graph layouts.

Bruss and Frick [BF96] developed a fast and interactive 3D layout
algorithm, one of the first methods where the user could interactively
navigate a 3D layout. Later on, Gajer et al. [GGK04] designed an
algorithm that could draw large graphs in any multidimensional
space. Additionally, their algorithm was capable of generating graph
layouts much faster compared to previous techniques. Similarly,
Hu [Hu05] developed an efficient force-directed algorithm that could
also draw 3D layouts. More recently, ForceAtlas2 (FA2) [JVHB14]
has become a widely used state-of-the-art layout algorithm that has
also been adapted to work in 3D.

Gansner et al. [GKN05] were one of the first to consider Multi-
dimensional Scaling techniques. These techniques are commonly
used to reduce the dimensionality of datasets, creating so called low-
dimensional projections of the data. Their proposed method named
Stress Majorization (SM) built upon the work of the stress cost func-
tions of Kamada and Kawai [KK89] and can draw in any number
of dimensions. Similarly, PivotMDS [BP07] aimed to draw large
graphs by approximating multidimensional scaling. More recently,
tsNET [KRM∗17] adapted the t-SNE [MH08] dimensionality re-
duction technique for graph drawing.

Graphs can also be drawn in other styles in 3D. Clustered graphs
for instance can be drawn using a fish-eye viewpoint [AKY05].
Miller et al [MHK22] created 3D graph layouts by plotting coor-
dinates on a sphere rather than a 2D plane, whereas Carriere and
Kazman. [CK95] show that hierarchical graph data can be aestheti-
cally visualized using cone trees in 3D.

2.2. Viewpoints in 3D

A key issue with 3D graph layouts is that interaction is required
in order to benefit from the information encoded in the third di-
mension. User studies that focus on the comparison of 2D and
3D graph drawings find only small differences regarding user re-
sponse times and error rates. However, when stereoscopic depth
cues and/or motion are used in 3D, users tend to perform better on
path detection [WM08] and community detection tasks [GPK11].
Similarly, McGee et al. [MGM∗19] state in their literature survey
the importance of these cues, as 3D graph visualizations without
stereoscopic/motion cues offer no benefits over 2D. Other stud-
ies [FPK∗23, JJHS∗22] have looked towards using Virtual Reality
(V R) to explore the differences between 2D, 2.5D, and 3D network
visualizations and found that different tasks were done more effec-
tively using different number of dimensions. Research in other fields
show mixed results in the comparison of 2D versus 3D. Aygar et
al. [AWR18] highlight that stereoscopic depth cues and/or motion
also improve target detection in 3D point cloud visualizations, mir-
roring the findings of Ware and Mitchell [WM08], and Greffard et
al. [GPK11]. Conversely, Borkin et al. [BGP∗11] show that 2D tree
diagrams are more effective and efficient than 3D tree diagrams in
highlighting regions of interest. Marriot et al. [MCH∗18] summarize
research done on 3D visualizations in the entire field of information
visualization. They find that user studies advocate that 3D repre-
sentations are more favorable for portraying the structure of high-
dimensional data, whereas 2D representations are more favorable
for accurate data measurements, comparisons and manipulations.
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The takeaway from such user studies is the need for interaction
with a 3D graph drawing in order to find suitable viewpoints. Finding
a good viewpoint in a 3D graph drawing is a difficult problem on its
own. It is debatable what constitutes a ‘good’ viewpoint and which
quality metrics should be considered to gauge that. Kamada and
Kawai [KK88] state that, for a 3D object, a viewpoint is good if it
preserves shape information. Eades et al. [PMER97] propose to take
occlusion of vertices/edges as an important factor of what constitutes
a good viewpoint. Additionally, Eades et al. deliver an algorithm for
finding such a viewpoint with a running time of O((n+m)4log(n+
m)), where n and m are the number of nodes and edges, respectively.
Given such large running times, Houle and Webber [HW98] propose
a few heuristics that approximate a viewpoint in a faster way.

Analogously, Castelein et al. [CTMT23] propose a method of
computing and evaluating viewpoints of a 3D projection scatterplot.
The set of viewpoints are acquired by taking a uniform covering
sampling of viewpoints of the 3D projection. These viewpoint pro-
jections are then quantitatively and qualitatively evaluated in order
to determine how much better (or worse) they are compared to their
direct 2D projection counterparts. They conclude that 3D projections
can offer viewpoints with higher quality than their 2D counterparts
but the positive findings depend on the metric and dataset. In this
paper, we adapt Castelein et al.’s approach to apply it to node-link
diagrams. We also provide an interactive tool to allow for in-depth
analysis, ease-of-use, and viewpoint quality metric exploration.

2.3. Visual quality evaluation

Since we define a good viewpoint as a one which creates a high-
quality graph visualization, we next discuss ways to measure the
quality of graph drawings. Since graph drawing and projection
techniques share many common aspects (see Sec. 2.1), we next also
highlight quality measurement techniques in the latter area.

Graph layout quality is commonly assessed by a set of metrics that
consider node positions (stress, node resolution), edge lengths (edge
length deviation), how edges cross each other (crossing number,
crossing resolution), how edges ‘spread’ around a node they are
adjacent to (angular resolution), and the overlap of nodes and/or
edges. Several studies discuss how such metrics must be combined to
capture well the quality of graph layouts [HEHL13] and how these
metrics relate to human perception [PCJ96, Hua07]. We discuss
such metrics in detail in Sec. 3.3.

Projections can be measured by a range of quality metrics of
which several are similar to graph drawing (e.g., stress, node resolu-
tion, and overlap). Espadoto et al. [EMK∗19] propose to date the
most detailed quantitative survey of projection algorithms. Vernier
et al. [VGdS∗20, VCT21] propose similar studies for dynamic pro-
jections; we follow much of their methodology in dataset, technique,
and metric selection and result aggregation and interpretation in
our work, while using graph layout algorithms instead of projec-
tions. Other recent evaluations considering a different set of quality
metrics for projections include [CAS∗23, ACS∗24].

3. Method

Our first two research questions are concerned with the quality of the
viewpoints that state-of-the-art 3D graph drawing layouts produce.

To address these questions and evaluate the potential usefulness
of the viewpoint-driven approach, we use five popular layout tech-
niques to graphs with different characteristics, and produce 2D and
3D graph layouts, as described in Sections 3.2 and 3.4, respectively.
We use nine quality metrics (Section 3.3) to measure the quality of
the 2D layouts and the quality of a sample (1000) of viewpoints of
the 3D graph layouts. We then compare the obtained quality values
to gain insight in whether we can attain higher quality viewpoints
of 3D drawings than 2D drawings, and how much better these can
be. Additionally, given the amount of collected experimental data,
we use the dimensionality reduction technique t-SNE [MH08] to
shrink the metric space and explore viewpoint quality differences
between graphs and techniques.

3.1. Preliminaries

We next introduce a few notations and terms. An undirected graph
G(V,E) consists of a set of node-set V = {v1,v2, . . . ,vn} and an
undirected unweighted edge-set E ⊆ V ×V = {e1,e2, . . . ,em}. A
graph drawing, or layout, algorithm GLk assigns k-dimensional
coordinates to all nodes in V , where we next consider k ∈ {2,3}.
The edges are drawn as straight-lines connecting the adjacent nodes.
Hence, GLk(G) = X , where X ∈ Rn×k is a matrix of n× k node
coordinates. With the above notation, vector Xi ∈ R1×k contains
the coordinates of node vi. Let D ∈ Rn×n denote the shortest path
matrix of graph-theoretic distances between all node-pairs {vi,v j}
in V . The Euclidean distance ∥Xi −X j∥ between two nodes vi and
v j is referred next as simply distance. Let deg(v) be the degree of
node v, i.e., the number of edges incident to v; and L(e) = ∥Xi −X j∥
be the length of the edge e = (vi,v j) in the drawing X . Finally, a
quality metric is a function Q(X) ∈ [0,1] which assigns a value to
the layout X of G, with low (resp. high) values denoting poorer (resp.
better) layouts.

From any k = 3 dimensional layout GL3(G) = X of a graph
G, we can generate 2D layouts by orthographically projecting X
on a plane given by a 3D viewing direction or viewpoint. In our
work, we construct a set of viewpoints by uniformly sampling points
on a sphere enclosing the 3D layout GL3(G) using the spherical
Fibonacci lattice method [Gon10]. We refer next to these 2D ‘pro-
jected layouts’ as viewpoint layouts. In contrast, we call the 2D
layout GL2(G) directly computed from G using the same technique
GL the viewpoint’s 2D counterpart.

3.2. Layout Techniques

In our experiments, we use five techniques to produce 2D and 3D
layouts. Our choice is based on the popularity of the techniques
and their ability to produce layouts in both 2D and 3D. All tech-
niques are iterative, set to run for 300 iterations. We use default
parameter values, as described in the supplementary material, un-
less otherwise specified. The five used graph drawing techniques
are as follows: ForceAtlas2 (FA2) [JVHB14], Stress Majoriza-
tion (SM) [GKN05], PivotMDS [BP07], tsNET [KRM∗17] and
tsNET⋆ [KRM∗17]. For FA2, SM, tsNET and tsNET⋆ we use
their existing Python implementations [Chi19], [VGO∗20] and
[Kru17], respectively. For FA2, we adapt the code to allow for
3D graph drawing. We implement PivotMDS from scratch based
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on the original paper. The number of pivots chosen in Pivot-
MDS is set to max(5,n/10); the perplexities for tsNET/tsNET⋆

are handpicked based on multiple experiments, as provided in the
supplementary material.

3.3. Quality Metrics

We choose several quality metrics to gauge the quality of 2D and
viewpoint layouts. Our choice follows the metrics’ popularity in
previous work, their usefulness in assessing the quality of viewpoints
of 3D layouts [PMER97], and user studies confirming their ability to
gauge the actual quality of layouts as perceived by humans [PCJ96,
Hua07]. Each metric ranges from 0 to 1, with 0 and 1 being the
worst and best acquirable result, respectively.

Stress This metric [KK89] measures how much all node-pair Eu-
clidean distances in a drawing deviate from their shortest path dis-
tances as

ST= 1− 1
n(n−1)/2

n

∑
i< j

(∥Zi −Z j∥−di j)
2

d2
i j

, (1)

where Zi scales the coordinate Xi by the shortest path distances as

Zi =
∑i ̸= j ∥Xi −X j∥/di j

∑i̸= j ∥Xi −X j∥2/d2
i j

Xi. (2)

Edge length deviation It is known that users favor consistent edge
lengths in a drawing [CP96]. We thus compute an edge length
deviation to gauge the average deviation of edge lengths to the mean
µ of all edge lengths in a layout as

ELD= 1−

√
1
m

m

∑
i=1

(L(ei)−µ)2. (3)

Node resolution Ideally, nodes should be placed far enough apart
to distinguish them. The node resolution metric [ALD∗22] measures
this by taking the smallest node-pair distance over the largest node-
pair distance

NR=
min1≤i, j≤n ∥Xi −X j∥
max1≤i, j≤n ∥Xi −X j∥

. (4)

Angular resolution Small angles between consecutive adjacent
edges of a node in a layout tend to make it harder to identify
edges [CP96, Hua07]. To measure how often small angles occur
in a graph drawing, we compute the average deviation of angles of
adjacent edges vs the best possible angle as

AR= 1− 1
n′

n′

∑
i=1

∣∣∣∣Θi −θi

Θi

∣∣∣∣ , (5)

where n′ is the number of nodes with 2 or more incident edges; θi is
the smallest measured angle between consecutive edges of node i;
and Θi = 2π/deg(vi) is the best possible angle between consecutive
edges for the node i.

Crossing number Purchase et al. [PCJ96] show that the number
of crossings affects how well a drawing can be understood. We
measure the number of crossings ccnt normalized by its maximum
possible value cposs by

CN= 1− Ccnt

Cposs
, (6)

where the maximum possible number of crossings Cposs is given by

Cposs =
m(m−1)

2
− 1

2

n

∑
i=1

(deg(vi)(deg(vi)−1)). (7)

Crossing resolution Next to minimizing the crossing number, the
angles of edge crossings should also be maximized [HHE08], in
order to ease the perception of edges. The crossing resolution metric
computes the average deviation of crossing angles to the right-angle
optimum

CR=
1

Ccnt

Ccnt

∑
i=1

αi

π/2
. (8)

Here, αi, i = 1, . . . ,Ccnt are all the crossing angles in the layout.

Node-node occlusion Eades et al. [EHW97] propose various oc-
clusion metrics to capture how good or bad a viewpoint can be.
The node-node occlusion concerns itself with how often two nodes
perfectly overlap. We slightly modify this metric, to make it act
in a continuous fashion, by measuring the area of the node-node
occlusion as

NN= 1− 1
n(n−1)/2

n

∑
i< j

A(vi,v j), (9)

In this and the following two metrics we use notation A(·, ·)
to depict the intersection between the geometric objects that the
arguments of the function represent. These are either a circle of a
radius r in case of a node, or a thin rectangle of width w in case of an
edge. Based on initial experiments, we set r = min(1/

√
n,1/150)

and w = r/5.

Node-edge occlusion We use the node-edge occlusion met-
ric [EHW97] to measure the amount of node-edge overlaps as

NE= 1− 1
nm

n

∑
i

m

∑
j

A(vi,e j). (10)

Edge-edge occlusion While the crossing number measures how
many crossings are in a layout, edge-edge occlusion [EHW97] mea-
sures the amount of overlap of edge crossings as

EE= 1− 1
m(m−1)/2

m

∑
i< j

A(ei,e j). (11)

Combinations Often the optimization of multiple quality metrics
is key to producing good layouts [HEHL13]. Therefore to measure
the quality of a layout in a global manner, we define the ALL metric
as the linear combination of all nine aforementioned metrics with
equal weights. However, not every metric is equally important. Since

© 2024 The Authors.
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Graph n m deg(V )avg source

mesh1em6 48 129 5.38 [DH11]
grid 54 93 3.44 generated [vWMT23]
gridaug 54 98 3.63 generated [vWMT23]
GD96_c 65 125 3.85 [DH11]
grid1_dual 224 420 3.75 [DH11]
mesh3em5 289 800 5.54 [DH11]
L 956 1820 3.81 [DH11]
stufe 1036 1868 3.61 [DH11]
Rome Graphs [32, 105] [35, 141] (2.11, 2.82) [GDT]
Graphs tsNET [72, 4941] [75, 13722] (2.00, 27.70) [KRM∗17]

Table 1: Descriptive statistics of graphs used in the experiments.

the number of crossing has been experimentally proven to be an
important metric for user preference and task performance [PCJ96],
and based on the anecdotal evidence that low-stress drawings are
preferred by humans, we also use in our evaluations the metric
ST+CN equal to the linear combination of stress (ST) and crossing
number (CN).

3.4. Dataset

We measure our metrics on a set G of 51 graphs acquired from
different sources. Table 1 displays descriptive statistics about these
graphs, as well as their origin. We handpick a set of graphs from
the SuiteSparse Matrix Collection [DH11], as these graphs tend
to have recognizable 3D structures. The graphs used by Kruiger
et al. [KRM∗17] vary in their size, density, and structure, which
is why we have included these in our dataset. Lastly, we reuse
the Rome [GDT] graphs dataset as it has widely been used as a
benchmark for novel 2D drawing algorithms [WYHS21, GLA∗21].

3.5. Tool

We adapt the tool from Castelein et al. [CTMT23] to work for graph
data (and graph quality metrics) and also extend its functionality.
The updated tool consists of seven distinct widgets, each with their
own function. Figure 1 shows four of these widgets. Figures 1a
and 1b depict a graph’s 3D layout and 2D layout, respectively.
For each viewpoint layout we compute nine quality metrics, we
repeat that process for all 1000 viewpoints and their 2D counterpart
(GL2(G)). To visualize the metric space of this 1000× 9 dataset
we create a projection scatterplot, as visualized in Figure 1c. Here,
points are colored according to the ALL quality metric; the large
black and purple points top-left in the scatterplot show the quality
of the 2D counterpart and the currently selected viewpoint in the
3D layout, respectively. The fourth displayed widget is the quality
metric sphere, as seen in Figure 1d. Here a viewpoint on the sphere
is colored according to the quality metric of that viewpoint’s layout,
which in case of Figure 1d is stress (ST). The other three widgets,
not visualized here, allow users to switch between metrics and
techniques, to set weighted metric combinations, as well as provide
information on the metric distributions and metric comparisons.
We implemented our tool in Python 3.9 with the core functionality
coming from PyQtGraph [pyq23]. Demonstrations of the tool, along
with the code can be found on GitHub.

4. Results

In this section we describe our results and how these answer our
research questions stated in Section 1.

SM FA2 PivotMDS tsNET tsNET⋆ ALL

ST
median 0.0 20.9 10.0∗ 33.3 16.6 13.0
max 76.1 78.4 96.2 100.0 100.0 100.0

CR
median 23.3 33.0 28.8 14.8 10.5 23.9
max 99.9 100.0 99.8 100.0 100.0 100.0

AR
median 61.2 59.3 42.7∗ 2.6∗ 1.8∗ 31.1
max 100.0 100.0 100.0 100.0 100.0 100.0

NR
median 8.5∗ 68.8 40.9∗ 0.0∗ 0.0∗ 8.5
max 74.6 100.0 100.0 95.5 99.8 100.0

NN
median 31.5∗ 66.2 46.2∗ 28.5∗ 17.0∗ 45.6
max 100.0 100.0 100.0 100.0 100.0 100.0

NE
median 11.0∗ 36.9 30.3 2.7∗ 0.7∗ 11.7
max 95.8 100.0 99.9 99.5 100.0 100.0

CN
median 23.3 19.9 35.5 1.4∗ 1.0∗ 9.3
max 100.0 100.0 100.0 99.6 67.1 100.0

EE
median 36.8∗ 69.1 55.7∗ 1.0∗ 2.4∗ 31.1
max 100.0 100.0 100.0 100.0 100.0 100.0

ELD
median 82.1∗ 67.8∗ 20.4∗ 99.1 98.5 68.3
max 100.0 100.0 99.2 100.0 100.0 100.0

ST+
CN

median 11.7∗ 20.4 22.8 17.4∗ 8.8∗ 16.2
max 100.0 100.0 100.0 100.0 100.0 100.0

ALL
median 30.9∗ 49.1 34.5∗ 20.4∗ 16.5∗ 30.3
max 100.0 100.0 100.0 100.0 100.0 100.0

Table 2: Percentages of viewpoints that are better than their 2D
counterpart, aggregated over all graphs. Cells with an ∗ indicate
that the highlighted blue cell with the largest median has significant
better results.

4.1. RQ1: Do viewpoints lead to better layouts?

To answer RQ1, we explore the quantitative results in Table 2,
Figure 2 and Figure 3. These show the percentage of viewpoints that
are better than their 2D counterpart. In particular, for each graph
technique GL, each quality metric Q and each graph G, we count
the number NQ

GL(G) of viewpoints of GL3(G) that are better than
GL2(G) with respect to Q. Table 2 shows the median and maximum
values of the percentage of viewpoints that are better than GL2(G),
aggregated over all graphs G used in the experiment, i.e the values
median{NQ

GL(G)/1000 : G ∈ G} and max{NQ
GL(G)/1000 : G ∈ G}.

Additionally, for each metric we highlight the largest median value
of all techniques. The techniques for which the highlighted cell
scores significantly better, according to a paired Wilcoxon signed
rank test with α = 0.05, are annotated with an ∗.

A large portion of the metrics and techniques in Table 2 has
maximum values (close to) 100%, indicating that for at least one
graph we can find a 3D layout for which nearly all viewpoints score
better than the 2D layout. Median values provide additional insights.
For instance, the median value of stress (ST) for tsNET is equal
to 33.3, which indicates that for the graph that falls at the median
value, 33.3% of the viewpoints are superior than GL2(G) w.r.t. ST.
Additionally, the star at PivotMDS indicates that tsNET benefits
significantly more from the viewpoint perspective w.r.t. ST than
PivotMDS.

In general, we see that median values range between the values
0.0% for ST of SM and 99.1% for ELD of tsNET. These extremes
indicate that dependent on the layout technique and quality metric,
various but generally high percentages of viewpoints can have higher
quality than the 2D counterparts; this answers RQ1.

To consider how much each individual algorithm benefits from
the viewpoint-driven approach, we observe the columns of the table.
We note that the column FA2 contains the most blue cells, in partic-
ular for the metrics CR, NR, NN, NE, EE, ALL. Hence, this
algorithm benefits the most from the viewpoint-approach over other
algorithms.

© 2024 The Authors.
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Figure 2: Jitterplots of the percentages of viewpoints that are better than their 2D counterpart w.r.t. (a) stress (ST) and (b) angular resolution
(AR), each point represents a single graph.

Finally, when we aggregate over all techniques, we see that the
Edge Length Deviation ELD metric gains the most from a viewpoint-
driven approach, with a median of 68.3%. All other metrics still
benefit from the approach but less compared to ELD, since their
medians are between 20.4% and 99.1%. When considering the com-
bination ST+CN, we see that PivotMDS and FA2 profit the most
from the viewpoint-driven approach.

Figure 2 and Figure 3 give a more detailed view on the data
in Table 2. Here, each point represents a single graph and the y-
axis indicates the percentage of viewpoints that score better than
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Figure 3: Jitterplots of the percentages of viewpoints that are better
than their 2D counterpart w.r.t. crossing number (CN), each point
represents a single graph.

GL2(G). Thus, for the quality metric Q and technique GL (shown
along x-axis), we observe the raw values {NQ

GL(G)/1000 : G ∈ G}.
These plots clearly show the differences between various graphs
in our dataset. For instance, in Figure 2a, we see why SM has a
median of 0 for ST – this is expected since SM directly optimizes
stress, although there is still a minor sample of graphs for which
viewpoints can be found with larger stress values. When it comes
to the other techniques, a large portion of graphs are presented
by points above 20%, with only handful of graphs in tsNET and
tsNET⋆ reaching 100%. We also observe that for every technique
there is a considerable number of graphs that does not have better
viewpoints with respect to ST, CN, AR, which also holds for all the
other metrics, as can be seen in the supplementary material.

Figure 2b shows that the angular resolution metric AR is typically
higher in viewpoints from graph drawings produced by SM, FA2 and
PivotMDS as compared to tsNET and tsNET⋆. Finally, Figure 3
shows similar results for the crossing number metric CN.

4.2. RQ2: How much better are the 3D viewpoints?

So far, we have shown that using a viewpoint-driven approach can
lead to better graph layouts compared to 2D ones. We now study how
much better these viewpoints can be. Since our dataset is comprised
of graphs with very different characteristics, we first normalize the
quality metric values of the viewpoints and 2D graph layouts as
follows.

Let GL3(G, i) denote the viewpoint layout of 3D draw-
ing constructed by technique GL that is seen from view-
point i. We consider the set P(G) = {{GL3(G, i)} : GL =
SM,FA2,PivotMDS,tsNET,tsNET∗,1 ≤ i ≤ 1000} of all
the viewpoint layouts, and set L(G) = {{GL2(G)} : GL =
SM,FA2,PivotMDS,tsNET,tsNET∗} of all the 2D layouts.
Thus P(G) ∪ L(G) is a set of 5005 layouts of graph G. For
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Figure 4: Boxplots showing the normalized distributions of quality metrics of 3D viewpoints relative to their 2D counterpart, aggregated over
all viewpoints, all graphs and layout techniques.

a quality metric Q, let Q(G) = {Q(X) : X ∈ P(G)∪L(G)} be
the set of all possible values the quality metric Q takes for the
graph G. We normalize these values so that the smallest is zero
and the largest is one, in order to make the values of the qual-
ity metrics comparable across graphs. Therefore, we set Q′(X) =
(Q(X)−minQ(G))/(maxQ(G)−minQ(G)) for every layout X ∈
L(G). We repeat this for every quality metric Q. In order to un-
derstand how the quality metric values of the viewpoints compare
to their 2D counterparts we consider the normalized differences:
{Q′(X)−Q′(Y ) : G ∈ C,X ∈ P(G),Y is the 2D counterpart of X}.
Figure 4 shows boxplots for these normalized differences for each
quality metric Q.

Figure 4 shows that for most metrics, most values and the median
lines, lie below 0, telling that most viewpoint layouts score worse
than the 2D layouts. The ELD metric is an exception here – for it,
there are fewer viewpoints below 0 than viewpoints above 0. This

SM FA2 PivotMDS tsNET tsNET⋆ ALL

ST
median -0.139∗ -0.080∗ -0.137∗ -0.046 -0.073 -0.095
max 0.120 0.552 0.505 0.485 0.534 0.552

CR
median -0.159 -0.069 -0.171∗ -0.164 -0.201 -0.153
max 0.895 0.869 0.880 0.848 0.789 0.895

AR
median 0.026 0.031 -0.030∗ -0.152∗ -0.160∗ -0.057
max 0.840 0.611 0.456 0.332 0.357 0.840

NR
median -0.267∗ 0.025 -0.011∗ -0.573∗ -0.555∗ -0.276
max 0.571 0.944 0.887 0.763 0.988 0.988

NN
median -0.014 0.024 0.046 -0.005 -0.009 0.008
max 0.342 0.402 0.722 0.434 0.370 0.722

NE
median -0.046 -0.026 0.005 -0.044 -0.053 -0.033
max 0.189 0.317 0.657 0.219 0.221 0.657

CN
median -0.060 -0.029 -0.063 -0.141∗ -0.148∗ -0.088
max 0.840 0.339 0.486 0.171 0.171 0.840

EE
median -0.005 0.028 0.033 -0.023∗ -0.028∗ 0.001
max 0.395 0.327 0.659 0.161 0.165 0.659

ELD
median 0.079∗ 0.045∗ -0.088∗ 0.175 0.154 0.073
max 0.932 0.664 0.501 0.787 0.890 0.932

ST+
CN

median -0.099∗ -0.054 -0.100∗ -0.093∗ -0.111∗ -0.091
max 0.840 0.552 0.505 0.485 0.534 0.840

ALL
median -0.065∗ -0.006 -0.046∗ -0.108∗ -0.119∗ -0.069
max 0.932 0.944 0.887 0.848 0.988 0.988

Table 3: Statistics of quality metrics of viewpoints relative to their
2D counterpart, scaled locally w.r.t. graphs, aggregated over all
viewpoints from all graphs. Cells with an ∗ indicate that the high-
lighted blue cell with the largest median has significant better re-
sults.

tells that, on average, we can acquire viewpoints with better ELD
values than for 2D graph layouts.

Table 3 dives deeper into the specifics of the normalized dif-
ferences across techniques and gives exact median and maximum
values. Over all techniques and metrics, only a handful have median
scores larger than 0. For instance, the −0.065 median value of all
metrics ALL for SM tells us that 50% of the viewpoints, aggregated
over all graphs, score 0.065 lower than GL2(G). Supporting our pre-
vious findings, we also see significant differences across the various
techniques. According to the median values, FA2 benefits from the
viewpoint-driven approach for five out of nice metrics: AR, NR, NN,
EE and ELD, since the median values are positive. The most notable
increase in quality metric score can be seen for the ELD. When us-
ing the tsNET technique, 50% of the viewpoints have values 0.175
larger compared to GL2(G).

The maximum values in Table 3 allow us to see how much better
the viewpoint approach can be. Note that due to normalization the
maximum values belong to (−1,1). Overall the maximum increases
for all quality metrics are all rather large, between 0.552 for ST and
0.988 for NR. This means that for the graphs used in our dataset
there are viewpoints that have quality values that are substantially
larger than GL2(G). An intriguing finding is that the maximum seen
for stress (ST) is 0.120 for the stress majorization algorithm (SM).
Even though this value is small, it is still surprising that optimizing
stress in 3D and then looking over many viewpoints can provide a
better stress than directly optimizing stress in 2D. To conclude, the
maxima values have shown that viewpoints can acquire drastically
better results, depending on the metric, technique and graph.

4.3. RQ3: Are quality metric changes consistent across graphs
and layout techniques?

One of the widgets in our tool, the quality metric sphere, as visual-
ized in Figure 1d and Figure 5, allows us to observe how the values
of a quality metric change when we view the graph from various
viewpoints. Each point p on the sphere is colored according to the
value of the quality metric of the viewpoint layout observed from
point p. We observe that the changes in the values of all individual
quality metrics for all graphs and all layout techniques are smooth.

© 2024 The Authors.
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However, we also observed that the coloring of the spheres differed
over graphs and quality metrics, with the number of local minima
varying. This observation brings us to our third research question of
what the quality metric space looks like.

Given the amount of experimental data (51 graphs × 5 techniques
× 1000 viewpoints × 9 quality metrics), we use t-SNE to gain
more insight in the differences across graphs and techniques. In
the supplementary material we highlight the differences between
individual metrics. Figure 6 shows the projections of a sample of
graphs for the five layout techniques. We consider each of the 1000
3D viewpoints, corresponding viewpoint layouts with their 9 quality
metrics as a 9-dimensional data set with 1000 data points. Each
scatterplot then shows the projection of such a dataset in 2D. In
order to help the interpretation of the scatterplot, we have selected
a few (boxed scatterplots) and for each of those we display the
2D counterpart, and the layouts corresponding to the best/worst
viewpoints. The points here are colored according to the values of
the ALL metric.

Figure 6 shows that the type of graph heavily influences the shape
of the projections. For instance, distinct clusters are commonly
spotted in the projection plots of grid graphs using the techniques SM,
FA2 and PivotMDS. The colors of these clusters further indicate
that, for these types of graphs, there are massive differences between
good and bad viewpoints. These differences can be explained by the
fact that when viewing a flat grid in 3D, we can encounter viewpoints
that have very poor quality - many overlaps and intersections. At
the same time, grids such as these allow some ‘perfect’ quality
viewpoints. We do not observe separate clusters for grids and tsNET
and tsNET⋆ and sometimes other techniques, as in these cases the
methods stronger utilize the 3D space by ‘curling up’ the grids.

What remains relatively consistent across techniques and graphs,
is the coloring of the points. The projection technique t-SNE ac-
curately puts similar points together, visible by the fact that points
with similar average quality metric scores stay close. In a majority
of the plots, there is often a fine gradient visible, with only the
occasional outliers present. The supplementary material provides
some additional discussion on which metrics are the main factors
for creating finer gradients and distinct clusters.

Best view ST CN ALL

sierpinski3d
from FA2

dwt_1005
from FA2

3elt
from tsNET

Figure 5: The best viewpoint layout for three different graphs. The
colors in the spheres correspond to the metric values of the given
viewpoint layouts, see Figure 1d for the color mapping.

5. Discussion

By analyzing the quality of the 3D viewpoints, and the extent by
which they are better that their 2D counterparts, we see that there
are various numbers of viewpoints that are better than their 2D
counterpart (dependent on the quality metric and technique). We
also observe that, even though SM is a method that optimizes stress, it
does not always achieve optimal stress values. As it turns out, better-
stress results can be found among viewpoints of 3D layouts. Similar
effects were observed with stress values of 3D vs 2D projection
scatterplots [TZvS∗21]. For all evaluated layout techniques, we
speculate that viewpoint layouts can score higher than their 2D
counterpart as a result of the optimization process in 3D having more
degrees of freedom than in 2D. As a consequence, we conjecture that
by optimizing layouts in 3D one can obtain results that better reveal
the overall graph structure, due to the aforementioned increase in
the degrees of freedom. From a practical perspective, our results
show the potential for using 3D viewpoints to create 2D layouts of
high quality.

Additionally, we observe that all the studied quality metrics
change smoothly as function of viewpoint (Sec. 4.3). This is, tech-
nically, not surprising given the fact that the 3D-to-2D projection
transform is a continuous function of its viewpoint. Small viewpoint
changes yield small changes in the 2D projection; if, in turn, we con-
sider that the involved 2D quality metrics are also smooth changing
functions of the 2D layout they measure, we obtain the mentioned
observation. This observation has several practical implications.
First, we could imagine automatic methods for finding the highest-
quality (or a high-enough quality given a user-specified threshold)
viewpoint of a 3D layout, e.g., by using gradient ascent methods on
the quality sphere. Alternatively, we could perform this search in
the simpler 2D space provided by the t-SNE projection (see Fig. 6).
Finally, we could enhance this projection view to explore additional
questions, e.g., how are the viewpoints of the highest, respectively
lowest, quality placed with respect to each other in 3D; and how
spread-out, or concentrated, over the viewpoint space (sphere) are
viewpoints of similar quality. Getting such insights could help next
devising automatic algorithms that efficiently find high(est) quality
viewpoints without the need to exhaustively search all viewpoint
samples.

5.1. Limitations

We next outline a few limitations of our study.

Parameters Even though the viewpoint-driven approach can deliver
high-quality results, several limitations exist. Most notably, layout
techniques depend on various so-called hyperparameters, e.g., the
number of iterations for certain layout techniques, such as tsNET(⋆).
Changing these can alter the observed results. To solve this, one
can next perform a comprehensive grid search that considers the
optimization of such parameters, much as done by Espadoto et
al. [EMK∗19] for multidimensional projections. In addition, certain
quality metrics have hardcoded parameters that can influence the
range of the results. Our normalization of the quality metrics should
partially address this issue. We show the varying ranges of quality
metrics in more detail in the supplementary material.

Samples Finding the actual highest-quality viewpoint is, in our
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Figure 6: Projections of quality metrics of viewpoints for selected graphs. Points are colored based on the ALL quality metric using the same
color mapping from Figure 1d. For the highlighted projection plot the corresponding 2D graph layout is given, as well as the best and worst
viewpoint layouts.

approach, influenced by the sampling resolution of the viewpoint
space. To limit computational effort, we use a set of 1000 viewpoints
based on the work of Castelein et al. [CTMT23]. Given the observed
smooth behavior of the quality metric (see Sec. 4.3 and discussion
earlier in this section), it is improbable that significantly higher (or
lower) metric values could exist for additional sample points located
between the considered ones. As such, while we do not compute the
exact maximum-quality viewpoints, our sampling approach should
yield values quite close to it. Still, it is interesting – from a theoretical
viewpoint – to find ways by which we can determine this exact
maximum without recurring to a denser, thus computationally more
expensive, sampling.

Datasets The graphs chosen in our evaluation may not be diverse
enough to capture how 3D metrics compare to their 2D counter-
parts for any type of graph. For example, in our considered dataset,
only the graphs inherited from tsNET work [KRM∗17] differ sub-
stantially with respect to density. Expanding this dataset with more
graphs with different characteristics could lead to different results.

Detailed study Our study concerned itself with finding properties
that hold generally for a collection of graphs, as our key aim was
to argue that specific viewpoints of 3D drawings can be better than
their 2D counterparts. It is also interesting to perform a different
study, namely examine in detail how these qualities (3D vs 2D)

© 2024 The Authors.
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differ for a specific graph, by expanding the analyses presented in
Sec. 4.3. This could lead to subtle quality-related insights which, in
turn, can lead to the construction of better-quality layout algorithms.

5.2. Future Work

Based on the above, we see the following possible extensions of our
work.

Study of the tool While using our tool we found ourselves be-
ing “in the flow” [Csi91], experiencing motivation, immersion and
concentration on the process of discovery of even more readable
viewpoints. The tool’s widgets reinforced this state by providing
high-level guidance. We conjecture that being immersed in this ex-
perience, the user is able to acquire a very good overview of the
graph’s structure and perhaps memorize it. We are interested in un-
derstanding whether the widgets of the tool are helpful in navigating
the high-quality viewpoints. Except for the abstract setting, we plan
to perform such an evaluation in an appropriate application domain.

User evaluation of 3D viewpoints We have seen that, dependent on
the graph and layout technique, the 3D layouts provide viewpoints
whose 2D projections yield 2D layouts of even higher quality than
‘native’ 2D layouts. This assessment, however, is purely based on
automatically computed quality metrics. We plan to evaluate how
the high-quality 3D viewpoints and their 2D counterparts compare
with respect to task performance. Finally, we would also like to
know whether the best viewpoints according to the metrics are
also those that the humans would select themselves. Such a user-
study would also provide insight in the presence or absence of
correlations between high-quality layouts (w.r.t. metrics) and user-
favored layouts.

Quality metrics for 3D layouts In our work we evaluate viewpoint
layouts as a proxy to assess the quality of a 3D graph drawing.
We speculate that this is a promising research direction with the
goal to develop quality metrics for 3D graph layouts, which, to our
knowledge, has not been studied extensively in the literature.

Finding good viewpoints In the future we would also like to ex-
plore the possibility of finding a graph’s best viewpoint algorith-
mically or automatically (from the perspective of specific metrics).
Specifically, we aim to find an efficient method for producing, for
any arbitrary graph and its 3D drawing, the best possible viewpoint
layout, without the need to iterate through a large set of metric
sample values. This, coupled with our current findings, will lead to
layout methods that produce 2D graph drawings which are better,
quality-wise, than directly laying out the graphs in 2D, with no other
algorithm modification needed. We speculate that by using Graph
Neural Networks, such as DeepGD [WYHS21], we may be able to
train a model to accurately predict the best viewpoint of any given
graph with its corresponding 3D layout.

6. Conclusion

We have presented an experimental evaluation in which we explore
the ability of state-of-the-art layout techniques to produce high-
quality views of 3D graph drawings. Through the use of a covering

sampling of viewpoints, we compare viewpoint layouts with their
2D counterparts, and asses their quality via nine different quality
metrics. Our experiments show that acquiring high quality viewpoint
layouts is possible for many graphs, with certain techniques such as
FA2 benefiting the most from this viewpoint-driven approach. The
same conclusion is also made for the size of the effect, where the
best viewpoint can be drastically better than its 2D counterpart. We
find that the size of the increase in quality of viewpoint layouts is
also dependent on the quality metric. With certain quality metrics
such as ST, on average, acquiring the poorest viewpoint results, and
the ELD, on average, acquiring the best viewpoint results. Moreover,
we explored the metric space of the quality metrics and techniques
through the use of dimensionality reduction. We found that the
characteristics of the graph can immensely influence the metric
space of possible viewpoints.
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