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Figure 1: Modern multi-modal performance capture techniques enable us to record movement (body, hands, face, instruments), audio,
and other data such as EEG signals from performers while they play musical instruments. This data can be used to enable more advanced
analysis of performances, synthesis of novel performances, and the creation of new experiences within XR environments. Images extracted
from [SE00, Cye23, PCAW16, HTHM22, Cin21, CFZ∗21, SDSKS18, ES03].

Abstract
Driven by recent advancements in Extended Reality (XR), the hype around the Metaverse, and real-time computer graphics,
the transformation of the performing arts, particularly in digitizing and visualizing musical experiences, is an ever-evolving
landscape. This transformation offers significant potential in promoting inclusivity, fostering creativity, and enabling live per-
formances in diverse settings. However, despite its immense potential, the field of Virtual Instrument Performances (VIP) has
remained relatively unexplored due to numerous challenges. These challenges arise from the complex and multi-modal nature of
musical instrument performances, the need for high precision motion capture under occlusions including the intricate interac-
tions between a musician’s body and fingers with instruments, the precise synchronization and seamless integration of various
sensory modalities, accommodating variations in musicians’ playing styles, facial expressions, and addressing instrument-
specific nuances. This comprehensive survey delves into the intersection of technology, innovation, and artistic expression in
the domain of virtual instrument performances. It explores musical performance multi-modal databases and investigates a wide
range of data acquisition methods, encompassing diverse motion capture techniques, facial expression recording, and various
approaches for capturing audio and MIDI data (Musical Instrument Digital Interface). The survey also explores Music In-
formation Retrieval (MIR) tasks, with a particular emphasis on the Musical Performance Analysis (MPA) field, and offers an
overview of various works in the realm of Musical Instrument Performance Synthesis (MIPS), encompassing recent advance-
ments in generative models. The ultimate aim of this survey is to unveil the technological limitations, initiate a dialogue about
the current challenges, and propose promising avenues for future research at the intersection of technology and the arts.

CCS Concepts
• Computing methodologies → Animation; Motion capture; Motion processing; Machine learning;
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1. Introduction

The digital evolution of performing arts, including musical expe-
riences, in virtual settings, stands at the forefront of a transfor-
mative era driven by Extended Reality (XR), the Metaverse, the
widespread adoption of Artificial Intelligence (AI), and recent ad-
vances in real-time computer graphics. This shift has significantly
altered the performing arts landscape, unlocking unparalleled pos-
sibilities for inclusivity, creativity, and live performances in diverse
locations. Beyond the challenges accentuated by the recent pan-
demic, which served as a catalyst for these possibilities, our mo-
tivation is firmly grounded in the inherent potential for innovation
and growth within virtual and mixed-reality spaces.

The digitization and visualization of the performing arts play a
pivotal role in enhancing accessibility to art, preserving cultural
heritage in an intangible format, and reaching a diverse global audi-
ence. This transformation not only ensures the long-term preserva-
tion, documentation, and analysis of these art forms for future gen-
erations but also serves educational purposes. It enables students to
delve into the intricacies of various art forms, exploring their histor-
ical, cultural, and technical aspects. In this revolutionary era where
the digital realm seamlessly connects with artistic expression, the
performance of musical instruments in extended reality (XR) rep-
resents a dynamic evolution. We define this as Virtual Instrument
Performance (VIP), a multimedia presentation that encompasses
the comprehensive execution of a musical instrument within a vir-
tual environment. This multidisciplinary art form combines musical
skill with advanced audiovisual technologies for high-quality audio
production, animations, and interactive elements, creating a holis-
tic and captivating experience for both performers and audiences.
Within this digital realm, the performer plays their instrument in
a computer-generated world, where visual effects and animations
synchronize with the music, enhancing sensory engagement. This
blurs the boundaries between reality and virtual worlds, expanding
the possibilities of musical expression and entertainment in the dig-
ital age. VIP represents a boundary-pushing fusion of music, visu-
als, and interactivity, transcending traditional barriers tied to phys-
ical presence and allowing artists to connect with worldwide audi-
ences. The Metaverse, a shared virtual space, and digital twins, en-
hanced virtual replicas of physical entities, act as catalysts, driving
performing arts into new dimensions. In this expansive digital can-
vas, artists craft immersive experiences that transcend geographical
boundaries, leading to an era where live performances are not re-
stricted to a specific stage but resonate across borders. Moreover,
the flexibility introduced by recording and broadcasting liberates
audiences from the constraints of time zones and schedules, allow-
ing them to enjoy concerts at their convenience. Performing in a
virtual environment unleashes new horizons for creativity, freeing
artists from the constraints of the physical, tangible world while of-
fering innovative means to engage and interact with their creations.
Virtual spaces unlock a realm of boundless potential, from altering
appearances and introducing virtual entities to defying gravity, un-
locking new dimensions of scalability and creativity. Viewers can
now access exclusive vantage points and unique perspectives on
performances, and even participate in ways that were previously
unimaginable.

However, creating virtual characters that convincingly play mu-

sical instruments presents significant challenges. Firstly, there is the
issue of the loss of the live experience, as watching a performance
on a screen or in a virtual environment lacks the energy and connec-
tion between the audience and performers. Additionally, there are
several other hurdles to overcome, including maintaining quality
and authenticity (for example, the camera angles, sound recording,
and post-production editing can affect the viewer’s perception of
the performance), technical obstacles (for example capturing the
essence of a live performance and presenting it in a visually ap-
pealing way requires skill and equipment), and financial constraints
since the cost of digitization and visualizations can be prohibitive.
Like other performing arts, playing musical instruments encom-
passes intricate, multi-modal performances with complex and fine
detail subtle movements, making their acquisition, analysis, com-
prehension, and synthesis inherently demanding. In particular, data
acquisition involves integrating and synchronizing various types
of data, capturing precise motion with high fidelity, accommodat-
ing variations in musicians’ playing styles, addressing occlusion
challenges, and dealing with instrument-specific nuances. On the
other hand, generating convincing animations of musicians playing
musical instruments requires replicating instrument sounds accu-
rately, synthesizing complex and multi-modal animations (covering
pose, wrist, facial expressions, and instrument animations), infus-
ing emotional expression, ensuring real-time interaction, and effi-
ciently managing computational resources. Balancing these aspects
necessitates advanced technology, including cutting-edge motion
capture systems, sound modeling techniques, and advanced AI al-
gorithms, all crucial for achieving the realism and expressiveness
required for convincing virtual musical performances.

The importance of this domain, along with an acknowledg-
ment of its challenges, has been emphasized by the attention it
has received from various global organizations. These organiza-
tions provide financial support to numerous projects with the aim
of shaping the future of performing arts digitization, visualiza-
tion, and the advancement of their virtual enhancements. Among
several others, European projects like PREMIERE [PRE23],
SHARESPACE [SHA23a], CAROUSEL+ [CAR21], Apollo
project [APO23], the PHENICX project [LGS15] are key players in
this dynamic landscape. For instance, PREMIERE is dedicated to
developing a comprehensive ecosystem of digital applications pow-
ered by advanced AI, XR, and 3D technologies to cater to the di-
verse needs of individuals involved in performing arts productions.
Simultaneously, SHARESPACE paves the way for inclusive hybrid
societies by facilitating remote interactions within a shared senso-
rimotor space. The CAROUSEL project allows online users to par-
ticipate on online performing art creations, such as dance, despite
physical separation, addressing issues of isolation and loneliness.
These developments also lay the foundation for novel forms of on-
line communication and expression. On the other hand, the Apollo
project adds a physical dimension to this digital landscape, estab-
lishing a permanent exhibition in the foyer of the Konzerthaus, pro-
viding visitors with insights into the Berlin’s musical heritage, and
the opportunity to experience virtual reality. The PHENICX project
utilizes new digital methods to make classical music performances
more accessible and engaging through innovative multi-modal en-
hancements. These projects serve as exemplary illustrations of the
significant contributions that funding and collaborative efforts can
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make in shaping the future of performing arts. However, it’s worth
noting that none of these projects primarily focuses on VIPs, under-
scoring the untapped potential for future research in this domain.

In addition to global funding organizations, the past few years
have witnessed a surge in interest from the industry within the
realm of VIP. This transformative landscape has magnetized promi-
nent artists who discern the immense potential of virtual concerts.
Collaborative ventures with platforms like Roblox [Rob23], Meta’s
Horizon Venues [Met23a], WaveXR [Wav], and Epic Games’ Fort-
nite [For] have given birth to immersive experiences that tran-
scend conventional musical performances. Renowned figures such
as John Legend [Leg20], who seamlessly combined vocals and pi-
ano, and acclaimed bands like Foo Fighters [Met22] and 21 Pi-
lots [Mov23a], have boldly ventured into this digital frontier. Their
efforts have not only gained a huge audience and attention but also
made virtual concerts a profitable business, changing how we see
art and redefining the landscape of artistic expression and entertain-
ment.

Despite the transformative potential in virtual instrument perfor-
mances, this dynamic and ever-evolving field has not received the
attention in research it deserves, mostly due to the formidable chal-
lenges it presents that often act as barriers to further exploration.
This survey serves as a groundbreaking state-of-the-art report, of-
fering a comprehensive exploration of the intricate fusion of tech-
nology, innovation, and artistic expression in this domain. It goes
beyond being a mere response to global challenges and instead po-
sitions itself as an enlightening guide to the boundless possibilities
that the virtual world opens up for musical experiences. While a
comprehensive musical performance encompasses a multitude of
elements, our survey specifically emphasizes the instrumental di-
mension, focusing on the delicate nuances of musicians’ move-
ments and the audio quality of the music.

In particular, this survey explores the recent advancements in
data acquisition, with a specific focus on the multi-modal aspects
within this field. Our study extends to existing multi-modal repos-
itories, particularly those centered around musical instruments and
musicians, which may serve as valuable resources for training AI
networks and models. We have carefully assessed data acquisition
methods and systems, which encompass a wide array of techniques,
including motion capture, facial expression recording, and the cap-
ture of audio and MIDI data. Our evaluation highlights the strengths
of these methods while also addressing the limitations and chal-
lenges they present. Furthermore, our study delves into recent tech-
niques for Music Information Retrieval (MIR) tasks, with a partic-
ular emphasis on the Musical Performance Analysis (MPA) field,
and offers an overview of various works in the realm of Musical In-
strument Performance Synthesis (MIPS), encompassing recent ad-
vancements in generative models (e.g., methods that take MIDI in-
formation as its sole input and generate realistic animations featur-
ing individuals playing musical instruments). Our analysis covers
both the progress made in this area and the limitations that these
innovative techniques currently face. The primary objective of our
survey is to shed light on the current technological constraints, dis-
cuss ongoing challenges, and propose future research pathways in
this continually evolving intersection of technology and the arts.
Figure 1 displays representative examples of the VIPs, highlight-
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Figure 2: Structural interconnection between the different sections
of this survey. To analyze and synthesize new VIPs, performance
capture technologies are used to record multi-modal data of per-
formers and their instruments. The data is then either directly
used by analysis and synthesis systems or stored in databases us-
ing appropriate formats and representations. In some cases, these
datasets are used for archiving purposes and are therefore enriched
with metadata, analysis, synthesized data, and semantic annota-
tions by experts in the respective domains.

ing their diversity and multi-modality, while Figure 2 provides a
visual representation of the structural interconnection among the
various sections within this survey.

Our survey is structured as follows: in Section 2, we begin by
presenting the various representations and formats employed in
repositories that store virtual instrument performances, including
pose, facial, and audio files. Moving on to Section 3, we provide
a comprehensive exploration of the existing datasets related to per-
forming music. These repositories are categorized based on their
modality, e.g., audio-modality or multi-modality, as well as their
scope and the range of instruments they encompass. In Section 4,
we delve into the technologies utilized for data acquisition. Here,
we explore a multitude of methodologies and technologies that cap-
ture human movements, spanning from pose and facial expressions
to finger dexterity and audio aspects. Section 5 offers an in-depth
view on methods to analyse musical performances. This section
serves as a canvas where we extract diverse musical properties
and explore the nuances of artistic expression, considering inputs
such as posture and finger extensions. Section 6 unfolds examples
of Musical Instrument Performance Synthesis, presenting various
methodologies and recent machine learning models employed to
generate musical performances with different instruments. In Sec-
tion 7, we engage in a thoughtful discussion, addressing the chal-
lenges and limitations encountered throughout our exploration of
the virtual musical performances pipeline, and conclude our survey
with closing remarks that encapsulate the essence of our journey
across the vast realm of virtual instrument performance. This sec-
tion not only provides a reflective analysis of the insights we have
accumulated, but also gives practical recommendations and out-
lines future research directions in this multi-disciplinary domain.
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2. Background Knowledge

This section explores the vital concept of data representation in the
context of VIP. From capturing the gestures of instrumentalists to
the audio itself, data representation serves as the bridge connect-
ing the world of art performance to the digital realm, enabling new
possibilities for artistic expression and analysis. We start by men-
tioning various audio representations, and then we explore motion
representation of performers.

2.1. Audio Representation and Storage

This section delves into the diverse methods used for storing, de-
scribing, and documenting sound in the realms of music and tech-
nology. It encompasses various protocols that facilitate communi-
cation between audio hardware devices, a collection of music anno-
tations that provide detailed descriptions of sounds, and a range of
audio file formats optimized for music storage. Firstly, let’s explore
two popular Communication Protocols: MIDI and OSC. Musical
Instrument Digital Interface (MIDI), is a standardized protocol and
set of specifications used for the digital communication and con-
trol of electronic musical instruments and computer systems. MIDI
enables the exchange of musical information and instructions be-
tween different devices. A MIDI message starts with a status byte
indicating its type and channel, followed by pitch and velocity data
bytes. For example, to play a note in MIDI, a “Note On” mes-
sage is transmitted, with an assigned “velocity” setting that influ-
ences the note’s volume [MIDa, Epi]. OpenSoundControl (OSC),
similar to MIDI, serves as a protocol for the real-time exchange
of messages between software and hardware in various applica-
tions [MIDb]. OSC is a newer protocol that can transmit a wider
range of data types than MIDI, such as numerical values, strings, ar-
rays, and even user-defined data structures, but it is also more com-
plex and less widely supported. OSC is more suitable for a wider
range of creative applications beyond traditional music, including
interactive installations, multimedia performances, and communi-
cation between various types of software and hardware devices.

Secondly, we list the Basic Music Elements [Sar16], the funda-
mental concepts that define and give structure to a piece of music.
They contribute to the mood, harmony, and rhythm of what we hear.
Pitch: the frequency of the note’s vibration (how high or low the
sound is); Duration: How long or short the sound is; Dynamics: the
volume (how loud/quiet the sound is); Timbre: the unique sound of
an instrument, for example an electric guitar sounds different from
an acoustic guitar (tone color of a sound); Melody: a succession of
musical notes; Harmony: the simultaneous, vertical combination of
notes, usually forming chords (multiple pitches played at the same
time); Tempo: beats per minute (how fast or slow a piece of mu-
sic is played); Texture: the density (thickness or thinness) of layers
of sounds, melodies, and rhythms in a piece (a complex orchestral
composition will have more possibilities for dense textures than a
song accompanied only by guitar or piano).

Thirdly, we proceed with Audio Formats which they encapsulate
the diverse ways in which digital sound is stored and represented.
While some formats might prioritize minimizing file size for eas-
ier sharing and storage, others might focus on retaining the utmost
audio fidelity for professional applications. Choosing the right au-
dio format depends on the need for quality and usage. WAV, AIFF,

FLAC, and PCM provide high-quality, uncompressed or lossless
audio, ideal for editing and archiving, though with larger file sizes.
For online distribution, compressed formats like MP3, AAC, and
OGG offer smaller files at the cost of potential quality loss. M4A
and WebM are versatile, supporting various codecs and are suited
for web use and Apple devices. Ultimately, the choice should bal-
ance audio quality and file size, considering the end-user’s platform
and needs.

Lastly, we provide a reference list of acronyms and terminol-
ogy associated with musical performances that will be employed in
subsequent sections of this survey. MFCCs (Mel-frequency Cep-
stral Coefficients): These are features used to simplify audio sig-
nals, making them more amenable to analysis and pattern recogni-
tion. MFCCs are particularly valuable in speech and audio process-
ing applications; Onset/Offset: The identification of the starting and
ending points of musical notes. This process is crucial for the pre-
cise analysis of various musical elements, including tempo, pitch,
and more; String quintets: This term refers to a musical composi-
tion designed for five string players, often involving combinations
of violins, violas, cellos, and double bass; Vibrato: A musical tech-
nique where the pitch of a note is subtly varied, typically through
small, rapid oscillations in pitch, to add expressiveness and depth to
the sound. Vibrato is commonly used by string players and singers
to enhance the emotional quality of their performance.

2.2. Motion Representation and Storage

Typically, character animation is represented using joint/bone hi-
erarchies; each bone’s transformation is relative to its parent and
bones are used to drive parts vertices of a mesh with specific in-
fluence (weights). These hierarchies allow for efficient manipula-
tion and animation of the entire skeleton through techniques such
as keyframe animation, forward and inverse kinematics and mo-
tion capture. Rotations in these representations are typically rep-
resented using Euler Angles, Quaternions [PGA18], Rotation Ma-
trices (or 6D representations) [ZBL∗19] or variations such as Dual
Quaternions [AAC22]. The storage and retrieval of this type of data
is usually achieved using suitable motion capture file formats and
protocols. One of the most common used motion capture formats is
BVH (Biovision Hierarchical Data). It is divided into two sections:
the first delineates the skeleton’s hierarchical structure and initial
pose, while the second captures the motion, providing channel data
for each frame [MM∗01]. Another format that the last years is gain-
ing popularity is SMPL [LMR∗15]. The Skinned Multi-Person Lin-
ear Model (SMPL) is a data-driven model that accurately captures
a wide range of human body shapes and poses using a vertex-based
approach. It utilizes parameters derived from the rest pose template,
blend weights, pose-dependent blend shapes, identity-dependent
blend shapes, and a regressor from vertices to joint locations.

Furthermore, in combination with motion capture data, that are
able to realistically animate the body of a virtual avatar, Facial cap-
ture has surged in prominence with the advancing horizons of tech-
nology, and offers accurately translations of the subtle movements
of our faces into digital form for realistic representation (more de-
tails in Section 4.4). Central to this is the concept of “blendshapes”.
This technique involves a set of predefined facial expressions that
can be blended in various combinations to represent a spectrum
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of human emotions. When these blendshapes are integrated into
3D models, they allow these models to emulate real-world facial
expressions with incredible precision. To store and transfer these
complex datasets, formats like FBX [AUT], Alembic [SL], and
COLLADA [AB06] are utilized. These formats not only encapsu-
late the blendshape data but also ensure compatibility across differ-
ent software and platforms.

2.2.1. Future Research

We argue that future research should incorporate facial expression
data when capturing musical performances data, as they offer sig-
nificant insights into the emotions and intentions behind the music.
The interplay of facial expressions with musical elements provides
a richer context, allowing for a deeper understanding and apprecia-
tion of the performance.

3. Multi-modal Datasets of Performing Music

Creating multi-modal repositories of musical performances data is
a complex task that requires careful organization and systematic
presentation. It also involves addressing significant challenges in
data acquisition, including the capture of high-fidelity data, cura-
tion, and synchronization across various modalities (see Section 4).
The intricate nature of music-related performance capture data adds
an additional layer of complexity, with challenges like data oc-
clusion, the capture of nuanced dexterous movements of the per-
former, and the need for standardized metadata to ensure the repos-
itory’s quality, usability, and comprehensiveness. In this section,
we provide an overview of various databases and repositories, each
offering a unique perspective on musical content. These reposito-
ries encompass a wide range of data types, ranging from sheet mu-
sic, audio recordings, video, and MoCap, to a diverse spectrum of
musical instruments, genres, and styles. Exploring those databases
is a valuable step in the research process, enabling researchers to
access, evaluate, and leverage existing resources to advance their
work, validate algorithms, promote interdisciplinary collaboration,
facilitate data integration, train machine learning models, and in-
spire innovative research directions, thereby contributing to the
growth of knowledge in the field. In the following subsections,
we briefly discuss about music data archiving and then, we cate-
gorize various databases firstly based on their data modality(audio
and multi) and secondly based on their primary intended usage; it
is worth noting that certain datasets may be well-suited for multiple
tasks, but we group them according to their predominant use cases.
Our organization partially relies on the approach presented by Li
et al. [LLD∗19], offering a structured exploration of this rich land-
scape. Our analysis additionally enlists recent repositories not cov-
ered in the original paper, along with datasets that exhibit greater
variability and are not closely associated with URMP [LLD∗19],
ensuring a more comprehensive review of the available resources.
While our primary focus lies on multi-modal datasets, we have also
chosen to include repositories centered around audio and MIDI,
recognizing their potential utility for the research community. Fi-
nally, this section includes a concise discussion on music composi-
tion.

3.1. Archiving Musical Performances

The organization and accessibility of any database play a pivotal
role, with metadata serving as the hub, providing the essential de-
scriptions of the underlying data. In essence, metadata functions as
a documentation system for the data at hand. These metadata can be
categorized into five primary types, each shedding light on different
facets of the resources [DIHB08]:

1. Descriptive metadata aids in the discovery and identification of
resources. It captures elements such as the pitch contour of a vo-
cal line, the genre, or specific instrument types used in a musical
composition.

2. Structural metadata delves into the organization of data, eluci-
dating details like the sequencing of note annotations in a musi-
cal score or the hierarchy of layers in a multi-track recording.

3. Administrative metadata comes into play when documenting as-
pects like the date of a song’s annotation, the file type of a per-
former’s video, or rights related to the usage of motion capture
data of a dancer interpreting the music.

4. Reference metadata might describe standard classifications, like
predefined categories of emotion or sentiment, or reference
points for motion capture data related to standard body move-
ments.

5. Statistical metadata within these datasets could reveal patterns,
such as the frequency of a particular emotion across several
songs or common movements found in motion capture data
across multiple performances.

To systematically and cohesively organize data, it is impera-
tive to implement and delineate metadata schemas. These schemas
illustrate the interconnections among various metadata compo-
nents [Sic14]. The primary role of metadata is to assist users in
locating information, exploring resources, and conducting in-depth
examinations of the content and structure of the data. This is par-
ticularly vital for managing electronic resources and ensuring the
digital preservation of information and assets. Similarly to the
work of Aristidou et al. [ASC19] that deals with the acquisition
of dance data and proposed a schema for comprehensive archiving
of dance performances, a similar schema for musical instrument
performances should be established. While numerous schemas are
focused on music data, they often overlook the multi-modal aspects
of musical instrument performance data. To our knowledge, the
closest resemblance to a schema describing multi-modal musical
performance data is RepoVizz [MLMG11], a data repository and
visualization tool that offers structured storage browsing of multi-
modal recordings. This tool stores data as DataPacks, which are
essentially tree documents with nodes categorizing data, providing
descriptions, or pointing to different data files, but it does not rely
on a specific structural schema. Hence, we assert that the creation
of a suitable metadata schema or protocol, designed to facilitate
the organization and maintenance of a substantial volume of multi-
modal musical performance data, is of paramount importance and
will significantly benefit future research endeavors. In this survey,
we will not be delving deeply into the details of music metadata and
archiving. However, for those seeking a preliminary exploration
of this subject, we recommend referring to the work of Serra et
al. [SMB∗13], that provides detailed insights and discussions on
various aspects of music data, its organization, and preservation.
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It serves as an excellent initial reference for anyone interested in
delving into the specifics of music archiving.

3.2. Audio/MIDI-modal Datasets

This subsection briefly reviews several performance datasets which
are mainly focused on audio and MIDI modality. These datasets
are categorized into four groups according to their predominant
applications. The first category, “Pitch Estimation, Transcription,
and Analysis”, focuses on the foundational process of understand-
ing music by extracting notations and interpreting individual notes,
forming the basis for further analysis. The second category, “Mu-
sic Information Retrieval and Instrument Recognition”, centers on
extracting metadata and differentiating between various musical
sources. Moving on to the third category, “Music Generation and
Composition”, it delves into the creative aspect of music. It em-
phasizes tools and algorithms designed to create novel sounds and
automate musical composition. The final category, “Source Sepa-
ration, Mixing, and Signal Processing”, delves into the technical
aspects, focusing on refining audio quality, isolating vocals or in-
struments, and ensuring an optimal listening experience. Table 1
lists the audio/MIDI-modality repositories, categorized based on
their primary scope. This table provides details regarding the in-
struments featured, duration, and data content and formats for each
repository.

Pitch Estimation, Transcription, and Analysis: The MAPS
database [EBD10] was designed as a robust resource for the mu-
sic information retrieval community. Comprising MIDI-annotated
piano recordings, its intent is to further the evolution of pitch esti-
mation and automatic transcription techniques. It boasts an array
of sounds captured under varied conditions. Furthering the dis-
course on transcription, the LabROSA dataset [PE07] is a col-
lection of 130 pieces of audio and MIDI, recorded on a Yamaha
Disklavier grand piano, mainly aids research into classification-
based transcription methods. Drawing attention to stringed in-
struments, the GuitarSet [XBP∗18] stands out with its use of a
hexaphonic pickup. This comprehensive dataset includes numer-
ous acoustic guitar excerpts accompanied by time-aligned annota-
tions, pivotal for transcription and performance analytics. For en-
semble works, the TRIOS dataset [FP13] is a valuable resource,
offering separated tracks from five chamber music trio record-
ings, along with their corresponding MIDI scores. The dataset by
Su et al. [SY16] involves an innovative approach where a musi-
cian recreates nine musical excerpts, where they are later checked
for accuracy with annotated MIDI, with the aim of resolving any
possible mismatches. Delving into classical realms, the Bach10
dataset [DPZ10] is tailor-made for polyphonic music research. Fea-
turing ten J.S. Bach chorales, it provides a blend of audio record-
ings and accurate ground-truth data for each part played by dis-
tinct instruments. Shifting focus to orchestral compositions, the
PHENICX-Anechoic dataset [MCOB∗16] offers denoised record-
ings for four symphonic pieces, accompanied with note annota-
tions sourced from the Anechoic Dataset [PPL08]. Concluding this
category, the MusicNet dataset [THK17] contains classical music
tracks from 10 composers and 11 instruments, spanning 34 hours,
each annotated with precise, time-specific labels from 513 classes.

Music Information Retrieval and Instrument Recognition: The
Wood Wind Quintet (WWQ) dataset [BED09] provides insights
from a single classical quintet, releasing a 54-second snippet for
public use, which has served as a benchmark for the MIREX Multi-
F0 Estimation And Tracking task [MIR23]. Moving to a broader
spectrum, the RWC Music Database [GHNO02, GHNO03, G∗04]
contains six unique collections, featuring everything from popular
music to classical tunes, totaling 315 musical pieces. A standout
aspect of this database is its exhaustive compilation of 50 instru-
ments, capturing diverse playing styles and dynamics. Likewise,
provides original audio signals, corresponding standard MIDI files,
and, for song entries, supplementary text files containing lyrics.
Furthermore, Nlakh [KPJ∗23], combines the NSynth [ERR∗17]
and Lakh [Raf16] datasets, offered in two distinct versions fo-
cusing on solo and mixed tracks. It caters to a wide instrument
range and is notable for its large size. The SSMD dataset [HKS12]
offers individual ground-truth annotated audio tracks from cover
versions of popular western songs, majorly spotlighting vocals,
with its library of 104 songs. Venturing into regional tunes, the
iKala dataset [CYF∗15] contains high-quality Chinese pop songs,
each paired with human-annotated pitch contours and time-marked
lyrics, challenging separation algorithms with its inclusion of non-
vocal segments. Last but certainly not least, the Free Music Archive
(FMA) [DBVB17] sets itself apart as a vast repository, covering
343 days of audio from over 100K tracks, neatly categorized into
161 genres, while also offering a plethora of metadata.

Music Generation and Composition: The MAESTRO
dataset [HSR∗18] presents around 200 hours of audio and
MIDI recordings from ten years of the International Piano-e-
Competition. The recordings have been synchronized to maintain
an accuracy close to 3 ms, and each piece is thoroughly annotated,
offering insights into composers, titles and performance years. An-
other contribution comes from the ADL (Augmented Design Lab)
Piano MIDI dataset [FLW20], which showcases a collection of pi-
ano compositions, spanning various genres. Extracted and refined
from the larger Lakh MIDI dataset [Raf16], this dataset emphasizes
compositions associated with “Piano Family” instruments. Adding
to this category, the dataset developed by Benetos et al. [BKD12]
emerges as an instrumental tool for automatic piano tutoring.
The dataset consists of seven real-world recordings, intentionally
captured with a moderately detuned Yamaha U3 Disklavier. Each
recording is a true reflection of human performances, complete
with occasional mistakes, which are precisely documented in
the MIDI ground-truth. The NSynth dataset [ERR∗17] offers a
collection of 306K musical notes from 1,006 instruments, each
categorized by its distinct pitch, timbre and envelope. Notably,
each note is a monophonic audio snippet, covering every pitch
on a standard MIDI piano and five distinct velocities. Notes are
further annotated with details like their sound production source,
their instrument family and various sonic qualities. The Nintendo
Entertainment System Music Database (NES-MDB) [DMM18]
features tracks synthesized by the iconic NES and spans approxi-
mately 46 hours of chiptunes. Each track in the dataset provides
a score for four instrument voices, accompanied by details on
dynamics and timbre. The POP909 dataset [WCJ∗20] includes
piano arrangements for 909 songs, totaling 60 hours, produced by
expert musicians. These songs, available in MIDI format, feature
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Table 1: Audio/MIDI-modal Music Performance Datasets

Name Content Quantity Annotation
Samples Duration N M PC G I L E m

Pitch Estimation, Transcription, and Analysis
MAPS [EBD10] Piano 270 18.6 h ✓ ✓
LabROSA [PE07] Piano 130 2.7 h ✓ ✓
GuitarSet [XBP∗18] Guitar 360 3 h ✓ ✓ ✓
TRIOS [FP13] Multi 5 3.2 m ✓ ✓
Su et al. [SY16] Multi 10 5 m ✓
Bach10 [DPZ10] Multi 10 5.5 m ✓ ✓ ✓
PHENICX-A [MCOB∗16, PPL08] Multi 4 10.6 m ✓ ✓ ✓ ✓
MusicNet [THK17] Multi 330 34 h ✓ ✓ ✓ ✓

Music Information Retrieval and Instrument Recognition
WWQ [BED09] Multi 1 1 m ✓ ✓
RWC [GHNO02] Multi 215 N/A ✓ ✓ ✓ ✓
Nlakh-multi [KPJ∗23] Multi 110K 153 h ✓ ✓ ✓ ✓ ✓
SSMD [HKS12] Songs 104 6.8 h ✓
FMA [DBVB17] Songs 106.5K 343 days ✓ ✓
iKala [CYF∗15] Songs 252 2.1 h ✓ ✓

Music Generation and Composition
MAESTRO [HSR∗18] Piano 1.18K 172.3 h ✓ ✓
ADL Piano MIDI [FLW20] Piano 11K N/A ✓ ✓
SiPT [BKD12] Piano 7 6.4 m ✓ ✓ ✓
NSynth [ERR∗17] Multi 306K notes 340.1 h ✓ ✓ ✓ ✓
NES-MDB [DMM18] Songs 5.2K 46.1 h ✓ ✓ ✓
POP909 [WCJ∗20] Vocal, Lead instrument 909 60 h ✓ ✓ ✓
Groove [GRE∗19] Drums 1.15K 13.6 h ✓ ✓ ✓
Bach Doodle [HHR∗19] MIDI 21.6M N/A ✓ ✓ ✓
MusicCaps [ADB∗23] Music-Text Pairs 5.5K N/A ✓

Source Separation, Mixing, and Signal Processing
MASS [VIN08] Multi 6 4.8 m ✓ ✓
Mixploration [CPR14] Multi 12 4.9 m ✓
MedleyDB [BST∗14] Multi 122 7.3 h ✓ ✓ ✓ ✓
MUSDB18 [RLS∗17] Multi 150 10 h ✓ ✓ ✓ ✓
MTG-Jamendo [BWT∗19] Multi 55.5K 3.7K h ✓ ✓ ✓
Slakh2100 [MWSLR19] Multi 2.1K 145 h ✓ ✓ ✓ ✓ ✓

Emotion and Sentiment Analysis/Generation in Music
VGMIDI [FW19] Piano soundtracks 823 N/A ✓ ✓ ✓ ✓
EMOPIA [HCD∗21] Songs 1.1K N/A ✓ ✓ ✓ ✓
DEAM [AYS16] Songs 1.8K N/A ✓ ✓

N: Note, M: MIDI, PC: Pitch contour, G: Genre, I: Instrument, L: Lyrics, E: Emotion, m: metadata, : Unavailable/Non-working Link

vocal and instrument melodies alongside piano accompaniments,
all aligned with the original audio; annotations include tempo,
beat, key, and chords. The Groove MIDI Dataset [GRE∗19] offers
13.6 hours of electronic drum performances from 10 professional
drummers, paired with relevant metadata like style annotations and
tempo, all in MIDI format. The Bach Doodle dataset [HHR∗19]
stems from an interactive tool [Bac], allowing users to craft
melodies harmonized in Bach’s style by the Coconet [HCR∗19]
model. This resulted in over 21.6 million compositions across 8.5
million sessions, detailing user melodies, harmonizations, and
various metadata attributes. Finally, MusicCaps [ADB∗23], which
focuses on text to music generation, contains musical snippets
sourced from AudioSet [GEF∗17]. Each of these clips is matched

with its English text description. For every 10-second snippet,
there are a descriptive caption and a list of music aspects.

Source Separation, Mixing, and Signal Processing: The MASS
(Music Audio Signal Separation) dataset [VIN08] provides short
song excerpts, lasting between 10 to 40 seconds. Each of these ex-
cerpts offers Stereo Microsoft PCM WAV files at 44.1Khz and 24
bits, capturing every instrumental track, where based on produc-
tion settings, may or may not have effects. On a parallel note, the
“MIXPLORATION” Dataset [CPR14] is designed to provide an
analysis of audio mixing and includes four root components: the
raw source audio files, the specific mixing parameters, survey data
capturing the listener feedback on these mixes and a time-series
log of the mixing adjustments. Furthermore, regarding melody ex-
traction, MedleyDB [BST∗14] is a collection of melody annotated,
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royalty-free multi-track recordings designed mainly for melody ex-
traction research. While 14 tracks don’t have a defined melody,
they still play a significant role in other musical research areas.
The dataset also delivers instrument activation annotations and ex-
tensive metadata. The MUSDB18 dataset [RLS∗17] offers 150 full-
length tracks, from a spectrum of genres. For each track, its original
stems, isolating elements like vocals, drums and bass are provided.
Meanwhile, the MTG-Jamendo Dataset [BWT∗19] emerges as an
open framework for music auto-tagging. Sourcing its music from
Jamendo, it comes with over 55K tracks tagged across multiple
categories such as mood, genre and instruments. Finally, the Slakh
dataset [MWSLR19] integrates multi-track audio files and aligned
MIDI. Stemming from the Lakh MIDI dataset [Raf16], it employs
high-quality virtual instruments to render individual MIDI tracks,
which are then combined to form complete musical compositions.
Its current version, Slakh2100 offers 2.1K tracks, generated from a
diverse range of 187 patches across 34 categories.

Emotion and Sentiment Analysis/Generation in Music: The
VGMIDI dataset [FW19] is a collection of 823 pieces extracted
from video game soundtracks in MIDI format. These tracks, con-
verted to piano arrangements, are of varying lengths, with some
as short as 26 seconds and others extending up to 3 minutes. The
selection criteria focus on the pieces’ emotional intensity, with 95
pieces annotated based on valence, indicating the emotion’s positiv-
ity or negativity, and arousal, denoting the emotion’s intensity. The
EMOPIA dataset [HCD∗21] centers around the perceived emotion
in pop piano music, combining both audio and MIDI formats. The
emotion detected in each clip is verified through labels provided by
a team of four annotators, ensuring a comprehensive understanding
of the emotional content. Furthermore, the DEAM dataset [AYS16]
offers a more expansive perspective on Western popular music gen-
res, including but not limited to rock, pop, electronic, and jazz. It
includes 58 full-length tracks and 1,744 45-second excerpts.

3.3. Multi-modal Datasets

This subsection is dedicated to the examination of performance
datasets featuring multi-modal data. These databases incorporate a
range of modalities, extending beyond audio and note annotations
and may encompass visual data, motion capture (MoCap) data, and
information related to style and emotion. To facilitate efficient or-
ganization, we categorize them into four groups: The first category
“Music Information Retrieval and Analysis” offers a structured ap-
proach for extracting and analyzing essential musical elements and
patterns. The second category, “Music Generation and Composi-
tion” delves into the tools and techniques used in crafting and au-
tomating music generation. The third category, “Emotion and Sen-
timent Analysis/Generation in Music” specifically contain emo-
tional information. Notably, datasets including emotion labels of-
ten employ the Circumplex model of emotion [Rus80]. This model
utilizes a two-dimensional circular space, featuring arousal and va-
lence dimensions, where valence represents positive versus nega-
tive emotion, and arousal indicates emotional intensity. Finally, the
last category, “Musical Motion, Interaction and Learning”, under-
scores the convergence of music and motion, encompassing areas
like movement analysis, pose estimation, and the study of how mu-
sic influences or interacts with physical movements. Details about

these datasets are presented in Table 2, and regarding motion data,
we specify which elements were captured, between upper-body,
lower-body, fingers and instrument.

Music Information Retrieval and Analysis: The dataset pre-
sented by Perez et al. [PCAW16] is a collection showcasing guitar
performances that encapsulates ten musical segments, each played
by two distinct guitarists. It integrates audio, 3D motion data, and
details from the musical score, including note onset/offset, pitch,
and precise data on the plucked string, plucking finger, fret, and
left-hand fingering. Next, the C4S dataset [BVGLH17] focuses on
clarinet performances and contains 54 videos spanning 4.5 hours
from nine clarinetists. It includes ground-truth onsets and spe-
cific coordinates for facial landmarks with four regions of inter-
est (ROIs): the mouth, left hand, right hand, and clarinet tip. The
EEP Dataset [MRPM14] focuses on string quartet performances
offering 23 multi-modal recordings, with tracking motion and bow-
ing descriptors of each musician and a score alignment. ENST-
Drums [GR06] is a research dataset for automated drum transcrip-
tion and processing. It provides recordings from three professional
drummers, spanning various genres, and using different drum kits,
capturing audio on 8 separate channels and additionally offers
three stereophonic files. Performances were video captured from
two angles providing both a frontal and a right-side perspective.
The Abesser dataset [ALD∗11] focuses on ensemble performances
across blues, funk, and swing genres. It not only provides multi-
track audio but also delves into the rhythmic quality, onset detec-
tion, and other intricate musical annotations. URMP [LLD∗19] in-
cludes 44 classical chamber music pieces, varying from duets to
quintets, accompanied with visual information. Each piece comes
with musical scores, individual audio tracks and detailed ground-
truth annotations with both frame-level and note-level transcrip-
tions. The Lakh MIDI dataset [Raf16], with its vast collection
of MIDI files, offers ground truth data for audio content-based
music information retrieval, transcription, meter, lyrics, and ad-
vanced musicological characteristics. Lastly, the YouTube-100M
dataset [HCE∗17], while not exclusively a music dataset, has been
used for soundtrack classification. The dataset contains around 100
million YouTube videos, which have been auto-labeled with mul-
tiple labels out of a set of 30K topic labels, averaging 5 labels per
video, based on information, context, and visuals.

Musical Motion, Interaction, and Learning: The QUARTET
dataset [PMPCM14] captures both intricate audio details and bow-
ing motion data from string quartet exercises conducted under two
experimental scenarios: solo and ensemble. MAPdat (Music As-
sisted Pose dataset) [SFH∗22] provides ground truth motion cap-
ture, audio, and video recordings for four master musicians with a
total duration of 33.5 hours. The TELMI Dataset [VKV∗17] con-
centrates on violin performers, documenting motion capture, au-
dio, video, depth, and physiological data, ensuring an all-round
perspective. Sarasua et al. [SCTO17] provide two datasets cap-
turing instrumental gestures from five violinists and two pianists
with expressive variations. They employ a diverse array of tools,
ranging from EMG devices to gyroscopes, to ensure comprehensive
data collection. Furthermore, the Solos dataset [MSH20] stands
in alignment with the URMP dataset [LLD∗19], offering detailed
recordings across a plethora of instruments. These are further sup-
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Table 2: Multi-modal Music Performance Datasets

Name Content Quantity Annotation
Samples Duration N M m V Mo

Music Information Retrieval and Analysis
Multi-modal Guitar [PCAW16] Guitar 10 10 m ✓ ✓ ✓ U f I
C4S [BVGLH17] Clarinet 54 4.5 h ✓ ✓ ✓
EEP [MRPM14] String quartet 23 N/A ✓ ✓ ✓ f I
ENST-Drums [GR06] Drum kit N/A 3.75 h ✓ ✓ ✓ ✓
Abeßer et al. [ALD∗11] Multi N/A 1.12 h ✓ ✓ ✓
URMP [LLD∗19] Multi 44 1.3 h ✓ ✓ ✓ ✓
Lakh [Raf16] Multi 176.5K N/A ✓ ✓ ✓
YouTube-100M [HCE∗17] Multi 100M 5.4M h ✓ ✓

Musical Motion, Interaction, and Learning
QUARTET [PMPCM14] String Quartet 96 50 m ✓ ✓ U f I
MAPdat [SFH∗22] Violin 40.2K 33.5 h ✓ ✓ U L
TELMI [VKV∗17] Violin 41 2.4 h ✓ ✓ U L f I
Gesture Datasets [SCTO17] Piano, Violin N/A 50 m ✓ ✓ ✓ U
Solos [MSH20] Multi 755 66.2 h ✓ ✓ ✓ U f
RepoVizz [MLMG11] Multi N/A N/A ✓ ✓ ✓ U L f I

N: Note, M: MIDI, m: metadata, V: Video, Mo: MoCap (U: Upper body, L: Lower Body, f: fingers, I: Instrument),
: Unavailable/Non-working Link

plemented with audio, MIDI, and skeletons and video resources
with clearly visible hands. Finally, RepoVizz [MLMG11] emerges
as a tool tailored for the needs of the scientific community studying
music performance, while is not only a data repository but also an
effective visualization tool. It provides structured storage and user-
friendly access to multi-modal recordings, spanning audio, video,
motion capture, and much more. The goal of RepoVizz is to enable
seamless online access to a shared music performance database,
enabling collaboration and innovation among researchers.

3.3.1. Challenges and Limitations

As we conclude this section, it is essential to highlight the open
challenges and limitations in the realm of multi-modal music
databases. While these repositories are invaluable for various re-
search areas, there are ongoing challenges related to data acquisi-
tion, documentation, and organization, such as the quality of the
data, the synchronization of the multiple modalities, dealing with
data occlusions, interoperability, stylistic variations, and metadata
standards. Moreover, as evident from Table 2, most of the datasets
that feature motion capture data are predominantly centered on
stringed instruments. This concentration on a specific subset of in-
struments represents a limitation within the domain of musical in-
struments. In light of this observation, it is imperative that future
research initiatives direct their efforts toward the establishment of
repositories that encompass a more diverse array of musical instru-
ments. The anticipated result of such endeavors is the creation of
resources that are not only more expansive in their coverage but
also more readily accessible. This expansion and increased acces-
sibility would be of great benefit to both the music and virtual in-
strument research communities, as it would provide a richer and
more representative datasets for exploring and advancing the field.

3.4. Music Composition

In recent years, advancements in music composition technologies
have provided new opportunities for research. These tools enable
digital music composition, enabling researchers to investigate and
analyze musical constructs with greater precision and depth. No-
tably, these technologies present the opportunity to create cus-
tomized datasets for further research initiatives, such as training
machine learning models or augmenting existing datasets. While
not the main focus of this survey, this subsection offers a brief
overview of recent studies that employ diverse methods to com-
pose computer-generated music. Over the last few years, Text-to-
Music Generation has gained significant popularity. Agostinelli et
al. [ADB∗23] proposed MusicLM, a generative model that delivers
high-quality music, maintaining consistency over extended dura-
tions and accurately adhering to text-based conditioning cues. Sim-
ilarly, the MusicGen by Copet et al. [CKG∗23], a single Language
Model that operates over music tokens, can generate high-quality
samples, influenced by textual descriptions or melodic attributes,
offering enhanced control over the resulting output. Schneider et
al. introduced Moûsai [SKJS23], a novel text-to-music generation
model using latent diffusion, capable of real-time producing sev-
eral minutes of music, ensuring both high musical quality and ef-
fective text-audio integration. MuseCoco [LXK∗23], presented by
Lu et al., is a data-efficient system for generating symbolic mu-
sic from text descriptions by leveraging musical attributes. Mov-
ing towards to Multi-Track Generation, Ren et al. developed Pop-
MAG [RHT∗20], a pop music accompaniment generation frame-
work, based on a novel multi-track MIDI representation which
encodes multi-track MIDI events into a single sequence, and uti-
lize a sequence-to-sequence model. Lv et al. presented GETMu-
sic [LTL∗23], a framework for generating music with any arbi-
trary source-target track combinations, which relies on a novel mu-
sic representation combined with a diffusion model. Furthermore,
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some works focused on Music Form/Structure Generation. Lu et
al. developed MeloForm [LTY∗22], an expert system to construct
melodies from motifs to phrases using a predefined musical form,
while they employed a transformer-based refinement model to en-
hance the richness. Museformer, proposed by Yu et al. [YLW∗22]
also use a transformer that incorporates novel fine- and coarse-
grained attention mechanisms for music generation, capturing both
music structure-related correlations and additional contextual in-
formation, leading to high-quality, well-structured long music se-
quences. An interesting work by Wang et al. [WLL∗20] introduces
an algorithm for synthesizing interactive background music based
on visual content. Using neural networks for scene sentiment anal-
ysis and a cost function for music synthesis, it ensures emotional
consistency between visual and auditory elements, as well as mu-
sic continuity. Moreover, it is imperative to acknowledge the exis-
tence of several studies in the domain of Song Writing. Specifically,
the works by Sheng et al. [SST∗20], Xue et al. [XSW∗21], and Ju
et al. [JLT∗22] have made noteworthy contributions to this field.
We encourage readers, who are interested in exploring this topic
in greater detail, to refer to the comprehensive analysis conducted
by Ji et al. [JYL23] which extensively explore the current popular
music generation tasks using deep learning techniques. Likewise,
Siphocly et al. [SEHS21], describe and analyze various AI algo-
rithms and techniques available for composing computer music.

3.4.1. Conclusions

It is crucial to underscore that the results generated in this sec-
tion are not flawless. They stem from various challenges, such as
limitations in creativity and musical structure, difficulties in con-
veying emotion, restricted user interactivity, and inconsistencies in
music evaluation criteria. Nonetheless, given the rapid progress in
this field, we expect that more advanced tools for automated music
generation will soon emerge, which will be well-suited for research
purposes.

4. Musical Performance Capture

In the context of musical instrument performance, the interplay be-
tween a musician’s bodily movements, finger dexterity, and facial
expressions, combined with the characteristics of the musical in-
strument and the resulting auditory experience, collectively shape
the expressive and artistic delivery of the music. When it comes
to digitizing a musical performance for archiving, documentation,
streaming, analysis, and synthesis, it is essential to capture all the
elements that are integral to the overall experience. This holistic
approach to digitization and documentation is crucial for faithfully
preserving the essence of the performance.

These elements encompass auditory aspects, such as capturing
the unique timbre of the instruments and obtaining a high-quality
audio recording that faithfully reproduces the voices of the per-
formers. This audio component plays a pivotal role in retaining
the emotional depth of the performance. Beyond the auditory as-
pects, digitization also extends to the visual components of the
performance, including the appearance of the performers, their at-
tire, the stage, lighting, shapes, colors, instruments, and any objects
used. Moreover, the digitization process encompasses dynamic and

kinesthetic components, including the performers’ postures, the nu-
anced movements of their fingers during instrumental play, and the
emotions conveyed through their facial expressions. The extent to
which each of these elements is captured in detail can vary based
on the objectives of replicating the performance in a virtual en-
vironment. Moreover, apart from capturing the movements of the
performers and the sounds of the instruments, in some cases, it is
also necessary to capture the kinematics of props. This includes the
movement of instruments on the stage and the dynamics of instru-
ment accessories, such as the drumsticks of a drum kit.

In the scope of this survey, our primary focus centers around
the interaction between artists and their instruments, their ability
to convey emotion, and the quality of the sound they produce and
transmit within a virtual context. Therefore, our concentration is
mainly directed towards capturing the dynamic movements of per-
formers, which include their postures, finger actions, and facial ex-
pressions, as well as achieving a faithful reproduction of the in-
struments’ sound as played by the performers. Within this section,
we will explore various systems and technologies designed to cap-
ture each of these critical modalities. We will assess their suitability
within the context of VIP, highlighting their advantages and draw-
backs, and addressing the challenges they present. The aim is to
provide a well-informed basis for selecting the most suitable cap-
ture technology that aligns with the specific needs of users in the
realm of virtual instrument performance.

4.1. Music

Recording instruments can be accomplished through various tech-
niques, with the resulting sound being saved as audio files, often
annotated with the corresponding instrument(s) that produced the
sound. Some instruments, particularly electronic ones (e.g., elec-
tronic keyboards, electronic drums, and certain wind instruments),
support the automatic retrieval of MIDI data in addition to captur-
ing the sound. This MIDI data is valuable for further processing
and analysis.

One of the initial and most common methods for capturing in-
strument sounds is to use microphones. When recording acoustic
instruments, a common practice is to position a microphone in front
of the instrument, as depicted in the left image of Figure 3. Con-
versely, when capturing the sound of electric instruments, the mi-
crophone is frequently situated in front of the amplifier to record the
amplified sound, as demonstrated in the right image of Figure 3.

Alternatively, audio interfaces offer an effective means of au-
dio acquisition. Among the available audio interfaces, the “Scar-
lett” [Foc23], produced by Focusrite, stands out as one of the most
renowned and widely used options. To use these interfaces, instru-
ments are connected to the audio interface using a jack cable, and
the interface is then linked to a computer. Another notable audio in-
terface is the “iRig” [Mul23], known for its portability. It allows for
direct connections to smart devices like iPhones, iPads, or personal
computers. An alternative method involves directly connecting an
electronic musical instrument to a computer, provided that the in-
strument is electronic and compatible. This setup enables the auto-
matic acquisition of both the instrument’s sound and correspond-
ing MIDI data. As mentioned earlier, this approach is particularly
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Figure 3: Recording instruments with microphones in front of
the instrument: a cello on the left [Zie23], and an amp on the
right [Bra23].

useful for electronic instruments that have built-in MIDI recording
capabilities.

MIDI files are often used as the ground-truth transcription
for music, enabling precise representation of the musical data.
For instruments that lack integrated MIDI recording capabilities,
manual annotation remains the most accurate method for creat-
ing ground-truth transcriptions. However, this manual approach is
labor-intensive and time-consuming. To address this challenge, sev-
eral software solutions for converting audio to MIDI are available.
Some popular options include Basic Pitch by Spotify [Spo23], Pi-
ano Scribe by Google [Goo23], and Logic Pro [App23b], each of-
fering various features for MIDI conversion.

Finally, in the domain of audio and music editing, as well as
notation, a wide range of software applications is available for
recording, post-production and musical composition. These ap-
plications cater to different user needs and preferences, ranging
from industry-standard commercial tools [App23b, Abl23, Stu23,
Ste23, Ado23] to software designed for small businesses or home
users [App23a]. Additionally, there are research-based solutions
for specialized applications [Aud23,CLS10,MRL∗15,LL21]. How-
ever, the discussion of these methods and tools is beyond the scope
of this survey. For a comprehensive review of audio editing meth-
ods and tools, readers are encouraged to refer to the following
works [Col13, Mat23a], which provides an in-depth exploration of
this topic.

4.2. Body Movement Capture

Motion capture technology has played a pivotal role in digitiz-
ing, preserving, and disseminating intangible creations, such as
dance performances [ASC19], or sport performances [vdKMR18].
Recent years have witnessed a growing demand for realistic 3D
animation in various sectors, including media, entertainment, re-
search, and training, prompting industries to seek effective 3D
motion capture solutions. The advantages and disadvantages of
these technologies have been extensively reviewed in surveys, such
as [WF02, MHK06]. This technology has found widespread appli-
cation in the entertainment industry, notably in the production of
animated films, video games, and virtual reality experiences. Re-
cent advancements in hardware and software, including high-speed
cameras, inertial measurement units, and depth sensors, have sig-

Figure 4: The left image shows musicians playing violin, motion
captured using an optical MoCap system with reflective mark-
ers, tracking their body and instrument motion (image extracted
from [Fut]). The right image shows a musician playing piano, while
the movements of the finger joints are tracked with 5mm reflective
markers (image extracted from [Ger]).

nificantly enhanced the sophistication and accuracy of motion cap-
ture.

Motion capture can be broadly categorized into marker-based
and marker-less systems. The choice of the most suitable system
depends on the required quality and purpose of the application (e.g.,
mobility, interaction), as well as the desired level of accuracy and
precision, allowing for the capture of even the most subtle move-
ments and expressions, such as finger gestures, facial expressions,
and even eye movements. In the following subsections, we offer a
concise review of the prevalent technologies and systems utilized
for capturing human motion. This will encompass a comparative
analysis of different methods and an examination of more intricate
movements, including fingers and facial expressions.

4.2.1. Marker-based Systems

Marker-based systems necessitate the attachment of sensors, mark-
ers or stickers to the bodies of performers. These systems can be
categorized into two main types: optical and intertial-based sys-
tems.

4.2.1.1. Optical Systems Optical motion capture systems use
fiduciary markers near joints for real-time data acquisition. Pop-
ular in studios, these markers enable 3D positioning via high-speed
cameras using triangulation. Passive systems like Vicon [Sys23]
and NaturalPoint’s OptiTrack [Opt23b] use retroreflective balls,
offering high accuracy but are sensitive to lighting and marker
swapping issues. Active systems like PhaseSpace [Pha23b] and
Qualisys [Qua23] use LEDs for cleaner and labelled data but
require wires and power sources. While precise, optical sys-
tems are costly, intrusive, lack portability, and require extensive
setup. Data cleaning, especially for occlusions, remains a chal-
lenge [AL13, PHLW15, LC10, SDB∗12], with recent attempts us-
ing Deep Learning (DL) for denoising and restoring missing mark-
ers [Hol18, CWZ∗21]. Wheatland et al. [WWS∗15] survey several
systems and technologies, highlighting their advantages and limita-
tions. An example of full-body and finger tracking using an optical
motion capture system with reflective markers is shown in Figure 4.
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4.2.1.2. Inertial-based Systems Inertial systems, including
XSens [Mov23c] and Rokoko [Rok23b], use micro-inertial mea-
surement units (IMUs), biomechanical models, and sensor fusion
algorithms for motion capture. These systems measure rotational
rates using gyroscopes, magnetometers, and accelerometers, trans-
lating them into a skeleton model. Tesla Suit [Sui23b] has intro-
duced a suit that additionally encompasses a full-body haptic feed-
back system that uses electro muscle stimulation and transcuta-
neous electrical nerve stimulation. While inertial-based systems
offer advantages such as cost-effectiveness, portability, and suit-
ability for outdoor use, they are not without challenges. They can
be complex, lack precise orientation measurement, and suffer from
positional accuracy issues and drift over time. Despite these chal-
lenges, they are gaining popularity among independent game de-
velopers due to their quick setup. More recently, there is a trend
towards reducing the equipment and body attachments for motion
tracking using only six or even less inertial sensors, such as Sony’s
MoCapi [Den22]; several machine learning techniques using sparse
sensors show promise, especially in applications like virtual reality
and sports training [YZH∗22, PYA∗23, DKP∗23]. However, these
methods are still in research development and face challenges in
capturing highly dynamic and heterogeneous movements.

4.2.2. Markerless Systems

The markerless family of methods and systems is less intrusive
than the previous two families of methods as it eliminates the need
for subjects to wear specialized tracking equipment. Typically, the
subject’s outline silhouettes is captured from various angles using
single or multiple vision or RGB-depth-sensitive cameras along
with specialized software. A voxel-based representation of the sub-
ject’s body evolves over time, and animation is achieved by fit-
ting a skeleton into the 3D model [DAST∗08,GSdA∗09,VBMP08,
LSG∗11, LGS∗13]. Over the last decade, numerous methods have
been proposed; in this work, we draw insights from two key sur-
veys, the work of Desmarais et al. [DMSM21] and the work of
Xia’s et al. [XGL∗17]. Additional insights can be found in related
studies [HXZ∗19, XCZ∗18].

Voxel-based representation encompasses three primary method-
ologies: generative, discriminative, and hybrid approaches. Gen-
erative motion capture methods (model-based) determine a per-
son’s pose and body shape by fitting a template model to data
extracted from images. By inputting a set of model parameters,
such as body shape, bone lengths, and joint angles, a represen-
tation of the model is generated, capturing the pose and shape
of the body [GPKT10, WZC12, YLH∗12, HYXC15, YSD∗16]. On
the other hand, discriminative approaches (model-free) map im-
age features directly to pose descriptions or search a database of
poses to find the closest match to the current image, as seen in
studies such as [SSK∗13, TSSF12, PMTS∗15, YGTW15]. A blend
of the previously mentioned strategies is utilized in hybrid meth-
ods [BMB∗11].

Many researchers prefer using single-camera setups for mark-
erless motion capture because of their cost-effectiveness, simplic-
ity, and speed. Monocular systems, being generally less expen-
sive than multi-camera configurations, with quicker setup times
and fast data processing. Single-camera setups have been seen

in various recent studies [PCG∗19, ZPT∗19, YZZ∗20]. To ad-
dress the challenges of occlusions in monocular systems, and to
achieve greater accuracy and precision, along with a full 360-
degree coverage, the use of multiple cameras has become more
prevalent [HAF∗16, OERF∗16, DDF∗17], at the cost of a more
complex configuration, and increased processing demands. In the
recent era of DL, there has been a significant increase in efforts
dedicated to pose reconstruction, utilizing both single and multi-
ple camera setups, to enhance accuracy, adaptability, and automa-
tion. DL models have the capacity to automatically extract and
learn complex features from raw data, perform end-to-end learning,
adapt to various poses and conditions, and deliver high accuracy. It
benefits from extensive data availability, parallel processing capa-
bilities, and continuous advancements in model architectures, mak-
ing it a versatile and powerful approach for accurately estimating
poses in diverse applications [MSM∗20,SAA∗20,HZZ∗21]. There
are several commercial motion capture systems and companies
in use today, that fuse markerless technology with DL, e.g., Mi-
crosoft’s Kinect [Mic23], Move.AI [AI23], DeepMotion [Dee23],
Plask [Pla23], Mediapipe [LTN∗19], FreeMoCap [Mat23b], etc.
Nonetheless, they have not yet achieved the level of accuracy and
fidelity seen in optical MoCap systems.

The main advantage of these methods lie in their affordabil-
ity, portability, the absence of body-attached sensors, and ease of
setup. However, they encounter challenges when the articulated
body is obscured from cameras due to self-occlusions or occlusions
by other objects, subject clipping, or when the subject wears ex-
tensive clothing like bulky costumes. Furthermore, localizing sub-
jects in a global coordinate system becomes extremely challeng-
ing without multiple synchronized video sources. Proper lighting
conditions are essential, given that performances may vary from
low-light conditions to illumination from several light sources. The
clothing of performers and the complexity of the environment add
to the challenges of obtaining desired outcomes. To address these
challenges, controlled lighting and controlled background environ-
ments are typically employed. Despite these efforts, capturing mul-
tiple characters becomes problematic when other elements in the
scene obstruct the subject’s view, especially in scenarios like per-
formances on a stage crowded with multiple people and objects. In
comparison to optical or IMU-based systems, these methods have
not yet achieved the same level of fidelity and versatility.

Recently, volumetric capturing has gained prominence among
various vision-based methods. This approach constructs 3D mod-
els from multiple 2D images or videos, as demonstrated by compa-
nies like 4Dviews Studios [4DV23] and Evercoast [Eve23]. While
useful for virtual reality and animation, it requires numerous cam-
eras and view-angles in order to produce a detailed and accurate 3D
model, while it is sensitive to lighting and moving objects. Heavy
clothing poses or other elements in the scene pose challenges, ob-
scuring body shape and creating shadows. Moreover, characters
are usually represented as one combined mesh with their clothes,
which makes it challenging to separate different costume layers, or
rigging and skinning.

4.2.3. Discussion on the MoCap Categories

Optical motion capture technology stands as the industry standard
for capturing the movements of intangible entities, including mu-
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Table 3: The 3 primary Mocap categories with their advantages and disadvantages.

Optical Inertial Markerless

Methodology Cameras track reflective or
light-emitting markers.

Utilizes accelerometers,
gyroscopes, magnetometers.

Computer vision algorithms
without physical markers.

Advantage High accuracy
and reliability.

Portable, feedback,
versatile.

More flexible, convenient,
often less expensive.

Disadvantage Expensive, occlusions,
less portable.

Prone to drift, magnetic interference,
may cause discomfort to the subject.

Less accurate, sensitive to lighting,
occlusions.

sical instruments. It finds widespread use in various fields, such
as film production, video game development, biomechanics, and
medical research. By utilizing cameras to track reflective or light-
emitting markers, it is known for its remarkable precision and re-
liability, even when capturing subtle or intricate movements, and
high-frame acquisition. However, it is generally costly, requires
camera calibration, and can be hindered by occlusions. Conversely,
inertial motion capture systems are prized for their portability and
versatility. However, these methods are susceptible to issues like
positional drift and magnetic interference, and the precision of data
acquisition is somewhat diminished. Finally, markerless (or vision-
based) motion capture systems leverage advanced computer vision
algorithms, providing flexibility and convenience, albeit at the cost
of reduced pose accuracy. They are notably sensitive to lighting
conditions and occlusions. For a summarized overview of the ad-
vantages and limitations of each of these methods, please refer to
Table 3.

4.3. Fingers Capture

Finger motion capture differs from full-body acquisition due to the
intricate nature of hand movements, demanding advanced precision
in capturing the highly articulated motions of the fingers. This pre-
cision is particularly crucial for applications such as surgery, sign
language interpretation, or playing musical instruments. These sys-
tems encounter unique challenges that set them apart from whole-
body tracking, including self-occlusion and precise contact mod-
eling. They often require specialized hardware, such as gloves or
infrared cameras.

The level of detail and precision needed to capture hand and
finger movements can vary greatly based on the project’s specific
requirements. Some applications require high-fidelity tracking of
hand and finger motions, while others prioritize capturing broader
body movements. In contexts like musical performances, finger
and hand movements play a critical role in instrument playing.
To achieve accurate tracking of these intricate movements, a re-
liable motion capture system is essential. Therefore, assessing a
system’s ability to capture hands and fingers is vital for tailoring it
to a project’s specific needs.

Numerous commercial motion capture systems offer special-
ized gloves designed for finger motion capture. These systems
include optical-based products such as Vicon, Optitrack, and
PhaseSpace gloves [Sys23, Opt23a, Pha23a], as well as inertial-
based products like Rokoko Smartgloves [Rok23c], Xsens Meta-
gloves [Mov23b], Tesla Glove [Sui23a], and Perception Neuron
Studio Gloves [Neu23]. Moreover, the MANUS Quantum MoCap

Metagloves can be integrated in most of the industry standard mo-
tion capture systems [Met23b]. These products inherit both the
advantages and limitations of their respective family systems, as
described in the previous section. It’s important to note that us-
ing gloves may not be suitable for musicians as they can inter-
fere with their ability to play instruments effectively. One poten-
tial solution is to employ an optical motion capture system that
uses small markers directly applied to the fingers and hands or
thin gloves with markers, as demonstrated in relevant research pa-
pers [Ari18, KMO∗09, PPHB18].

Another approach is to use camera-based systems that do not re-
quire physical markers attached to the body, such as the Leap Mo-
tion Controller [Ult23]. There is a wide range of specialized hand
tracking methods that rely on silhouette extraction principles and
achieve animation by fitting a skeleton into a 3D model. Recent
advancements in this field, exemplified by methods like DeepMo-
tion [Dee23], Move.AI [AI23], Google’s MediaPipe [LTN∗19], and
the Free Motion Capture Project (FreeMoCap) [Mat23b], have ex-
panded their capabilities to encompass tracking of complete body
parts, including the face, hands, and fingers, even for multiple indi-
viduals, using only monocular video input.

4.3.1. Markerless Systems Accuracy

The accuracy of markerless systems in hand tracking and recon-
struction surpasses that of full-body tracking, primarily due to the
more constrained articulation of hand movements. However, while
these markerless systems may not be the primary choice for hand
tracking in musical instrument applications due to sensitivity to
lighting and environmental conditions and susceptibility to occlu-
sions, they are more commonly used in hand tracking compared to
full-body tracking solutions.

4.4. Face Capture

Facial capture is specialized and distinct from full-body motion
capture due to the unique challenges associated with capturing the
complexity and subtlety of facial expressions, as well as its critical
role in conveying emotions and character in various applications.
The technical challenges involved in capturing minute facial de-
tails, and the priority on realism over efficiency in facial capture
setups. These distinct requirements contribute to the specialization
of facial capture as a field within motion capture technology.

Facial expression capture and motion transfer to virtual charac-
ters have been subjects of research for over three decades. Central
to this has been the Facial Action Coding System (FACS), devel-
oped by Paul Ekman and Wallace V. Friesen in the 1970s [EF78],
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Figure 5: Use of a motion capture system to holistically track a
musician (full-body, face, fingers), drum sticks, and drums. Image
extracted from [Cin21].

which categorizes facial expressions into distinct ‘action units’ cor-
responding to muscle movements. This system has been essential in
both psychological studies and animation. Parallel to FACS, blend-
shapes in animation adjust a character’s neutral facial mesh to var-
ious predefined expressions. By combining these shapes, diverse
facial expressions are achieved, making blendshapes a prevalent
technique in film and gaming [LAR∗14]. In a recent work by Choi
et al. [CEM∗22] is introduced the advanced facial animation sys-
tem “Animatomy” which deviates from FACS-blendshape systems,
offering detailed, anatomically accurate control and easy anima-
tion transfer from actor to virtual character. In this survey, we will
focus on contemporary systems widely utilized today, rather than
an extensive discussion of facial expression capture research. For
an in-depth review of such research, readers are directed to com-
prehensive works by Vilchis et al. [VPGMRGM23] and Wen et
al. [WZHC22].

Industry standards in facial motion capture have converged to-
wards the utilization of Head-Mounted Cameras (HMCs), exem-
plified by systems such as Vicon’s Cara [Car]. These specialized
helmets can accommodate both cameras and smartphones, ensuring
a stable and consistent perspective of the actor’s face, even during
head movements. This prevents any blurriness in the expressions
captured and maintains the quality of the data. The lightweight and
comfortable design of HMCs ensures that the artist’s freedom of
movement is preserved, providing a seamless experience during
performances. Moreover, the capabilities of HMCs extend beyond
facial motion capture, encompassing comprehensive motion cap-
ture setups that include the entire body and musical instruments,
as illustrated in Figure 5. This exemplifies the versatility and wide-
ranging applications of HMCs in motion capture.

There are two principal categories within the domain of HMCs:
marker-based and markerless systems. Marker-based systems use
physical markers tracked by cameras. Examples include reflective
marker systems like Vicon and OptiTrack, which use small reflec-
tive spheres and infrared cameras; painted or sticker markers ap-
plied directly to the actor’s skin.

Despite their accuracy and reliability, these systems can be in-
trusive and time-consuming to set up. On the other hand, mark-

erless systems eliminate the need for physical markers, relying
on computer vision and machine learning algorithms to directly
track facial movements, for example, by drawing dots on the face
to extract facial expressions. This category includes depth-sensing
cameras (e.g., Apple’s Face ID using TrueDepth Camera tech-
nology [App23c]) that generate a three-dimensional map of the
face, RGB cameras combined with software algorithms (e.g., Face-
ware [Fac23b]), and smartphone applications capable of marker-
less motion capture. A trend towards markerless systems is evident,
marked by a transition from compact cameras such as GoPro to de-
vices featuring Apple’s TrueDepth Camera technology. This tech-
nology captures facial data by projecting and analyzing numerous
invisible dots, generating a depth map and concurrently recording
an infrared image of the face at high resolution (up to 4K) and
frame rate (up to 240 fps).

Both marker-based and markerless systems have their distinct
advantages and are suited to different applications. Marker-based
systems, while potentially intrusive, offer unparalleled accuracy,
especially for subtle facial expressions. Markerless systems, in con-
trast, provide rapid setup and are less obtrusive, but may not achieve
the same level of precision. The selection between these two types
of systems should be informed by the specific requirements of the
project and the resources available.

In terms of software, there are numerous specialized appli-
cations designed to animate characters based on the facial data
captured by the camera. Among the many options available,
such as Maya [Aut23] and Blender [Ble23], MetaHuman Anima-
tor [Gam23] from Epic Games stands out as a leading solution.
This software enables the rapid and precise translation of real-
world performances into high-fidelity facial animations, compati-
ble with both iPhone and stereo HMCs. Other applications such as
Live Link Face [Fac23a], Rokoko’s Face Capture [Rok23a], and
iClone [Rea23] also offer real-time facial motion capture and are
compatible with Apple smart devices.

4.5. Challenges in Multi-modal Synchronization

Synchronizing multi-modal data captured during an instrumental
music performance is of critical importance. The research con-
ducted by Li et al. [LLD∗19] addresses the intricate challenge of
synchronizing concurrent sound sources when generating multi-
track datasets. Furthermore, when integrating data from diverse
modalities using varying capture devices, achieving synchroniza-
tion among these devices is vital to attain the desired output. These
devices may possess distinct processing speeds, capture frequen-
cies, and data transfer rates, which can introduce inconsistencies.
While manual synchronization of all devices is possible, this ap-
proach is labor-intensive and susceptible to errors. An efficient
alternative is to employ a global clock. Timecode generators are
commonly used for this purpose, maintaining local synchroniza-
tion across devices by assigning a unique code to each frame or
data packet. This ensures a consistent timeline across multiple de-
vices, thereby facilitating precise data alignment. Another method
that can aid in synchronization, though it may not completely solve
the issue, is Genlock, which ensures that all devices operate at the
same capture frequency. This is particularly crucial in scenarios
where even minor differences in data capture rates can result in
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significant inconsistencies in the final output. Most MoCap sys-
tems support both Genlock and Timecode [Opt, XSe]. Typically, a
central control PC or synchronization unit is utilized to initiate and
conclude recordings on the various devices within the same net-
work.

5. Musical Performance Analysis

The analysis of musical performances involves evaluating a range
of modalities that stem from playing a musical instrument. This
assessment encompasses not only the music itself but also the per-
former’s posture, including body language, finger movements, and
facial expressions. Both methods provide distinct perspectives, of-
fering valuable insights into the nuances of the performance and
contributing to a comprehensive understanding of the artistic ex-
pression.

5.1. Audio Analysis

Music Information Retrieval (MIR) and Musical Performance
Analysis (MPA) are two closely related research fields, both cen-
tered on aspects of music. MIR concentrates on developing algo-
rithms and techniques to extract information from music audio sig-
nals, which can serve various purposes, including music genre clas-
sification [TC02], instrument classification [HBKD06], beat de-
tection [PBDL23], music recommendation [ZSQJ12] and music
transcription and melody extraction [SG12]. The work presented
in [W∗03], which revolves around audio identification, has been
successfully incorporated into applications like Shazam [Sha23b].
Shazam stands as an exemplary MIR application, capable of iden-
tifying songs by analyzing short audio samples and matching
them against an extensive audio database. Within the realm of
MIR, there are several noteworthy surveys that provide valuable
insights, including [Dow03, TWV05, Ori06, CVG∗08, SGU∗14,
SNA19, KR12].

On the other hand, MPA focuses on the evaluation of live mu-
sical performances, examining how musicians interpret a piece
and highlighting nuances in variations and expressiveness that go
beyond the original score. For instance, one application of MPA
is tutoring musical instrument learning, where students perform
and receive feedback [EMNS20]. Another MPA example is illus-
trated by the PHENICX project [LGS15], which focuses on vi-
sualizing information within orchestral music, incorporating ele-
ments from the musical score and performance-related aspects.
It is important to recognize that the interpretation of a musical
piece during a performance can profoundly influence listeners’
perceptions. Even when working with the same musical score,
different renditions can lead to distinct preferences and interpre-
tations among listeners. The parameters of music audio perfor-
mance can be categorized along the same fundamental dimensions
as audio: tempo and timing (musicians adjust tempo and timing
during performance for expressive effect), dynamics (performers
make decisions about volume variations based on their musical
judgement), pitch (musicians enhance musical expression by em-
ploying techniques like vibrato, adding nuances to the prescribed
pitches in the score), and timbre (performers shape the timbre of
a musical piece through their playing techniques and instrument

configurations) [Ler12, LAPG19, LAPG21]. Within the domain of
MPA, there are relevant surveys that offer valuable insights, includ-
ing [Gab99, Gab03, GDDP∗08, Ler12, LAPG19, LAPG21].

5.2. Pose Analysis

Similar to the research conducted in the field of sports analysis and
physiology [CECS18, BNWY23, HW23], this subsection provides
an overview of methods that evaluate performers’ posture and mus-
culoskeletal systems. These methods are designed to promote both
their physical and mental well-being, prevent injuries, and enhance
the quality of their performance.

Pose Analysis using Motion Capture: The field of instrumen-
tal performance analysis has been significantly enriched through
the integration of motion capture technology, providing intricate
insights into musicians’ motor skills for improved training and
injury prevention. The Tone project [Cye23] introduces a virtual
mirror, offering musicians real-time musculoskeletal feedback and
the ability to analyze their posture and muscle activity from var-
ious perspectives. Additionally, Ancillao et al. [ASGA17] exam-
ines upper limb and bow positioning in violin players, emphasiz-
ing the criticality of quantitative assessments in skill evaluation
and motor disorder diagnosis. Investigating finger movement co-
ordination during piano playing, the study conducted by Winges et
al. [WF15] discerns the nuanced differences in technique between
professional and amateur musicians. Wolf et al. [WMB∗19], intro-
duced a marker-based method to explore upper body movements,
with a particular focus on addressing musculoskeletal disorders of
high string players (violin and viola) – see Figure 6. In the pursuit of
injury prevention and performance optimization, Shan et al. [SV03]
delve into Overuse Syndrome in violinists, advocating for training
strategies that emphasize physical economy.

Figure 6: Analysis of 3D upper body kinematics of high string play-
ers during performance. Image extracted from [WMB∗19].

Spahn et al. [SWEN14] investigate how different playing po-
sitions affect body movements and weight distribution in violin-
ists, highlighting the implications for health and performance. Fur-
thermore, the ergonomic risk factors associated with hand move-
ments in pianists are explored by Sakai et al. [SLS∗06]. Hopper et
al. [HCW∗17] provide a comprehensive analysis of movement pat-
terns in cellists, contributing valuable insights for teaching methods
and injury management. Rabuffetti et al. [RCBF07] investigated
how different violin shoulder rest setups impact players’ perfor-
mances, using an optoelectronic motion capture system to analyze
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fifteen violinists playing a G scale under three shoulder rest con-
ditions. The study found that a higher rest led to less rotations of
head, left shoulder, and left acromion elevation, but increased left
shoulder flexion and left forearm pronation, emphasizing the mu-
sicians’ ability to adapt their body rather than their bowing tech-
nique. These results suggest that tailored assessments and improved
shoulder rest designs could enhance player comfort and adaptabil-
ity without compromising sound quality. Together, these studies
underscore the transformative impact of motion capture technol-
ogy in the realm of musical performance, fostering a data-driven
approach to skill development, injury prevention, and the enhance-
ment of training methodologies.

Pose Analysis using Computer Vision: Blanco-Pineiro et
al. [BPDPM15] investigated the postures of 100 music students,
utilizing video and photo analyses performed by expert evaluators.
The methodology included recording musicians in both seated and
standing positions, as well as capturing still images in “ready-to-
play” static poses. They examined 11 variables related to overall
and specific body part postural quality, identifying common postu-
ral flaws and the contexts in which they occur. The aim was to high-
light these issues and promote corrective measures for better pos-
tural habits during musical performances. Araujo et al. [ACML09]
investigated postural flaws in four student violinists from an orches-
tra, using 20-minute frontal video recordings and anatomic mark-
ers. The study aimed to categorize and evaluate the frequency of
these postural flaws. The findings revealed that all the violinists
displayed postural flaws during their performance, highlighting that
these flaws were unnecessary and could be avoided as they are not
intrinsic to standard instrumental techniques. Chan et al. [CDA13]
took a different approach by evaluating the effectiveness of a 10-
week intervention programs on the posture of 57 professional or-
chestral musicians. Utilizing photographs for pre-and-post inter-
vention assessments, they found improvements in Exercise Ther-
apy showcasing the potential of visual assessment tools in evalu-
ating postural changes. In a different study, Bejjani et al. [BH89]
examined how body measurements influence the postures of 16
professional trumpeters while performing standing up. Through
detailed photographs and anthropometric data collection, provid-
ing data on the physical limitations that can impact a musician’s
performance. Longo et al. [LDSR∗20] contributed by investigating
the impact of body posture on voice performance during simulta-
neous singing and instrument playing. The study, which included
17 musicians, involving guitarists and pianists, utilized the Multi-
Dimensional Voice Program (MDVP) for voice analysis and visual
assessments for evaluating posture. Results underscored the com-
plex relationship between a musician’s physicality and their audi-
tory output. Shifting the focus to ergonomics, Valenzuela-Gomez
et al. [VGRGAG20] investigated the postural implications of dif-
ferent guitar supports (guitar cushion, rigid lap support and foot-
stool) on classical guitarists. By integrating REBA and 3DSSPP
software with subjective questionnaires, their work highlighted the
ergonomic challenges and the need for improved support designs
to enhance comfort and performance. Finally, Islan et al. [IBP∗18]
provided a comprehensive analysis of the glenohumeral joint dy-
namics in violinists, employing a multifaceted approach involv-
ing the RULA (Rapid Upper Limb Assessment) method, CATIA
software for geometric modeling, and ANSYS software for FEM

Figure 7: Analysis of the upper body posture of a musician play-
ing high-stringed bow instrument using 3D back scans. Image ex-
tracted from [OMB∗18].

analysis. This study enriched the understanding of musculoskele-
tal strains in musicians, particularly the impact of repetitive move-
ments and prolonged training, offering crucial insights for future
ergonomic interventions.

Other approaches: Utilizing ultrasound topometry, Piatek et
al. [PHG∗18] assessed the spinal kinematics of fourteen alto
saxophonists, exploring the back strain associated with different
saxophone-carrying systems (neck-strap, shoulder-strap, and Sax-
holder). Additional tests with various saxophone weights indicated
that the instrument’s weight had a more substantial impact on body
balance than the carrying system used. In another vein, Park et
al. [PKH∗12] employed Electromyography (EMG) and 3D motion
analysis to assess the relationship between neck pain and playing
posture by comparing muscle activity and neck motion between
nine students with neck pain and nine without.This study found that
students with neck pain had more neck strain and muscle activity,
which shows how dangerous it is to play an instrument in an asym-
metrical posture. Complementing this, Yagisan et al. [YKGK09]
utilized digital photogrammetry to examine upper right limb po-
sitions in nine violinists, aiming to refine teaching methodologies
and avert musculoskeletal issues. Chung et al. [CRO∗92] analyzed
wrist movements of nine pianists through biaxial electrogoniome-
ters. In different approaches, Ohlendorf et al. [OMC∗18,OMB∗18]
employed 3D back scans, videorasterstereography, and pressure
mapping to explore the upper body posture of musicians playing
high-stringed bow instruments and to assess the effects of varied er-
gonomic chairs on posture and seating pressure (see Figure 7). The
studies unveiled substantial postural alterations and pressure varia-
tions, accentuating the influence of chair design and instrument use
on musician health. Coker et al. [CBHC04] conducted a study with
14 percussionist to investigate how percussive exercise complexity
affects postural sway and to explore the impact of a 5-week flexibil-
ity program on the participants’ postural stability. The participants,
divided into a flexibility-training group and a control group, under-
went pre and posttests involving eight varying complexity exercises
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while standing on a Center Of Pressure (COP) platform. In a unique
approach, Clemente et al. [CLC∗14] studied head and cervical pos-
tures in piano players during performances through accelerome-
try, providing valuable data on postural tendencies. Additionally,
goniometry and electromyography were employed by Baadjou et
al. [BvEBV∗17] and Cattarello et al. [CVD∗18] to analyze the con-
nection between body posture, muscle activity, and sound quality in
clarinetists, as well as the impact of different chairs on the postures
of violin and viola players. These studies collectively underscore
the significance of ergonomic considerations and the potential of
postural exercise therapy in enhancing musicians’ performance and
well-being.

5.2.1. Conclusions

In this section, we emphasize the importance of evaluating both
the auditory output and physical movements in a musical perfor-
mance. We delve into various methods and applications for analyz-
ing musical performances, which play a pivotal role in assessing
quality and enhancing artistic development. These analyses have
the potential to enrich the overall experience for both artists and
their audience. For example, the audience can enjoy a more immer-
sive experience by gaining additional insights into the performance,
such as detailed note transcriptions or experiencing dynamic light-
ing adjustments that align with the mood and artistic intent. Mu-
sicians, on the other hand, can derive multiple benefits from such
analyses. They can use the insights to prevent potential injuries re-
sulting from repetitive movements or improper posture during per-
formances and to refine their techniques. They can serve as a valu-
able tool in music education, helping musicians refine their skills.
Furthermore, these insights can assist instrument manufacturers in
creating more ergonomic instruments and supportive accessories,
ultimately contributing to the prevention of musculoskeletal issues
among performers. Future research direction could be benefited by
the recent developments in volumetric capturing that can enhance
the analysis. When combined with other data modalities such as
ECG, EEGs, dynamic 3D scans (i.e., 4D scans), and muscle de-
formations, the analysis can further improve our understanding of
performance quality.

6. Musical Performance Synthesis

Musical performance synthesis refers to the intricate process of
replicating the nuances of a physical musical performance us-
ing technology [DZBKM22]. This interdisciplinary field brings
together elements of music theory, sound science, and computer
methodologies to capture more than just the fundamental notes of a
piece. It aims to encapsulate the true essence of a performance, en-
compassing elements such as motion, unique expressions, dynam-
ics, and the variations introduced by an artist. Within this section,
our primary emphasis is on techniques designed to produce human
motion in direct response to audio or MIDI input. An essential as-
pect in the faithful replication of a musician’s performance on an
instrument lies in our ability to capture the subtleties of their ges-
tures, posture, fingers, and emotions.

A related area of research in human animation synthesis involv-
ing musical instrument performance is audio-driven dance motion

synthesis [YWJ∗20], sign language generation [RKES21], and ges-
ture generation [GFH∗23] to audio. In the context of dance mo-
tions synthesis, numerous studies have leveraged machine learn-
ing methods to create realistic human animations. However, when
it comes to generating motion based on audio input, a signifi-
cant challenge lies in achieving temporal consistency and syn-
chronization between the audio and the motion. Various tech-
niques have been explored, such as recurrent neural networks
(RNNs) [GMK∗19] but are susceptible to temporal error accu-
mulation issues and may result in static poses, particularly when
dealing with inputs not present in the training data or when noise
is introduced. To address this, temporal convolution was intro-
duced [GBK∗19] to generate simple gestures. Capturing complex
and varied dance movements or nuanced musician motions presents
a great challenge due to their intricate long-term spatial-temporal
and kinematic characteristics. Recent studies have explored tech-
niques like variational autoencoders (VAEs) [LYL∗19], genera-
tive adversarial networks (GANs) [SWC∗21], auto-regressive mod-
els [ZWC∗22], acLSTM for simulating dance and music-related
motions with global structure consistency [AYA∗23], transform-
ers [LYRK21], and choreography-oriented graph-based frame-
works [CTL∗21]. Also, the work of Zhou et al. [ZLZ∗23] addresses
synchronization problems by dynamically adapting animations to
match the tempo of an audio file.

It is important to acknowledge that dancing and musical perfor-
mances share certain similarities, such as their reliance on rhythm
and timing to create a sense of movement and flow [Bri]. Both
are considered as creative forms of expression capable of evok-
ing emotions, telling stories, and conveying messages. However,
they also exhibit notably different characteristics, particularly in the
context of playing instruments. Musicians frequently engage with
a diverse array of instruments, making the capturing of nuanced
motions, particularly subtle finger movements, a challenging task.
Moreover, the demand for high precision at contact points, espe-
cially in intricate finger positioning, further increases the difficulty
of motion synthesis. Musicians typically exhibit more static and
delicate movements in contrast to the expansive stage spaces com-
monly used by dancers. Moreover, in musical performances, the
motion itself generates the sound, in contrast to dancing where the
audio complements the movement, necessitating precise synchro-
nization between the captured motions and the resulting audio. For
all these reasons, the field of musical instrument motion synthesis
has experienced limited progress. Another factor contributing to the
underdevelopment of this field is the scarcity of accessible motion
repositories. Previous works tend to overlook the multi-modality
inherent in musical instrument movements, often focusing solely
on either upper body actions or finger movements, thus failing to
comprehensively encompass the entirety of the motion. As a re-
sult, most available methods generate partial body animations. In
this section, we review the most prominent methods for synthesiz-
ing musical instrument performances, organized according to the
specific musical instrument being emulated.

Piano: The piano is a well-known musical instrument that is con-
ventionally played with the performer seated close to the instru-
ment. When playing the piano, the upper body is primarily en-
gaged in striking the piano keys, while the feet are responsible for
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manipulating the pedals. Achieving the desired musical notes on
a piano necessitates an extremely precise placement of the fingers
on the keys. Most approaches to piano playing concentrate on the
movements of the hands and fingers, overlooking the broader phys-
ical engagement required for a nuanced performance. Early meth-
ods for generating piano animations, like those by Sekiguchi and
Eiho [SE00], used a virtual space simulator and hand movement
generator. They assigned fingers, positioned hands using spline
functions, and calculated finger angles based on note difficulty. Na-
gata et al. [KMO∗09] used motion capture to acquire piano finger-
ing movements, rendering visualization of the fingering, and au-
tomatic fingering generation utilizing optimized algorithms. Zhu
et al. [ZRHN13] used motion planning and optimization methods
based on graph theory for 3D piano animations, where, similarly to
Yamamoto et al. [YUS∗10], they used Inverse and Forward Kine-
matics for hand modeling and animation, from MIDI files. More
recently, there has been a shift towards the use of machine learning
and generative approaches. The first category of methods utilized
Long Short-Term Memory networks (LSTMs), mainly due to their
capabilities in modeling sequential data and capturing the temporal
dependencies. For instance, Li et al. [LMD18] developed a deep
neural network system that translates MIDI note data and metric
structures into a real-time skeleton sequence of a pianist playing
a keyboard instrument. Their approach combined Convolutional
Neural Networks (CNNs) and LSTMs to generate human-like pi-
ano performances. Similarly, Shlizerman et al. [SDSKS18] trans-
formed audio recordings of piano (and violin) performances into
animations. They trained an LSTM network on internet-sourced
videos and applied the predicted points to rigged avatars (see Fig-
ure 8). Bogaers et al. [BYV21] introduced a music-driven method
that generates expressive musical gestures for virtual humans us-
ing 3D motion capture data and LSTM networks. In contrast, Guo
et al. [GCZ∗21] introduced an augmented reality training system
for piano, using MIDI data to generate 3D hand animations based
on pre-trained Hidden Markov Models. The Viterbi algorithm de-
termined the optimal finger path, and optimization methods mod-
eled different fingerings and skills. Xu et al. [XLW∗22] used Re-
inforcement learning (RL) to create piano finger animations. They
employed an end-to-end RL approach to train an agent for piano
playing using touch-augmented hands on a simulated piano. They
designed touch- and audio-based reward functions and utilized the
Soft Actor Critic (SAC) method for training the RL agent. The
results showed that tactile sensor feedback enhanced learning ef-
ficiency, leading to proficient piano playing in a fixed number of
training iterations. In a recent study, Zakka et al. [ZWS∗23] intro-
duced a system that builds upon the work of Xu et al., by utilizing
deep reinforcement learning techniques to train anthropomorphic
robotic hands in piano playing, resulting in the synthesis of dexter-
ous robotic hand performance.

Violin: The violin is a renowned musical instrument traditionally
played by a musician holding it close to their body. When playing
the violin, the performer uses the bow to draw across the strings,
while their fingers press on the strings to produce specific musi-
cal notes. Achieving the desired tones on a violin requires precise
finger placement and control of the bow’s speed and pressure to
produce accurate and expressive music. Several studies have ex-
plored the use of neural networks and deep learning in generating

Figure 8: Synthesizing piano playing movements: (a) input an au-
dio signal (b) fed into LSTM network to predict body movement
points, (c) animate an avatar and show it playing the input music
on a virtual piano. Image extracted from [SDSKS18].

animations for violin performances. Kim et al. [KCMT00] devel-
oped a system using a neural network to control hand movements
and optimize training examples, including automatic finger place-
ment via best-first search. Liu et al. [LLH∗20] adopted a divide-
and-rule approach, employing separate models for bowing, hand
position, and upper body expression with various network archi-
tectures, including CNNs and CRNNs. Kao and Su [KS20] built
on Shlizerman’s work [SDSKS18] with LSTM by enhancing neu-
ral network models for 3D violinist skeleton generation, integrat-
ing an encoder-decoder architecture, self-attention, beat tracking,
and bowing attack inference. Lin et al. [LKT∗20] enabled real-time
interaction between humans and virtual musicians using Dynamic
Time Warping (DTW) for music tracking and an RNN with LSTM
units for 3D body movement. Hirata et al. [HTSM21, HTHM22]
estimated bowing dynamics and body motion from audio for more
detailed violin performance animations (Figure 9). More recently,
Shrestha et al. [SFH∗22] introduced a method using transformers to
generate fine-grained corrections and visual information for 3D vi-
olin animations, additionally offering a multi-modal dataset called
MAPdat for this purpose.

Figure 9: Synthesizing violin playing movements: (a) Input: vi-
olin audio (b) Output: performance animation. Image extracted
from [HTHM22].

Other Instruments: ElKoura and Singh [ES03] investigate real-
istic hand movements for guitar playing, employing a 27-degrees
model, specifically addressing complex finger positioning. They
introduce a data-driven algorithm utilizing k-Nearest Neighbor
search to map hand configurations to more realistic ones and offer a
procedural algorithm for animating the fretting hand during guitar
performance, intended for music education and analysis. In a sim-
ilar fashion to piano and violin synthesis, Shirai and Sako [SS21]
extend the work of Liu et al. [LLH∗20] by developing a 3D dou-
ble bass player movement generation method. They leverage a 2-
layer LSTM network and a novel motion dataset based on authen-
tic performances, incorporating both bowing and fingering data.
Their approach involves the assessment of different model struc-
tures and employs the mean absolute error as a loss function, op-
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timized with Adam. On the other hand, Chen et al. [CFZ∗21] in-
troduce a deep learning-based system for synthesizing upper body
animations driven by Guzheng music. They harness the power of a
generative adversarial network (GAN) to capture the dynamic re-
lationship between music and human motion. GANs are gaining
traction in the field of motion synthesis due to their ability to learn
from data, generate diverse and coherent motion sequences, cap-
ture temporal dependencies, and provide a feedback mechanism
for producing realistic and creative animations (Figure 10). Fur-
thermore, Zhu et al. [ZLZ∗21] present a multi-stage framework for
generating performance videos from audio clips. It derives global
appearance and localized spatial details, converting audio to body
and hand keypoints and coarse video representations. The final
stage employs a Structured Temporal UNet (STU) to extract struc-
tured information and temporal consistency, showcasing its supe-
rior performance on the Sub-URMP dataset and offering promis-
ing prospects for the future of audio-visual computation research.
Finally, Li [Li22] explores the use of Augmented Virtuality for mu-
sical performances by recording musicians’ performances with any
camera. These recordings are transformed for use in virtual envi-
ronments, utilizing deep learning for real-time video matting with
MODNet and realistic video shading rendering.

Figure 10: Overview of the music-to-motion framework proposed
by [CFZ∗21]. The framework consists of a generator and a dis-
criminator.

6.1. Conclusions

In summary, it is clear that the field of musical performance syn-
thesis has undergone a substantial transformation in recent years.
It has shifted from optimizing fingering based on predefined rules
and heuristics to utilizing machine learning techniques, particu-
larly deep learning, to create natural and expressive musical per-
formances. These advancements have not only facilitated the auto-
matic generation of lifelike 3D animations and human-like perfor-
mances but have also raised the prospect of exciting applications in
virtual performances, interactive entertainment, music education,
and humanoid robotics. However, the development of this domain
faces challenges due to the limited availability of multi-modal mu-
sical instrument repositories and the difficulties in capturing and
synchronizing them. Most existing research has primarily concen-
trated on partial body reconstruction, with a strong emphasis on
fine details in hand and finger animations. To push this field for-
ward, future research should broaden its focus from merely hitting
the right notes to generating expressive musical gestures and har-
nessing tactile feedback. A recent trend in this field is the adoption

of generative models, including progressive GANs like GANima-
tor [LAZ∗22] and diffusion models like MDM [TRG∗23], Motion
Diffusion in Latent Space [CJL∗23], and TEDi [ZLAH23]. These
models, although not directly related to audio or music inputs, ex-
cel in handling other multi-modal inputs like text and emotions.
They generate temporally consistent, high-fidelity, and natural long
motions with the potential for sentimental control. These advance-
ments, with the incorporation of additional constraints for pre-
cise motion synthesis, such as physics-based constraints [YSI∗23],
could provide a robust framework for use in musical instrument
performance synthesis. This promising direction opens doors to
even more sophisticated and expressive musical performances in
the future.

7. Conclusions and Discussion

In this report, we provide an overview of the current state of Vir-
tual Instrument Performances which can be a powerful tool for dig-
itizing and visualizing the performing arts. This process plays a
pivotal role in preserving cultural heritage, expanding access to a
global audience, fostering creativity, and enriching educational re-
sources. We have explored various aspects, including methods for
storing motion and audio data (Section 2) and a comprehensive list
of significant multi-modal datasets (Section 3). However, a univer-
sal schema for capturing and storing musical performances is still
lacking. The imperative need for a common format to represent
multi-modal data is evident. By defining appropriate encodings for
each data type, we can effectively capture the nuances of motion
and audio, benefiting the broader community and advancing future
research.

Next, we present methods for capturing instrument-based per-
formances (Section 4). These methods encompass capturing audio
directly (MIDI) or indirectly from the instruments (raw audio) and
capturing the motion of performers, including their body, fingers,
and face. Each aspect presents unique challenges, and we summa-
rize the pros and cons of each technology. We emphasize the im-
portance of synchronized data from various sources, as high-quality
data is indispensable for subsequent tasks, such as training models.

High-quality multi-modal data enables the development of in-
novative solutions to analyze performances (Section 5). These so-
lutions help us understand how performers interact with their in-
struments for both performance and health reasons. We cover ap-
proaches related to audio and pose analysis separately, presenting
several solutions based on technologies such as motion capture,
vision, and photogrammetry. We identify the potential of high-
quality motion capture systems and newer approaches like volu-
metric capture, which allow for non-intrusive analysis of body in-
teractions with instruments, especially when combined with var-
ious data modalities including, ECG, EEGs, dynamic 3D scans,
and muscle deformations; these methods are expected to further
enhance our comprehension of performance quality.

Importantly, high-quality data opens the door to disruptive ap-
proaches that can enhance artists’ creativity and change the possi-
bilities in virtual performances (Section 6). Generative deep learn-
ing systems are at the heart of these possibilities, enabling the gen-
eration of new motion that respects the properties of source data,
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based on different control signals such as audio (e.g., MIDI, raw
audio), emotions/style, and text. Recent trends in this area highlight
the importance of diffusion models and physics-based constraints
to generate physically plausible and expressive instrument perfor-
mances.

7.1. Recommendations

Based on the insights we have gained on our journey, we rec-
ommend that, within today’s technological landscape, a compre-
hensive pipeline for capturing and storing musical instrument per-
formances should consider the following factors. Indeed, captur-
ing musical performances requires a delicate equilibrium between
recording auditory and visual intricacies. When it comes to audio
recording, sound techniques like employing microphones and au-
dio interfaces provide precise representation, particularly for elec-
tronic instruments that can directly interface with computers. While
MIDI files offer precision in musical representation, they neces-
sitate manual transcription for instruments lacking MIDI outputs.
On the other hand, the choice of motion capture technology for
pose performance acquisition is a critical decision. Marker-based
systems offer precision but may be cost-prohibitive, they are not
as portable as other solutions, and impose movement restrictions
due to sensors attached to the body or the instruments themselves.
In contrast, markerless systems offer greater versatility but may
compromise on fidelity. Capturing the subtleties of finger move-
ments presents its own set of challenges, including self-occlusion
and the need for specialized equipment like gloves, which can be
restrictive for musicians. Recent advancements in deep learning
and computer vision offer reliable methods in controlled environ-
ments, primarily due to the highly constrained articulation of the
hand, aiding in pose prediction. Facial capture, crucial for convey-
ing emotion, relies on systems like FACS for expression categoriza-
tion. While HMCs ensure consistent facial capture, the choice be-
tween marker-based and markerless techniques introduces its own
challenges, ranging from intrusiveness to potential precision limita-
tions. Lastly, the synchronization of multi-modal data is of utmost
importance, especially when different devices can introduce incon-
sistencies. Techniques such as timecode generators and Genlock
are essential, with many motion capture systems supporting both
methods for seamless synchronization. Ultimately, the selection of
technology hinges on striking the right balance between achieving
precision and practicality in capturing musical performances.

7.2. Challenges and Future Work

The field of virtual instrument performances continues to face a
range of emerging challenges, which we aim to address and out-
line future directions for innovation and advancement in this do-
main. An interesting avenue for exploration lies in the collabora-
tive synthesis of musical instrument performances by various en-
tities, including human artists, robots, and AI agents. While there
are numerous works in the literature on virtual performances, there
is notably limited discourse on the interaction between performers,
whether they are virtual or real. A notable example of work shed-
ding light on this aspect is the research conducted by Chakraborty
et al. [CDT21]. Such collaborations raise intriguing questions about
the division of roles, creative decision-making, and the integration

of AI into artistic expression. Future research can delve into the
possibilities and challenges of this multi-agent collaboration, ex-
ploring how it might redefine the boundaries of virtual instrument
performances.

Within the domain of creative and artistic performances, the vi-
sualization of virtual instrument performances is of paramount im-
portance. Future research should focus on the development of in-
novative methods to visualize these performances, encompassing
advanced techniques for rendering lifelike avatars, creating immer-
sive virtual concert halls, and generating interactive visual repre-
sentations of the performer’s emotional state. Effective visualiza-
tion not only enhances the audience’s experience but also offers
valuable insights for performers and researchers. Moreover, the ad-
vent of XR technologies introduces unique challenges when deal-
ing with multiple performers. Future research should explore the
intricacies of XR settings, investigating how VR devices and sen-
sors might offer new ways for performers to interact with virtual
instruments. Understanding the dynamics of multiple performers
in these environments, such as collaborative improvisation or syn-
chronized actions, is essential for pushing the boundaries of virtual
instrument performances.

Furthermore, future research should place a stronger emphasis
on collecting data that describes the style and conditions of perfor-
mances. This includes monitoring the performer’s heart rate, track-
ing improvisational moments, and observing emotional fluctuations
during the performance. This data can provide a deeper understand-
ing of the performer’s state and creative choices, ultimately lead-
ing to more immersive and emotionally resonant virtual instrument
performances. Investigating the integration of biofeedback data and
improvisational tracking can pave the way for groundbreaking de-
velopments in this field.

Another avenue for future research involves exploring the pos-
sibilities of simulating audio and interactions in virtual environ-
ments that differ from the settings in which the performance was
originally captured. It is evident that the spatial and environmen-
tal context significantly impacts the audio and visual experience
of a performance. For instance, capturing a performance in a stu-
dio but simulating it in a large auditorium or a confined space can
result in distinct audio characteristics and altered expressions in
motion. Similarly, investigating how the presence or absence of an
audience influences a performer’s emotion and expression is also a
promising avenue. Future research should delve into audio simula-
tion techniques, environmental modeling, and their effects on the
overall virtual instrument performance.

We consider the thoughtful and careful study of privacy and
ethics around the application of these methods to be an impor-
tant issue. The digitization of an artist and their performance in-
cludes sensitive private data, such as motion, playing style, and
biofeedback data. Additionally, there is the issue of unauthorized
use of a performer’s data to generate novel performances, raising
issues about ownership of synthesized content, similar to the dis-
cussion around generative models for images and audio [Bar23]
and Large Language Models [WMR∗21,Har23]. Since DL systems
are trained on data, it is essential to select data in such a way that
racial, sex, or body-related biases are minimized or ideally removed
completely. Ethics is a crucial topic in several domains surround-
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ing XR environments and DL methods; we recommend reading the
interesting study by Slater et al. [SGLH∗20] for more information.

Addressing the challenges and opportunities presented in these
areas will undoubtedly lead to groundbreaking developments in this
dynamic field. Researchers and practitioners are strongly encour-
aged to explore these themes, pushing the boundaries of what is
achievable in the world of virtual instrument performances.
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