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Abstract
Hybrid graph representations combine two or more network visualization techniques in a unique drawing, simultaneously
leveraging their strong traits. Since their introduction in the early 2000s, hybrid representations have gained significant research
interest, with the introduction of new techniques and comparative user studies. However, all this research has not considered
dynamic graphs. In this paper, we investigate hybrid graph representations in a dynamic network context and present DynTrix.
Our system uses the NodeTrix representation as a basis, but the research extends this representation to the dynamic network
domain. DynTrix supports automatic or manually created clusters/matrices across time. Drawing stability is implemented
through aggregation and users can rearrange the nodes/matrix positions and pin them. DynTrix visualizes the temporal
dynamics of the network through a combination of movement and element highlighting. We also introduce the concept of volatility,
that allows the identification of actors in the network that are the most volatile. Matrices can be ordered such that stable cores
gravitate towards the centre of the matrix. We integrate this technique in a visual analytics application for the exploration of
offline dynamic networks and evaluate our system through case studies and qualitative expert interviews. Experts agree on the
capabilities of the system, noting its potential for the analysis of dynamic networks through hybrid representations.

CCS Concepts
• Human-centered computing → Information visualization; Visual analytics; Graph drawings;

1. Introduction

A graph (or network) is a data structure comprised of a set of nodes
(or vertices) connected by edges that represent their relationships. In
a dynamic graph, the temporal dynamics are represented as changes
(additions/deletions) to the node and edge sets, posing a significant
visualization challenge over the static problem. Typically (as in this
paper), the time dimension is represented as a discrete time axis,
meaning that the evolution of the network is encoded as a series
of snapshots at equally spaced moments in time (also known as
timeslices). The added challenge over a static scenario (where the
graph is not subject to change) is to visualize both the topology
of the graph and its temporal dynamics (i.e., changes over time).
Depending on the context, the temporal behavior of some elements,
e.g., appearing intermittently in different timeslices or persisting for
long periods of time, might be the result of higher-level phenomena
that could be uncovered using visualization.

Visualization of dynamic networks is a mature and thriving
research field. Two recent and comprehensive surveys on the
topic [BBDW17, FAM23] discuss experimenting with hybrid vi-
sualizations as a promising yet under-investigated research di-
rection. Existing approaches (such as NodeTrix [HFM07] and
Chordlink [ADM∗22]) show interesting results: however, the design
space of hybrid representations is still far from being explored to its
full potential. The basic principle of a hybrid representation is com-

bining one or more techniques in the same visualization, retaining
the advantages of both while mitigating their respective shortcom-
ings. One of the most known examples is NodeTrix [HFM07]: it com-
bines the adjacency matrix representation for dense communities and
a node-link representation to connect them to each other, improving
support for path finding and overview tasks. This type of techniques
gained significant research attention for their potential in showing
complex structures in different types of networks, including social,
biological, financial, and collaboration networks [HFM07,GDL∗22].
Research on hybrid representations however exclusively focused on
the static scenario, disregarding whether their advantages could be
leveraged in a dynamic context as well – a research question we
tackle in this paper.

Within this motivation, we present DynTrix: a hybrid visualiza-
tion technique for dynamic networks that combines a node-link plus
adjacency matrix graph representation to support the exploration of
the graph structure and investigate the temporal dynamics of the net-
work. We apply the hybrid representation philosophy to the dynamic
scenario: we introduce a selection of visual metaphors for each indi-
vidual graph representation to emphasize, suggest, and visualize the
changes of the data over time, experimenting with a combination of
movement, color, and highlighting. We also introduce a volatility
metric for nodes to rank their tendency to appear and disappear
over time, which we encode within the graph representation and
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use to assess the presence of both stable cores within dense commu-
nities and stable nodes in sparser areas of the network. Moreover,
we engineer and implement DynTrix as a fully functional visual
analytics (VA) prototype. We discuss the efficacy of our system with
two case studies on real data, and we evaluate DynTrix using the
ICE-T heuristic evaluation method [WAM∗19]. We then discuss the
empirical evidence we collected about the user experience and the
effectiveness of our design decisions to conclude the paper.

2. Related Work

Hybrid Visualizations often mix node-link diagrams with other
representations in order to leverage the advantages of each ap-
proach. The probably most known approach in this context is Node-
Trix [HFM07]. In this technique, designed for static graphs, strongly
connected communities are represented as matrices. Matrices are
then connected to each other with straight edges, as in the node-link
representation. These allow for the user to immediately connect
the communities, as node-link representation is notoriously more
effective in path-tracing and overview-first tasks. The result of this
approach is an effective combination of techniques that provides
a high-level view of the graph but visualizes only static networks.
Agrawal et al. [ATS16] extend NodeTrix to support multiplex net-
works within the context of the exploration of small world graphs.

ChordLink [ADM∗22] combines chord and node link diagrams
for the visualization of dynamic networks. In a way similar to Node-
Trix, chord diagrams can be used to simplify dense parts of the
visualization. In a chord diagram, nodes are arranged as circular
arcs around the circumference of a circle, and its edges “cross” the
middle of the circle. The size of the sectors and the width of the edge
can be used to encode further variables. Didimo et al. [GDL∗22]
recently performed a user study where the performance of various
hybrid graph representations, including Nodetrix and Chordlink, are
evaluated on tasks concerning the analysis of clustered networks.
The results suggest that while they do not accelerate the analysis
process, hybrid representations tend to be more accurate, with Node-
trix being recommended when the analysis task entails identifying
attributes of single nodes. Zhao et al. [ZMC05] combine a space-
filling technique (i.e., treemaps [Shn92]) and a node-link diagram
to support the visualization of hierarchies. Compound graph visual-
izations involving both matrices and node link diagrams have been
explored for large graphs [RMF12]. All of these techniques aug-
ment node link diagrams with other visualizations in order to gain
advantages from the various representations. However, none of this
has been designed for dynamic graphs – a gap we intend to fill with
our proposed DynTrix design.

Dynamic Graphs Visualization has received significant attention
from the visualization community. For a full survey, we refer to Beck
et al. [BBDW17].

Methods for visualizing dynamic graphs primarily consist of time-
to-time (see, e.g., [BPF14, FKN∗04, GBPD04, BW04, FWSL12])
and time-to-space (see, e.g., [SA06, BVB∗11, LHS∗15, LAN19,
BtBC∗21]) techniques, whether if time is represented by replicat-
ing multiple time snapshots of the graph arranged closely on the
drawing area or by the use of animation. Several human-centered
experiments have been conducted to compare and investigate the ef-
fectiveness of different methods (see, e.g., [FHQ11, OJK17, OJK19,

LAN21, FABM23]). In particular, it was investigated the role of the
user “mental map” [Pur98, BB99, APP11, AP13b, AP16] in typical
dynamic network exploration tasks. Experiments often showed a
stable drawing did not provide any significant advantage (in terms
of task performance or accuracy), but preserving the mental map did
help in identifying specific paths and vertices in the graph [AP13a].
Some papers propose a hybrid timeline/animation approach. Hadlak
et al. [HSS11] introduce a technique for large dynamic graphs by
embedding smaller in situ visualizations within the context of a
base visualization. This enables animations to be embedded within
small multiples. DiffAni [RM13] proposes a combination of dif-
ference maps, animations, and timeline visualization to show the
evolution of the network. However, these representations are hybrid
representations of time visualization and not graph structure.

Other than visualizations, a number of algorithms has been in-
troduced to produce node-link drawings of dynamic graphs with
timeslices (e.g., [BM11,EHK∗03]). Brandes et al. [BM11] compared
different drawing strategies to layout dynamic graphs investigating
the best tradeoff between global layout stability and local times-
lice drawing quality. Three strategies were tested: aggregating all
timeslices and creating a layout (maximum stability), anchoring
the nodes’ positions to the initial timeslice, and linking adjacent
timeslices together. The latter, within the experiments’ boundaries,
was found to be the preferable solution and has been integrated in a
social network analysis software [BW04]. Cvorsanin et al. [CCM17]
introduce an incremental drawing method for the online drawing
problem. The approach extends the popular FM3 [HJ05] algorithm.
As the addition/removal of nodes and edges perturbates the forces
equilibrium, local refinements to the drawing are made in the areas
of the drawing with high energy, yielding a stable and readable
layout. For completeness, we also mention that research has been
made also on the drawing of dynamic graphs without timeslices
(see, e.g., [SAK18, AMA22]).

While extending the functionalities of traditional static graph
drawing to the dynamic scenario, these techniques still suffer from
the shortcomings of the node-link representation, most notably the
tendency to clutter, which heavily impacts readability with dense
communities. We believe that with empirical evidence showing
the efficacy of hybrid representations in a dynamic scenario, the
purpose of this paper, we would foster further research to apply
these techniques in this context as well.

3. Design Considerations

3.1. Definitions

A Graph, or Network, G = (V,E) is a data structure comprised of a
set of nodes, or vertices, V and a set E of edges, which are pair of
nodes that represent the relationships and connections between them.
In this paper, edges are considered undirected. A dynamic graph
Γ(V,E) = (G1, ...,Gn) consists of a set of subgraphs where each
Gi = (Vi ⊆ V,Ei ⊆ E) represents the state of the graph at the time
i. Each Gi is a timeslice of Γ. All timeslices are known beforehand
(offline dynamic graph drawing). An adjacency matrix represents
a graph as a square matrix, with its rows/columns being the graph
nodes and a non-zero value in each cell corresponding to a pair of
nodes where an edge is present. As we consider undirected graphs,
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adjacency matrices are symmetrical. A matrix ordering [BBHR∗16]
is the arrangement of the nodes on the rows/columns. Row and
column ordering typically matches (and is the case of this paper),
but independent ordering has been experimented as well [LRT21].
Finally, we define a clustering of a graph as a classification of its
vertices into a non-overlapping collection of groups, called clusters.
In this paper, such classification can be either given as an input or
automatically computed.

3.2. Design Goals, Tasks, Intended Users

NodeTrix was designed to make social networks, i.e., networks with
several dense subgraphs, more readable and, therefore, more ac-
cessible [HFM07]. In DynTrix, we aim to obtain the same result
with large, dense, dynamic graphs with the same basic principles.
Moving to a dynamic scenario poses its own set of challenges, and
we designed our system not only to make complex dynamic graphs
readable but also to be a powerful tool for analyzing their temporal
evolution, taking advantage of the hybrid network representation.
While our system shares its basic principles with NodeTrix, we
wanted to give DynTrix its own distinct identity, with our design
goals being as follows: (i) replicate the main NodeTrix functional-
ities and extend them to give users more interaction possibilities,
especially considering the different scenario (dynamic vs. static); (ii)
introduce a combination for visual metaphors specifically designed
for time exploration within this hybrid graph representation; (iii)
focus on a scalable web-based implementation to tackle large graphs
in terms of node/edge count while remaining interactive.

Within these goals, DynTrix design tasks are as follows.
We map our proposed tasks to the taxonomy by Kerracher et
al. [KKCG15] (indicated in brackets at the end of each task) to
ground and corroborate our task analysis and foster future compar-
isons and experiments with DynTrix.

T1. Explore the current timeslice topology, including identifying
and exploring its clusters, creating matrices, and tweaking the layout
(Direct lookup/behavior characterization: Q1, Q2 – identify graph
object’s attributes and patterns at a single time point).

T2. Navigate through time and anticipate the changes in the vertex
and edge sets coming in following timeslices (Direct Comparison:
Q3, Q4 – compare patterns of connectivity over time).

T3. Identify topological structures and temporal features within
and between communities (Relation seeking: Q3, Q4 – find temporal
trends in connectivity).

We tackle T1 by leveraging the node-link plus matrix graph rep-
resentation, including automated clustering, user-modifiable layout,
and specific interactions for matrix creation. We introduce move-
ment to encode the modifications (T2) in the node set; changes
in the edges are highlighted by changes in their thickness. Users
can decide whether to focus on new (incoming) elements from the
previously visited timeslice or the ones that will not be present in
the following one. The introduction and visual representation of
volatility is meant to support T3 as a metric to inspect, assess, and
anticipate changes within and between clusters and individual nodes.
We refer to Section 4 for details about DynTrix design.

Concerning our intended users, we designed DynTrix with net-

work visualization experts in mind, familiar with the representation
methods we use in our system.

4. DynTrix

In this Section, we describe the design details of DynTrix, in-
cluding information about its implementation. We base our design
decisions on the goals and tasks discussed in Section 3. A full view
of the system, with all of its main components and different views,
is shown in Figure 1.

4.1. Design Challenges

As we briefly mentioned in the introduction, the representation of
the time dimension of a network presents additional challenges
compared to the visualization of static graphs. When dealing with
hybrid representations, the designer faces the additional problem of
identifying temporal representations that not only work best with
each of the hybrid components but also yield a legible, organic,
non-redundant final visualization when combined. In this case, the
main risk is to overload some of the visual channels, leading to
potentially confusing and misleading design decisions. Each com-
bination of network structural and time representation performs
differently on typical dynamic network exploration tasks [FABM23]
– having more structural representations in the same visualization
potentially requires investigating multiple concurrent representa-
tions of time. Hybrid graph representations are as effective as the
synergy between their individual components. Representing the time
dimension should exploit such interplay, but it makes exploring the
design space more difficult.

Another challenge lies in scalability, including designing inter-
actions that would support the user in making sense of the clusters
present in large networks, while maintaining interactivity with thou-
sands of nodes and edges displayed.

4.2. A Dynamic Hybrid Representation

Volatility. We introduce the metric of volatility to rank nodes. We
define it as the total sum of a node entry and leave events across
all the available timeslices. We define an enter event when a node
does not exist in Gi and it does in Gi+1 and vice versa for leave
events. Rather than “persistence”, that is the number of timeslices
where a node remains visible, we are more interested in this aspect
of the network temporal behavior. This is beneficial when dealing
with clusters that possess one or more rather “stable” cores that
interact with many fleeting “acquaintances”. In co-citation networks,
for example, researchers are unlikely to publish with the same co-
authors over the years – causing node neighborhoods to change
drastically from one timeslice to the other (see, e.g., Figure 4).

Representing Topology. DynTrix uses a hybrid node-link and
adjacency matrix representation as basic visualization for the graph
topology. In node-link, we represent nodes as circles and edges as
straight lines. Node labels are placed in the vicinity of each node.
Circle radius is inversely proportional to node volatility (i.e., more
stable nodes appear larger and vice versa), while its color encodes
the cluster. In adjacency matrices, the diagonal cells are colored
according to the corresponding node cluster, while the remaining
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Figure 1: DynTrix interface with its views: (A) sidebar, (B) cluster view, (C) main view, and (D) timeline. VisPub dataset (see Section 5) is
shown. It is possible to see: the matrices “pushing” away the nodes, thus avoiding overlaps; the clusters encoding through color; the volatility
encoding in the matrices, highlighting the stable elements; and the representation of empty nodes in matrices, as it is possible to see in the
center and lower left side of the main view (C).

(a) Volatility Reordering (b) Optimal Leaf Ordering

Figure 2: Example of volatility ordering (a) compared to Optimal Leaf Ordering (b) on one of the matrices in Figure 1 (the closest to center).
The numbers close to the names in the left matrix represent the computed volatility values. In (a), we also include a legend illustrating the
matrix cells’ color coding. While the community separation is visible on both sides, and the leaf ordering highlights the cluster connections, the
volatility highlights actors most likely to remain in subsequent timeslices, suggesting the matrix most stable components and their connections.

non-zero cells in the matrix are colored black if an edge exists
between them and white otherwise. Node labels are displayed next
to their corresponding rows and columns.

In adjacency matrices, row/column ordering can make a huge
difference in highlighting hidden structures and patterns in the
data [BBHR∗16]. For this reason, we include several reordering
algorithms (extracted from Reorder.js [Fek15]) to make sure that
users can deeply explore the inner structure of strongly connected
communities. Each reordering method shown in the interface is ac-
companied by a short explanation of its predicted performance and
expected results. A change of ordering affects all existing and future
matrices. Since we deal with dynamic networks that can change
over time, the produced patterns can get broken up and shuffled by

the leaving and re-entering of nodes. For this reason, we include a
volatility based reordering method designed to identify stable sub-
communities and predict the changes in the matrix composition (see,
e.g., Figures 1, 2, and 4). When this method is used, the volatility
score is shown before each node label.

Representing and Navigating Time. The main novelty of Dyn-
Trix over existing hybrid graph representations is the depiction
of the time dimension. Timeslices are navigated by directly switch-
ing to a specific one or by using the interface timeline buttons (see
Figure 1-D). One of the main challenges when visualizing dynamic
graphs is making sure that the users can easily identify the changes
between timeslices, that is when the user changes from Gt to any
timeslice Gi, i ̸= t. To avoid confusion, we allow the user to decide
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whether to highlight in- or out-going changes for nodes and edges
independently (see Figure 1-A). We refer to incoming changes as
nodes and edges that were not present in Gt but are now in Gi. We
refer to outgoing changes as elements present in Gi but not in Gi+1.
While it is possible to highlight incoming changes when switching
to any timeslice (also not adjacent), it is not possible to do the same
with outgoing ones, as it would require knowing where the user
intends to go next beforehand. Therefore, we decided to highlight
which nodes and edges leave the graph in the succeeding timeslice
as we believe it would be the most frequent use case.

Regardless of the type of change, we represent them as follows.
Changing nodes start to “vibrate”: if they are included in a matrix,
their label bounces to attract attention. This motion-based approach,
inspired by the work of Ware et al. [WB04, WB05], is particularly
effective in this context as newly added nodes immediately “pop
out” from the picture. As all nodes move in the same way, they are
intuitively grouped by the user as “new” in an effect of “kinematic
integration” [Mic17]. To make them stand out, changing edges
depicted as lines are highlighted by increasing their thickness, while
in matrices present a different hue of grey.

Mental Map Preservation. In dynamic graph visualization, making
sure that the user does not get disoriented plays a major role in the
design. In the following, we outline how we tackled this aspect in
several elements of DynTrix.

The node-link layout plays a major role as it is the base visu-
alization of all the elements of the graph, both for matrices and
individual nodes. We implement the node-link layout as an aggrega-
tion approach [BM11], that is, aggregating all Gi together to form
one single supergraph Ḡ which is laid out using our force-directed
layout. This provides a stable drawing, supporting the user men-
tal map – at the expense of the quality of each local layout. We
attempt to mitigate this issue as follows. When loading a timeslice
Gi, each node is placed at their coordinates in Ḡ. Nodes and edges
v̄, ē /∈ Gi are marked as “invisible” and excluded from the drawing
functions. However, they are kept in the layout, and the other nodes
are still affected by their presence – though we significantly reduce
the strengths of their linking and charging forces. The layout algo-
rithm is re-run at every timeslice change and continuously updated
as the user interacts with the graph. With this technique, we do not
“lock” the nodes in place (as we would do in a typical aggregation
approach) but rather leave them some freedom to move – potentially
improving the local layout at the expense of increased computational
effort.

When a user creates a matrix, some of its nodes might disappear
when navigating to another timeslice. We decided not to splice any
rows and columns from existing matrices when a vertex disappears.
We believe that when a user creates a matrix, it represents a group
of vertices of importance to the current analysis task and thus would
not be in the user’s intention to have it modified or disbanded from
one timeslice to the other. Non-present nodes, however, are easily
recognizable as there is no color in the respective diagonal cell (see
Figure 1). If a node reappears, its corresponding diagonal will be col-
ored again. Generally speaking, the composition of user-generated
matrices never changes unless they are deleted.

Layout Algorithm. We compute the layout for the network on
the plane using d3 [BOH11] implementation of a force-directed

layout. The graph’s elements are modeled as objects that interact
with each other in a simulated physical system (see, e.g., [FR91,
Hu05,GHGH09]). Other than attractive and repulsive forces exerted
by the edges and the individual nodes’ charge respectively (as in any
force-directed approach), we add a center force that gently draws
all nodes towards the center of the canvas and a collision force
that simulates the physical boundaries of each node in an effort
to minimize overlap, especially for adjacency matrices. Adjacency
matrices in the graph are simulated as invisible nodes inside the
force layout, with their on-screen and charge appropriately changed
according to the number of nodes within it to avoid overlaps.

Clustering. The generation of matrices is simplified by clusters spec-
ified in the data. If clusters are available, DynTrix applies them to
the visualization and the group name is shown in the cluster view
(see Figure 1). Since most datasets do not have pre-determined group
assignments, we include an automated clustering algorithm to facili-
tate their identification. We chose the Louvain algorithm [BGLL08].
It is a methodology based on a modularity optimization heuristic,
yielding good results with a convenient and efficient implementation.
Community detection is run every time a timeslice changes and only
on the portion of the graph currently visible. To emulate a dynamic
community detection (as Louvain algorithm is designed for static
graphs), when changing timeslice we pass the previous clustering
to the algorithm as a parameter, which is used for initialization.
Clustering information is presented to the user using color. Colors
are selected from a cyclic categorical scale of 12 colorblind-friendly
colors [HB03]. These are extended to 80 with an iterative algorithm
that produces visually distinct colors by maximizing the percep-
tive distance from one another [mok]. Finally, we had the colors
reviewed and adjusted by a red-green colorblind team member.

4.3. Implementation and Scalability

DynTrix is built in Javascript. The following core libraries are
used: d3.js [BOH11] for the force-directed layout algorithm, Re-
order.js [Fek15] for the matrix reordering, and jLouvain [jlo] pro-
vides the Louvain clustering. D3 is most often used with SVG as
an output, as it represents each drawn object as a logical entity
that can easily be interacted with. However, since we need to draw
matrices – and matrix cells are individual objects – we deal with a
quadratic rising number of objects to draw. Thus, we decided to use
HTML5 canvas as a purely pixel-based output. This increases the
amount of objects we can draw simultaneously by a factor of 100
compared to SVG. The largest graphs we could smoothly interact
with on mid-range consumer hardware contain about 6k nodes and
23k edges (see supplemental video). As a drawback, since canvas
offers no logical representation of its content, it is purely meant as
an output device without native support for any interactions. Thus,
we had to work around that by implementing our own library of
interactions, based on assigning each element a unique color and
polling the hovered pixel color when moving the mouse, which
required significant additional implementation effort.

4.4. Interface and Interactions

Interface layout is presented in Figure 1, and we describe in this
section each individual view.

© 2024 The Authors.
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Sidebar. In the sidebar, we place the controls to manipulate the
visualization (see Figure 1-A). The top half of this bar is populated
with controls for selecting datasets, matrix reordering, and graph
clustering. We include a button to delete all matrices and a radio
selection to highlight in- and out-going nodes or edges.

Cluster View. This view begins with a text box to search nodes
by label. Below, the view is separated into two columns: on the
left, there is the list of clusters, and on the right, there is the list
of vertices – both lists relate to the currently visualized timeslice.
Each entry in both lists is color-coded according to the cluster color
(see Figure 1-B). Each vertex in the list has a button that, when
pressed, centers the graph visualization on its coordinates. Linked
highlighting and selection ensures that if a node in the graph is
hovered over or clicked on, the corresponding node entry in the
list is highlighted accordingly and vice versa. The same applies to
clusters.

Main View. The main view supports zooming and panning via
mouse input, as well as basic layout manipulation by dragging of
nodes and matrices (see Figure 1-C). Once moved, a node/matrix
will remain in place across all timeslices unless it is “freed" by the
user, acting as reference points for the analysis. These nodes don’t
move but still exert their repulsive forces to other nodes. Nodes
can be selected individually, per-cluster, or via lasso selection by
dragging the mouse cursor over an area. If at least one node is se-
lected, two buttons appear on the top side of the screen: a green
button to convert the current selection of nodes into one adjacency
matrix and a red button to dismiss the selection. Edges incident to
selected nodes are highlighted in red (see Section 3). In an adjacency
matrix, nodes can be selected by clicking on their corresponding
row/column. A matrix can be removed (and its visualization “con-
verted” to node-link) by clicking on the red “X” button close to it.
A matrix remains on screen (even if empty) until it is removed by
the user.

Timeline. A scrollable list of labeled timeslices at the bottom of the
screen makes it possible to set the current instant out of the provided
time sequence. A set of control buttons allows to rapidly navigate
back and forth between adjacent timeslices (see Figure 1-D).

5. Evaluation

We evaluate DynTrix by discussing two case studies, to show
different potential workflows when using the system on different
datasets, and then by conducting a qualitative evaluation using the
ICE-T protocol [WAM∗19]. First, we discuss the datasets included
in the system. To foster reproducibility, the source code of the system
is available on GitHub [dyn], plus sample data and useful links.

• Dialogs. The graph represents the interactions between the char-
acters of the “Pride and Prejudice” novel by Jane Austen in or-
der [GWMG16]. Nodes are characters labeled by their names,
and edges are inserted if the characters share a dialogue. It has
118 nodes, 501 edges, and 60 timeslices (1 per chapter).

• InfoVis. This dataset represents the co-authorships in the IEEE
InfoVis conference from 2010 to 2019 [inf]. Each node is an
author, and if two publish together, an edge exists between them.
It has 708 nodes and 2,194 edges, with 3 timeslices. Each one of
them groups three years, and we did that to provide some stability

to the graph, as every year the neighborhoods tend to change
almost completely.

• VisPub. This dataset contains a co-authorship network of IEEE
VIS conference, and, differently from InfoVIS, it spans all the
different tracks of the conference (VAST, SciVIS, etc.) and goes
from 1990 to 2022. Moreover, it presents, as metadata, the affil-
iation of the individual authors (which also changes over time).
We simplified the dataset by using only InfoVis and VAST and
limiting the time span from 2005 to 2025. This resulted in a graph
with 4,181 nodes and 15,823 edges distributed over 5 timeslices
(one every 5 years). For less performing systems, we also pre-
pared a reduced version of the dataset spanning 2010-2025, with
3,109 nodes and 12,243 edges.

5.1. Case Studies

In the following, we describe two case studies where we explore
real data using DynTrix, also showing how it achieves its design
tasks.

Dialogs. In this first case study, we explore the beginning of Jane
Austen’s novel. Figure 3 shows two chapters from the novel. In
Chapter 1, some of the main characters of the book are presented,
that are the Bennet family (parents and 5 sisters) and Mr. Bingley.
We cluster using the Louvain algorithm and use it as a basis to create
matrices. We group together the 5 sisters (upper matrix in Figure 3)
and the elder Bennets (lower matrix). We leave Mr. Bingley and
other minor characters as separate nodes. Mr. Bingley, one of the
novel protagonists, is introduced to the Bennets in this chapter and
shares dialogues with elements from both of the previous clusters.

In Chapter 3, Mr. Darcy, one of the main characters of the novel,
is introduced to the reader at the Meyrton Ball. Coming from Chap-
ter 1, the visualization displays the incoming nodes by vibration,
highlighting and indicating the other party guests. Mr. Bingley in-
teracts with the majority of guests, remaining a very central node.
It is possible to see that clustering changed slightly compared to
the first chapter as the colours of the cells in the matrix changed.
Elizabeth moved to the Bennets’ cluster (dark blue), and Jane to
the Lucas family (green). In contrast to Mr. Bingley, Mr. Darcy acts
“aloof ”, interacting with fewer people during the ball. However, he
interacts with both Jane and Elizabeth and declines a dance with
the latter with the famous quote “She is tolerable; but not hand-
some enough to tempt me.” [Aus93]. Overall, in this example we
have seen how DynTrix enables T1 (timeslice exploration) and
T2 (time navigation).

InfoVis. In this second example, we examine the InfoVis co-
authorship network. This version of the dataset has 1 timeslice
per year. As authors tend to change their co-authors frequently, node
neighborhoods tend to change drastically from one timeslice to
the other. The majority of the node clusters that form are cliques,
suggesting that traditional matrix ordering might provide limited
insights in terms of cluster evolution. Therefore, we will now show
two examples of how our volatility metric can support in finding the
“stable cores” of some of these communities and, in general, how
our system achieves T3 (temporal structures investigation).

We focus on two communities in the time period 2010-2012: in
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(a) Chapter 1 (b) Chapter 3

Figure 3: Chapters from Pride & Prejudice as in Case Study 1. Left: Chapter 1 matrices including the 5 Bennet sisters (upper matrix) and
their parents (lower). A stable drawing is preserved as we transition to later chapters. Right: Chapter 3 when Mr Darcy appears at the
Meyrton ball. New nodes, highlighted by movement in the system, are shown here with a red outline as well as the edges incident to them. It is
possible to see that matrices are not modified by DynTrix once created, but clustering can change from one chapter to the other, as shown in
the matrix grouping the Bennet sisters.

the first (SG in the following), we target how it evolved from its cre-
ation and forwards; in the other (FC in the following), we investigate
its origin by seeing how different smaller clusters in previous years
merge together over time (see Figure 4). SG is a cluster grouped
in a matrix in 2010, including Stasko and Gotz. FC is created in
2012 and includes Fekete and Carpendale. First, we can see how the
two clusters looked like in 2010. If Optimal Leaf Ordering is used,
sub-communities can be easily identified (see supplemental video).
By switching to volatility, temporal information regarding the nodes
is included, as stable authors are moved toward the center of the
matrices. In 2011, it is possible to see that only the internal core
of SG is still visible, while FC is growing, showing the stable sub-
communities. Finally, in 2012 FC is fully formed, and in SG, it is
possible to see the cluster changes of its remaining stable members.

5.2. ICE-T Evaluation

We decided to conduct a qualitative study, following the protocol
described in the paper by Wall et al. [WAM∗19], to further inves-
tigate the efficacy of our system in a realistic dynamic network
exploration scenario. Specifically, this protocol aims to evaluate the
“value” of the visualization. John Stasko in 2014 defined the value of
visualization [Sta14] as its ability to go beyond answering questions
about the data, moving beyond typical tasks used in usability studies.
Wall et al. developed a methodology to estimate and quantify the
potential value of visualization, which goes through evaluating 4
of its components (i.e., important capabilities [Sta14]): “Insight”,

“Confidence”, “Essence”, “Time” (hence the abbreviation ICE-T
methodology – we refer to the original paper for their definition).
Each component is divided into a set of guidelines that encapsulate
its basic concepts, and the guidelines are finally divided into a set of
21 heuristics, formulated as actionable insights that are presented to
the study participants for them to evaluate on a Likert scale from 1
(completely disagree) to 7 (completely agree). We chose this type
of evaluation for different reasons. First, we thought about making a
comparative user study as in the work by Didimo et al. [GDL∗22],
however we did not find suitable candidates to compare DynTrix
with, as both NodeTrix and Chordlink (see Section 2) focus on static
graphs. Therefore, the comparison would not include the temporal
aspects of the visualization, While having users solving tasks about
the data would have shed light on the readability and usability of the
visualization, we believed that it would have been more interesting
investigating the “holistic” value of DynTrix design, its ability to
provide a “true understanding of the data" [WAM∗19], and whether
is capable of generating insights and knowledge beyond specific
pre-determined tasks.

In the following, we describe the evaluation protocol and the
quantitative results, with a discussion about the qualitative aspects
of our evaluation in the Discussion section (see Section. 6). The
study material (consent form, questionnaire, and result sheet) can
be found as supplemental material.

Protocol. The study is structured as a set of expert interviews, where
each participant is interviewed separately. As the majority of our
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(a) 2010 (b) 2011

(c) 2012

Figure 4: Figures from case study 2: SG and FC matrices in 2010 (a), 2011 (b), and 2012 (c). All matrices are ordered by volatility. Color
differences encode cluster changes. Volatility matrix ordering is used throughout. In (c), further matrices are included for context.

participants could not be present physically, we opted for Zoom
calls for everyone. Each individual interview was planned to last
around 60-70’, including a short onboarding (10’), free interaction
with the system (5-10’), task solving (30’), and feedback session
(10’). At the end of the interview, the participant is handed a copy of
the ICE-T questionnaire. They can keep using and testing DynTrix
on their own after the interview – participants typically sent us the
compiled questionnaire a few days after. Consent forms were signed
before the beginning of each interview.

Participants shared their screen with us so that we could record
their interactions with DynTrix, as well as their voice as in a think-
aloud protocol. We had no control over the experiment environment
(as we let the participants use their own devices), but the ICE-

T protocol did not request it anyway. The recorded videos were
then watched again to extrapolate particular behaviors, differentiate
between the approaches of each participant, and extract quotes.
Concerning the questionnaire results, we opted for the basic strategy
described in [WAM∗19]: the score for the top-level components
is a simple average of the scores of the middle-level guidelines,
which are a simple average of the scores obtained by the low-level
heuristics. According to the protocol, an average score of at least 5
on a component means that it is a strength of the visualization, with
higher scores being “better”.

Tasks. The ICE-T protocol does not include any tasks, as its purpose
is not to evaluate accuracy or performance. However, to bootstrap
the analysis process on each of the available datasets, we devised
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a set of simple tasks that would let the participants make use of all
the available system features. In many cases, this fed the curiosity
of the participants, who then continued using the system to pursue
answers to their own questions about the data after the end of the
interview. The tasks are as follows, grouped by dataset.

• Dialogs. (i) Please identify who you believe are the protagonists
of the novel; (ii) What can you tell about the evolution of relation-
ships between the families in the novel?

• InfoVis. (i) Can you identify the changes in the ego-network of
an author you recognize in this dataset?; (ii) Please do the same
with an author you are not familiar with.

• VisPub. (i) Select a cluster from the network (manually or au-
tomatically) and inspect its composition. Could you identify the
most stable and volatile elements?; (ii) Please select two or more
institutions. What can you say about their relationships over
time?

The Infovis and VisPub represent prime examples of datasets
that could be explored using DynTrix: they are dense graphs with
changing communities over time. Moreover, they were chosen as
all of our participants would be members of the visualization com-
munity. They would be able to navigate and understand the data
with little onboarding, identifying (un-)expected behaviors and re-
lationships (necessary to evaluate the heuristics about Confidence).
Dialogs was selected because it was a smaller graph (and therefore
would have been great as an “entry” challenge) while presenting
natural communities and a long sequence of timeslices. However,
we were unsure whether the participants were familiar with the
novel within the data, hence the formulation of the task. As a final
remark, while we always performed Dialogs and VisPub tasks, in
2 interviews we skipped InfoVis to remain within the 60’ of the
interview, as users preferred exploring the other datasets.

Participants. The ICE-T protocol requires a minimum of 5 ex-
perts [WAM∗19]. We recruited 6, who were directly asked from
us if they were interested in participating in the study. None of the
experts was involved in the design process nor had any experience
(or knowledge) of the system before the experiment. A consent form
compliant with the European General Data Protection Regulation
(GDPR) was signed beforehand, and no compensation was given.
Out of the 6 participants, 4 are professors of graph drawing/network
visualization, and 2 are post-doctoral researchers with papers pub-
lished on the same topic. All were between expert and knowledge-
able concerning hybrid graph representations, thus reflecting the
profile of our intended users (see Section 3).

Quantitative Results. To consider our evaluation successful, we are
aiming for an average score of 5 and above across all components.
The condensed results are reported in Table 1, and the complete
scores are available as supplemental material. Within the ICE-T
protocol, our evaluation can be considered successful.

DynTrix scored above 5 on all the components, highest on the
Insights component (i.e., the ability to discover insights about the
data) with 6.04 and lowest on Confidence (i.e., ability to generate
confidence and trust about the data) with 5.42. Time (i.e., the ability
to minimize time to find information and answers) also scored 5.88
and can be considered a strong point of our proposed system. On
the other hand, Confidence (i.e., the ability to generate trust about
the data) got both the lowest average (while still above minimum)

Avg. σ

Insight 6,04 0,91
Confidence 5,42 1,40
Essence 5,83 0,99
Time 5,88 0,96

Table 1: Condensed results of the ICE-T Evaluation.

and highest standard deviation. We believe this to be due to the fact
that assessing data quality was not within DynTrix design tasks.
Essence component (i.e., ability to convey the overall essence or
takeaway sense of the data w.r.t. overview and context) scored 5.83,
hence suggesting that DynTrix enables users to get a higher-level
understanding of the data and its context.

Moving from the high-level components from the individual
heuristics, the lowest score, with an average of 4.17, concerned
confidence and data wrangling: “If there were data issues like unex-
pected, duplicate, missing, or invalid data, the visualization would
highlight those issues” [WAM∗19]. The heuristic “The interface
supports using different attributes of the data to reorganize the visu-
alization’s appearance” [WAM∗19] got an almost perfect average
score of 6.83, as the study participants recognized the value of the
different interactions methods in DynTrix to extract insights.

6. Discussion

In this section, we discuss our impressions and lessons learned from
the ICE-T evaluation and the most notable limitations of DynTrix
we identified with our experts.

During our experiments, we could observe how the different par-
ticipants tackled the tasks and, in turn, how they used the system
features to achieve their analysis objective. While we introduced
large graphs in our evaluation to encourage the participants to create
and use matrices, we found that three experts preferred to use the
node-link visualization as much as possible. For example, in the
Dialogs task (ii – finding relationships between families over time),
which was designed so that participants would take advantage of
matrices, they pinned and dragged the nodes belonging to the differ-
ent families close together, rather than creating matrices out of their
selection. One of the participants stated that Pride and Prejudice
was their favorite book: while we did not observe a difference in
their behavior while using the system compared to others, they were
immediately able to match specific circumstances of the book (e.g.,
the ball in chapter 2), grouping characters in matrices according
to their knowledge of the book. Similar behavior was also found
once for the more complex VisPub tasks (i – identify institutions’
members) and (ii – explore institutions’ relationships). In this case,
the volatility encoding in node-link (i.e., node size) allowed one
user to discover a specific pattern in the VisPub data. Larger, more
stable nodes (typically representing the institution head) created
star-shaped patterns with several more volatile (thus smaller) actors.
Enabling the in-/out-going node highlighting, further emphasized
these patterns. Nonetheless, significantly reducing the use of matri-
ces generally meant a much slower analysis, compared to the other
participants who used them as we predicted when preparing the
tasks. Matrices indeed require greater concentration effort to unpack
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compared to a node-link representation, which is the reason why we
believe some of our study participants followed different workflows.

Volatility played a major role during all interviews and was a
feature that was greatly appreciated by the participants. It was also
one of the few elements that was computed across all timeslices
and therefore gave participants a way to predict the behavior of the
nodes. All the experts however did confuse the concept of volatility
we introduced (the number of times a node/edge appears or disap-
pears, see Section 4.2) with “persistence", that is the time interval an
element is present. They thought that larger nodes remained visible
for more timeslices (more persistent) rather than being the nodes
with the least number of enter/exit events (or less volatile). For sure,
persistence is an easier concept to convey, but once the users under-
stood the difference they could make use of the feature profitably.
All experts could identify the protagonists of the novel in Dialogs
(i.e., Pride and Prejudice) with little to no knowledge of the plot
with most using volatility. This provides evidence that volatility can
unveil relevant parts of the network temporal structure and supports
serendipitous discovery.

Our design decisions concerning layout and group stability were
positively received by the experts. While aggregation is not the
most sophisticated way to compute dynamic layouts [BM11], when
combined with node and matrix pinning it allowed the users to
“draw” their mental map of the graph by rearranging interesting
nodes manually. Subsequently, they could navigate time without
losing orientation. Similarly, keeping matrices stable across time (re-
gardless of node presence) was also an appreciated design decision
– this made observing the evolution in the relationships between
and within an arbitrarily small group of nodes over time way easier.
However, one expert was concerned that this could be confusing:
while we explicitly mark in matrices nodes that are not present
during that timeslice (see Figure 1) we don’t remove them from
visualization. However, nodes that are not present disappear com-
pletely from the node-link view. We justify our choice by saying
that creating a matrix assumes that a specific group of vertices is
somehow “special” to the user, and the fact that we encode absent
nodes in matrices differently should minimize the risk of confusion.

Limitations. All experts in our evaluation agreed on the potential
of the use of hybrid representations for dynamic graphs, but also
discussed with us relevant limitations of our system. We discuss and
report the ones that were shared by the majority of experts, aiming
at building a knowledge base for future research on this topic.

Missing Overview. The system is designed to support the explo-
ration of the individual timeslice, but lacks an overview of the graph
dynamics. In turn, you would have to explore the whole time se-
quence to get a complete understanding of the changes in the graph:
something that can prove difficult with several timeslices (as in the
Dialogs dataset, for example). Volatility mitigates this problem.

Matrix Generation. While the interaction design was generally posi-
tively reviewed by our study participants, there were some concerns
about some “slippery” selections, especially with very crowded
node-link visualizations. Two experts also suggested introducing a
control to select a node and all of its neighbors (while now only the
full cluster can be selected), with one suggesting a control to create
matrices from all visible clusters at once.

Clustering. In our design, we used the Louvain [BGLL08] clustering
algorithm. It is a time efficient algorithm with a readily available
implementation, making it a fitting candidate for inclusion in Dyn-
Trix. However, Louvain is meant for static community detection.
While we mitigate this issue via its implementation (see Section 4.2)
other solutions in literature address this problem directly, intro-
ducing methods that perform a full dynamic community detection,
identifying and visualizing the movement of nodes across clusters
over time [VBAW15, VBW16, LTPR17].

Visual Scalability. Generally speaking, the combination of matri-
ces and node-link should reduce the overall clutter, as the densest
parts of the graph are grouped together into matrices. However, as
we tested this metaphor with graphs with thousands of nodes, we
found that matrices cannot be larger than a few tens of elements:
the quadratic space requirement easily fills out the available screen
real estate and also makes the individual cells smaller as the size in-
creases (to fit the matrix in the view). For this reason, several smaller
matrices should be created, but this would make the whole point
of the hybrid representation weaker. To increase visible scalability,
methods such as the “untangling” approach by Nocaj et al. [NOB15]
could be used. Graph simplification measures (e.g., filtering or ag-
gregation) could improve the readability of the final visualization.
We could also investigate edge bundling methods to increase the
visual scalability of the method.

Time Scalability. We tested DynTrix both on large graphs with few
timeslices but also on a reasonably small graph (in terms of number
of nodes and edges) with many (Dialogs). Our simple “list” of
timeslices showed its limits in this case, coupled with the lack of an
overview to provide some guidance to the user (as discussed before).
Nonetheless, users could still identify, in Dialogs, some of the major
events – however mostly in the first 10 chapters. In one case, one
participant decided to compare the characters in the first 3 chapters
with the ones present in the last one (60) to solve the task. Large time
sequences navigation is still an open problem [BBDW17, LAN19].

7. Conclusions and Future Work

In this paper we presented DynTrix, a hybrid representation for
dynamic graphs. We introduce visual metaphors and interactions
specifically designed to take advantage of the peculiarities of the
node-link plus matrix representation in a dynamic scenario. We show
the efficacy of the system through case studies and conduct a quali-
tative evaluation with experts to evaluate the system performance in
a realistic analysis scenario. We encourage further research on this
topic, for example by investigating overlapping or fuzzy groupings,
more sophisticated dynamic graph drawing methodologies (such
as anchoring or linking [BM11]), and by introducing graph sim-
plification measures to tackle even larger graphs. We believe that
DynTrix could be a first step in this direction, with our current
limitations being opportunities for future researchers.
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