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Abstract
The creation of a volumetric mesh representing the interior of an input polygonal mesh is a common requirement in graphics
and computational mechanics applications. Most mesh creation techniques assume that the input surface is not self-intersecting.
However, due to numerical and/or user error, input surfaces are commonly self-intersecting to some degree. The removal of self-
intersection is a burdensome task that complicates workflow and generally slows down the process of creating simulation-ready
digital assets. We present a method for the creation of a volumetric embedding hexahedron mesh from a self-intersecting input
triangle mesh. Our method is designed for efficiency by minimizing use of computationally expensive exact/adaptive precision
arithmetic. Although our approach allows for nearly no limit on the degree of self-intersection in the input surface, our focus
is on efficiency in the most common case: many minimal self-intersections. The embedding hexahedron mesh is created from
a uniform background grid and consists of hexahedron elements that are geometrical copies of grid cells. Multiple copies of a
single grid cell are used to resolve regions of self-intersection/overlap. Lastly, we develop a novel topology-aware embedding
mesh coarsening technique to allow for user-specified mesh resolution as well as a topology-aware tetrahedralization of the
hexahedron mesh.

Keywords: mesh generation, modelling

CCS Concepts: • Computing methodologies → Computer graphics; •Mathematics of computing → Mesh generation

1. Introduction

In many computer graphics and computational mechanics applica-
tions, it is necessary to create a volumetric mesh associated with
the interior of an input polygonal surface mesh. Most commonly,
a volumetric tetrahedron mesh is created whose boundary coin-
cides topologically and/or geometrically with an input triangle mesh
[MBTF03, LS07, HZG*18, Si15]. A volumetric embedding mesh
that contains the input surface but whose boundary is different than
an input triangle mesh is also commonly used [SDF07, TBFL19,
KBT17, TSB*05]. It is generally required that the surface mesh be
closed and orientable. It is also generally required that the surface
mesh is free of self-intersection or overlap. While the closed and
orientable requirements are relatively easy to satisfy in practice, the

self-intersection constraint is more challenging, particularly near re-
gions of high-curvature. In many computer graphics applications,
this constraint can be violated without any artifacts since the over-
lap regions are not visible, however most volumetric mesh creation
techniques either break down or give numerically ‘glued’ meshes
if the constraint is violated. Even intersection free, but nearly in-
tersecting meshes can cause problems for many volumetric mesh
creation techniques.

While many surface geometry creation techniques address the
importance of its prevention [HPSZ11, FTS06, Att10, ACWK06,
GD01], as noted in, e.g. Refs. [SJP*13, LB18], self-intersecting sur-
face meshes are common in practice. Often those involved in the
surface geometry creation process are not involved in volumetric
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Figure 1: (Left) Our method can generate a consistent volumetric mesh for a facial geometry that contains self-intersections, e.g. around the
lips. (Middle) Two interlocking Möbius-strip-like bands separate freely at various spatial resolutions of the background grid, despite many
near self-intersections in the surface geometry. (Right) Two bunny geometries can naturally separate despite significant initial overlaps.

simulation or similar down-stream portions of the production
pipeline and introduction of self-intersecting regions arises from a
lack of communication. Furthermore, completely removing all re-
gions of self-intersection is often deemed not worthy of the effort
since it can significantly increase modelling time. In some cases, it
is even desirable to have an overlapping input surface.E.g. it is desir-
able to have overlapping lips in the neutral pose of a deformable vol-
umetric face mesh since lips resting in non-overlapping contact are
not in a stress free state [CBE*15, CBF16]. It should be noted that
although in practice, a non-negligible number of slightly overlap-
ping or nearly overlapping regions are common (see Figure 1 left),
generally the intersection-free constraint is not violated to an ex-
treme degree with overlap regions typically havingminimal volume.

Various approaches have developed volumetric mesh creation
techniques specifically designed to be robust to self-intersecting
[SJP*13, LB18] or nearly self-intersecting [TSB*05, LB18] input
surfaces. Sacht et al. [SJP*13] use conformalized mean-curvature
flow (cMCF) to first evolve the surface to a self-intersection-free
state from which the flow is reversed, attracting the surface to its
original, self-intersecting state but with a collision prevention safe-
guard. This defines an intersection free counterpart to the original
input surface which can be meshed with standard techniques. Li and
Barbič [LB18] create embedding tetrahedron meshes from unmod-
ified surface meshes with self-intersection by computing locally
injective immersions that can be used to unambiguously duplicate
embedded mesh regions near overlaps. They sew these duplicated
regions together using a technique inspired by the Constructive
Solid Geometry (CSG) approaches in Refs. [TSB*05, SDF07] but
with reduced use of expensive exact precision arithmetic. Teran
et al. [TSB*05] use an element duplication/sewing technique to
create embedding tetrahedron meshes for nearly intersecting input
surfaces meshes.

We design an approach for the construction of a uniform-grid-
based embedding hexahedron mesh counterpart V to an input trian-
gulated surface mesh S that is well-defined (i.e. free from numerical
mesh ‘glueing’ artifacts) when the surface is self-intersecting. As
in Sacht et al. [SJP*13], we assume that there exists a nearby
non-self-intersecting mesh S̃ and a mapping φS

S̃
: S̃V → R

3 with

Figure 2: Intersection-free mapping. Two mappings from a non-
self-intersecting region S̃V to self-intersecting boundary S are
shown. The second mapping (right) requires the existence of a neg-
ative Jacobian determinant.

non-singular Jacobian determinant (see Figure 2). Here S̃V is the
unambiguously defined interior of the non-self-intersecting S̃ .
Intuitively, if we can find a mapping φS

S̃
, then we can define a

volumetric embedding mesh for S̃ unambiguously with standard
techniques and then push it forward under the mapping. However,
unlike Sacht et al. [SJP*13], we do not explicitly create φS

S̃
or S̃ but

rather use their existence to guide our mesh creation strategy.

We build our embedding hexahedron mesh V from the intersec-
tion of the input surface S with a uniform background grid where
cells in contiguous regions are copied to form sub-meshes that are
sewn together using techniques inspired by Teran et al. [TSB*05]
and Sifakis et al. [SDF07] but in a manner designed to mimic the
image of φS

S̃
. Our approach is ultimately similar to that of Li and

Barbič [LB18] in that we create the volumetric embedding mesh
without modifying the self-intersecting surface and our region du-
plication/sewing is equivalent to discovering immersions. Unlike Li
and Barbič [LB18], our approach uses nearly no exact and/or adap-
tive precision arithmetic as we do not resolve the geometry of in-
tersection from triangles in S with themselves or with cells in the
background grid and we do not use CSG operations as in Sifakis
et al. [SDF07]. We simply require accurate determination of which
triangles intersect which grid cells. This limits the accuracy of our
method for large grid spacing (low-resolution) and we run with
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smaller grid spacing (high-resolution) when necessary. To prevent
this from causing excessive element counts, we provide a topology-
preserving mesh coarsening strategy similar to that of Wang et al.
[WJST14]. Lastly, we provide a technique for efficiently convert-
ing the uniform-grid-based embedding hexahedron mesh to a tetra-
hedron mesh that robustly handles duplicated regions of the hex-
ahedron mesh near self-intersecting features. As in Li and Barbič
[LB18], we use a body-centred cubic (BCC) structure [MBTF03]
for this conversion.

We summarize our novel contributions as

• An efficient technique with reduced use of exact/adaptive preci-
sion arithmetic for building an embedding hexahedron mesh for
an input self-intersecting triangle mesh from a uniform grid that is
equivalent to pushing forward one unambiguously defined from
a self-intersection-free state.

• A topology aware embedding mesh coarsening strategy to pro-
vide for flexible resolution/element count.

• A topology aware BCC approach for converting the embedding
hexahedron mesh into an embedding tetrahedron mesh.

2. Related Work

We discuss methods in the existing literature that are related to
our approach. We first provide detailed discussion of Li and Barbič
[LB18] and Sacht et al. [SJP*13] since theseworks aremost relevant
to ours. In addition to techniques that compute a volumetric mesh
from an input triangle mesh, we discuss relevant works in the frac-
ture and virtual surgery literature since our approach makes use of
grid cutting operations to intersect the input surfacemeshwith a uni-
form background grid. Lastly, we discuss relevant surfacemodelling
techniques that address prevention of self-intersection and overlap.

2.1. Volumetric mesh creation from a self-intersecting triangle
mesh

Sacht et al. [SJP*13] were the first to design an approach that cre-
ates an appropriately overlapping tetrahedron mesh from a self-
intersecting triangle mesh. As with our approach, they assume the
existence of a mapping φS

S̃
from a non-self intersecting counterpart

S̃ to the input mesh S . Unlike our approach, they explicitly form
S̃ and the mapping φS

S̃
. S̃ is created by a backward process using

cMCF followed by a forward process that minimizes distortion-
energy and deviation from S subject to collision constraints. The
cMCF is known to remove self-intersections for sphere-topology
surfaces [KSBC12] and accordingly, their method is limited to input
surfaces with genus zero. They create a tetrahedron mesh using the
self-intersection-free S̃ and then push it forward under φS

S̃
, which is

created by mapping the boundary of the tetrahedron mesh to S and
propagating deformation to the interior. Our approach is similar in
spirit, but we do not explicitly create S̃ or φS

S̃
; furthermore, we can

support input surfaces with genus larger than zero. In addition, since
they do not directly generate tetrahedra in world space, they must
take care to maintain tetrahedron mesh quality under deformation
in φS

S̃
.

Like Li and Barbič [LB18], we create a volumetric embedding
mesh in world space. Li and Barbič [LB18] observed that the cre-

ation of a volumetric mesh from a self-intersecting surface is related
to the geometric and algebraic topological determination of immer-
sions (locally injective mappings) from a compact 3-manifold to a
portion of the world space domain. As in our approach, they start by
dividing world space into contiguous regions using the input surface
mesh S . However, they use exact/adaptive precision arithmetic to
intersect S with itself to achieve this. We use simplified/less costly
intersections of triangles in S with uniform background grid cells
and edges. We only need to know whether an intersection occurs or
not; we do not need to resolve the intersection geometry. Immer-
sions do not always exist, and Li and Barbič [LB18] developed a
graph-based algorithm to determine if one exists. Their method for
computing these is NP-complete; however, as they note, this is not
a bottleneck for most computer graphics applications. When such
an immersion exists, they compute it by duplicating the contigu-
ous regions, intersecting each duplicate with a uniform background
tetrahedron lattice to create local tetrahedron meshes that are then
sewn together appropriately using their graph structure. We also du-
plicate and then sew together contiguous regions, but we use sim-
plified criteria that, while more efficient, can only give accurate re-
sults for simple immersions. Although, as Li and Barbič [LB18]
note, the vast majority of applications in computer graphics only
require simple immersions. As with our approach, they also pre-
vent artificial glueing for embedded meshes with nearly intersecting
features. While Li and Barbič [LB18] can accurately compute non-
simple immersions, they cannot handle exactly coincident portions
S with non-zero measure, which we can handle. Broadly speaking,
the Li and Barbič [LB18] approach is more general than our method,
but more costly, primarily due to the comparably large use of ex-
act/adaptive precision arithmetic.

2.2. Mesh creation and mesh cutting

The virtual node algorithm (VNA) of [MBF04] allows cutting a
tetrahedron mesh along piecewise-linear paths through the mesh.
As in our approach, duplicates of cut elements are used to resolve
necessary topological features. Teran et al. [TSB*05] built a gen-
eralization of this approach to create embedding meshes for nearly
overlapping input triangle meshes. Sifakis et al. [SDF07] further ex-
tended the VNA to allow for arbitrary cut geometry. A downside to
the geometric flexibility provided by these generalizations is their
need for adaptive precision arithmetic and CSG. Motivated by this,
Wang et al. [WJST14] developed a technique that allows for geo-
metric flexibility without the need for adaptive precision arithmetic.
Their approach allows for arbitrary cut surfaces by generalizing the
original VNA [MBF04] to allow cuts to pass through vertices, edges
or faces of the embedding mesh. This alone does not provide suf-
ficient geometric flexibility since cuts cannot pass through facets
multiple times. To resolve such cuts, the algorithm is run at high-
resolution where facets are only intersected once and then coarsened
in a topologically aware manner.

The extended finite element method (XFEM) [BB99] is very sim-
ilar to VNA. AnXFEM-based but re-meshing-free approach for cut-
ting of deformable bodies is presented in Koschier et al. [KBT17].
In a similar spirit, Zhang et al. [ZDZ*18] utilized the cracking node
method [SB09], which is similar to XFEM but uses discontinuous
cracks centred at nodes in order to approximate crack paths. This
yields an efficiency advantage over XFEM which in turn allows
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for simulating materials with many evolving, branching cracks. The
reader is also referred to the survey of Wu et al. [WWD15] for more
discussion of mesh cutting techniques in computer graphics.

More generally, tetrahedron mesh creation has been robustly ad-
dressed by a number of works [Si15, HZG*18, LS07, MBF03,
DCB13, JAYB15]. For example, Si [Si15] pursued a Delaunay re-
finement strategy in order to provide certain guarantees on tetrahe-
dron quality. However, sliver tetrahedra are still possible [HZG*18].
The method presented in Hu et al. [HZG*18] can handle arbitrary
triangle soup as input and returns a high-quality approximated con-
strained tetrahedron mesh, though performance is hindered to an
extent due to prominent usage of exact rational arithmetic. How-
ever, recently, those performance bottlenecks were alleviated and
replaced with floating-point computations [HSW*20]. Notably, re-
searchers have recently presented a successful method for learning
high-quality tetrahedron meshes from noisy point clouds or a single
image [GCX*20].

2.3. Self-intersecting curves and surfaces

Self-intersecting curves and surface meshes have been consid-
ered for many years in both the mathematics and computer sci-
ence literature. In two dimensions, algorithms and theorems related
to identifying self-intersecting curves date back to Titus [Tit61],
with many more recent contributions [Bla67, Mar74, SV92, HL95,
GC11, EFW20]. Notably, many problems related to identifying self-
intersections are NP-complete [EM09]. Despite this, efficient algo-
rithms frequently exist; for example, Mukherjee [Muk14] gave a
quadratic algorithm (in the number of points on the discrete curve)
to determine the mapping from a disk to an arbitrarily stretched,
potentially self-overlapping curve, also known as computing an im-
mersion of the disk. In another vein, Li [Li11] used Gauss diagrams
from knot theory to characterize self-intersecting two-dimensional
projections of three-dimensional polygons, in order to understand
whether there are one or multiple ways to perform mesh repair al-
gorithms like Brunton et al. [BWS*09].

In the context of three-dimensional mesh generation and ani-
mation, self-intersections are typically treated as degeneracies to
be avoided or removed. For example, Von Funck et al. [FTS06]
provided a method for deforming surfaces that prevents new self-
intersections from occurring, due to the smoothness requirements
they place on the vector fields governing the deformation. The tool
devised in Angelidis et al. [ACWK06] allows for local preven-
tion of self-intersections when deforming a mesh. A method for
avoiding introducing self-intersections within the free-form defor-
mation (FFD) modelling scheme [Béz70, SP86] was presented in
Gain and Dodgson [GD01]. The space-time interference volumes
introduced in Harmon et al. [HPSZ11] can be used to eliminate
self-intersections in meshes, although this method is not always
guaranteed to work (the method is primarily intended for interact-
ing with non-self-intersecting input geometry). Shen et al. [SOS04]
built an implicit surface from polygon soup, resulting in a water-
tight mesh that approximates the input surface data. Attene [Att10]
deleted overlapping triangles and subsequently performed a gap-
filling procedure in the resulting holes. Similarly, Jacobson et al.
[JKSH13] presented a method based on the generalized winding
number (which, notably, is still applicable to triangle soups and

point clouds [BDS*18], unlike the standard winding number). Their
method results in fusing together self-intersecting parts of the mesh.
Recently, Tao et al. [TBFL19] demonstrated amethod for accurately
and efficiently generating cut cell meshes for arbitrary triangulated
surfaces, including those with degeneracies. However, again, they
treat self-intersections as flaws to be removed, unlike in our method
where self-intersections are valid features of our inputs and outputs.
Nonetheless, an attractive aspect of their algorithm is robust reso-
lution of mesh degeneracies and singularities, unlike methods like
Refs. [EB14, KT10] which require random numerical perturbations
of the background cut cell grid. Finally, we also highlight Mitchell
et al. [MASS15], which describes a method for representing self-
intersecting surfaces using implicit functions sampled on a special-
ized hexahedron mesh.

3. Algorithm Overview

The input to our algorithm is a triangulated surface mesh S . The
output is a uniform-grid-based embedding hexahedron mesh coun-
terpart V to S that is well-defined (i.e. free from numerical mesh
‘glueing’ artifacts) even when S is self-intersecting (see Section 10
for examples).

We briefly summarize the three main stages of our algorithm, as
detailed in Figure 3. In the first stage, volumetric extension (Sec-
tion 5), we create a hexahedron mesh U from the background grid
that only covers the input surface S with connectivity designed to
mimic it. We sign its vertices depending on inside/outside infor-
mation derived from the hypothetical self-intersection-free coun-
terpart S̃ . We emphasize that this volumetric extension mesh only
surrounds S . Accordingly, the second stage of the algorithm is inte-
rior extension region creation (Section 6). Nodes of the background
grid are partitioned using the edges cut by S , and then we decide
which regions are interior. Interior regions will be copied a certain
number of times corresponding to the number of times which in-
terior portions of the hypothetical self-intersection-free counterpart
S̃V will overlap under the hypothetical push forward mapping φS

S̃
;

the number of copies is approximate at this stage. For each interior
region jI with at least one copy, we create a hexahedron mesh V jI ,c

for each copy c. In the third stage of the algorithm (Section 7), in-
terior extension regions meshes V jI ,c are sewn together and into the
volumetric extension U to produce the final output mesh. We addi-
tionally provide a coarsening approach in Section 8 to provide user
control over the embedding mesh resolution as well as a topologi-
cally aware technique for converting the hexahedron mesh V into a
tetrahedron mesh T .

4. Definitions and Notation

We take a triangle mesh S = (xS,mS ) as input where
xS = [xS0, x

S
1, . . .] denotes the array of vertex positions and

mS = [mS
0,m

S
1, . . .] denotes the array of triangle vertices. More

precisely, xSi ∈ R
3 is the position of vertex i and mS

t ∈ N
3 stores

the vertices of triangle t. We also define ISi to be the collection
of triangles incident to vertex i. We show an example of these
definitions for the mesh S in Figure 4 (left) using a flattened array
representation of mS where entry mS

j is a vertex of triangle � j/3�
(e.g. mS

3,m
S
4,m

S
5 are vertices for triangle 1). We assume that S
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Figure 3: Algorithm overview. Given an initial input surface mesh S , there are three major steps in the computation of the final volumetric
extension mesh V: volumetric extension, interior extension region creation, and interior extension region merging. (Volumetric extension) In
this step, we create a precursor mesh for each element in S , and compute preliminary signing information for the vertices. We then merge
the precursor meshes to create the volumetric extension U and correct the signing information where necessary. (Interior extension region
creation) In preparation for growing the volumetric extension into the interior, we first partition the nodes of the background grid using the
edges cut by S . We decide which regions are interior and count the copies of each region using the vertices of U which have negative sign. For
each interior region I with at least one copy, we then create a hexahedron mesh V I,c for each copy c. (Interior extension region merging) The
merging process begins with copying relevant hexahedra from U into V I,c. First, certain vertices of V I,c are replaced by corresponding vertices
from U . Hexahedra to be replaced are then removed from V I,c before the boundary hexahedra are copied in. We then merge the various meshes
V I,c by first determining where different meshes overlap, and then using these hexahedra overlap lists to perform the final merge.

Figure 4: Mesh conventions. (Left) A sample triangle mesh is
shown, along with the vectormS. The subscripts on the entries ofmS

denote the triangle t which the entries correspond to. The incident
triangles IS6 for vertex 6 are also shown. For example, triangle 4 has
vertices 2, 8, 6. Hence, 4 is in IS6 . The first 10 faces, visible from the
front, have been labelled on the mesh. (Right) The left pair of tri-
angles is consistently oriented; the orientations of the edge induced
by the normals point in opposite directions. For the right pair, the
orientations on the common edge point in the same direction; this
is not consistent.

is closed and consistently oriented. The orientation condition is
demonstrated in Figure 4 (right). We output a hexahedron mesh
V = (xV ,mV ) with xV = [xV0 , xV1 , . . .] and mV = [mV

0 ,mV
1 , . . .]

defined in an analogous manner, with mV
h ∈ N

8 storing the vertices
of hexahedron h. Each hexahedron in the mesh is geometrically
coincident with a grid cell in a background uniform grid G�x with
spacing �x. We will occasionally refer to vertices whose positions

are stored in xV as vertices in xV . For ease of visualization, we use
2D counterparts to S and V in illustrative figures. In this case, S is a
segment mesh andV is a quadrilateral mesh. As in Figure 4, we shall
continue to flatten arrays in figures for a simplified presentation.

4.1. Merging

We construct the final hexahedron mesh V by merging portions of
various precursor hexahedron meshes in a manner similar to tech-
niques used in Refs. [TSB*05, WDG*19, WJST14, LB18]. As with
V , each hexahedron in a precursor mesh is geometrically coincident
with background grid cells. All precursor meshes share the same
vertex array xV , although its size will change as we converge to the
final V . At various stages of the algorithm, we will merge certain
geometrically coincident precursor hexahedra. To perform a merge,
we view the set of all vertices in xV as nodes in a single undirected
graph and introduce graph edges between them. In subsequent sec-
tions, we refer to such edges in the undirected graph as adjacen-
cies to distinguish them from edges in the various meshes; vertices
connected by an adjacency will be called adjacent. Each adjacency
will correspond to a pair of geometrically coincident vertices, but
generally not all geometrically coincident vertices will be adjacent.
Once all adjacencies are defined, we compute the connected com-
ponents of the graph using depth-first search. All vertices in a con-
nected component are considered to be the same and we choose
one representative for all mesh entries. We note that this operation
may be carried out on more than two meshes at once and that it can
lead to duplicate hexahedra and in this case, we remove all but one.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



6 of 17 S. Gagniere et al. / A Robust Grid-Based Meshing Algorithm for Embedding Self-Intersecting Surfaces

Figure 5: Meshmerge. An example of twomeshesmerging together.
Vertices 2, 3, 4 and 5 merge with vertices 9, 10, 12 and 13, respec-
tively. A new vectorm2 is created to hold all of the hexahedron ver-
tices post-merge, and the extra hexahedron (in red) is then removed.

Furthermore, replacing all vertices in a connected component with
one representative results in unused vertices in xV . We remove all
unused vertices in a final pass, changing indexing inmV accordingly.
We illustrate the connected component calculation, vertex replace-
ment and unused vertex removal in Figure 5.

5. Volumetric Extension

We first create a volumetric extension U of the surface S . It is a
hexahedron mesh that covers the input surface S and is designed to
have topological properties analogous to S . Since it is an extension
of S , we can sign the vertices of U depending on which side of
the surface they lie on. Overlapping regions in S complicate this
process, but it can be disambiguated by considering the pre-image
of the surface to its overlap-free counterpart S̃ under the mapping
φS
S̃
. We sign vertices using a well-defined local criterion, in contrast

to global methods such as ray casting which are not applicable to
self-intersecting polygons.

5.1. Surface element precursor meshes

In order to mimic the topology of S , we create its volumetric ex-
tension U from precursor hexahedron meshes Ut = (xV ,mUt ) as-
sociated with each triangle t in S . All precursor meshes share the
common vertex array xV and this process begins its evolution to the
final vertex array for V . We define the hexahedron mesh Ut for trian-
gle t from the sub-grid Gt

�x of G�x defined by the grid-cell-aligned
bounding box of t. Since Gt

�x can itself be viewed as a hexahedron
mesh, we define Ut as the sub-mesh consisting of hexahedra in Gt

�x

intersected by t. The vertices incident to these hexahedra are added
to xV as new vertices. Note that each triangle creates its own hexa-
hedron mesh with distinct vertices. We sign the vertices in each Ut
depending on which side of the plane containing the triangle t that
they lie on.We illustrate this process in Figure 6. Lastly, we note that
these signs are low-cost preliminary approximations to the signs in
the final volumetric extension U . In some cases, the signs computed
in this phase will not be accurate in the volumetric extension, and we
provide a more accurate but costly signing method when this occurs
(discussed in Section 5.2); however, in many cases, they are equal

Figure 6: Precursor meshes. (Left) Surface element t = 0 cre-
ates quadrilateral mesh U0. (Right) Surface element t = 1 creates
quadrilateral mesh U1. Each element creates copies of the grid cells
it intersects by introducing new vertices which are geometrically co-
incident to grid nodes. The dashed red segments in both are other
surface elements in S .

to the final signs, and their comparably low computational cost im-
proves overall algorithm performance.

We perform the aforementioned intersection of triangle t with
background grid cells using the intersection function from CGAL’s
2D/3D Linear Geometry Kernel [The20, BFG*20]. Every call to the
CGAL library here and in subsequent sections uses the exact arith-
metic kernel; conversely, all of our exact/adaptive precision arith-
metic is limited to CGAL.

5.2. Merge surface element meshes

We merge portions of the precursor meshes Ut to form the volumet-
ric extension hexahedron mesh U by defining adjacency between
vertices in xV as described in Section 4.1. We define this adjacency
from the mesh connectivity of S as follows. Two vertices i1, i2 are
adjacent if

• they are geometrically coincident (xVi1 = xVi2 ), and

• there is a vertex j of S and triangles t1, t2 ∈ ISj such that i1 is
incident to a hexahedron h1 of Ut1 , i2 is incident to a hexahedron
h2 of Ut2 and h1 is geometrically coincident to h2.

Note that this is different from defining geometrically coinci-
dent vertices in Ut for t ∈ ISj to be adjacent (see the geometry of
Figure 14). In other words, if t1 and t2 share a common vertex, then
geometrically coincident hexahedra from Ut1 and Ut2 are merged
(see Figure 7). If all preliminary signs for merged vertices agree,
the merged vertex is given that sign. Otherwise (see Figure 8), we
re-compute the sign from their geometric relation to S . This dis-
agreement occurs in regions of high curvature, andwe use an eikonal
strategy [OF03] to propagate positive signs from S in the direction
of the surface normal and minus signs in the opposite direction.

This is well-defined in light of the assumed existence of the pre-
image S̃ of S under φS

S̃
. Here, each vertex xVi in U is associated with

some collection of precursor meshes Ut where xVi was created from
merging vertices in Ut . This defines a local patch SVi of triangles t
in S associated with xVi where t ∈ SVi if a vertex of Ut merged to
create xVi .
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Figure 7: Precursor merge. The 12 vertices bordering the cell
marked in yellow are merged into eight resulting vertices. Blue ver-
tices 0, 1, 4, 5 and green vertices 12, 13, 15, 16 are merged, respec-
tively. However, magenta vertices 19, 20, 21, 22 do not merge with
the blue or green vertices since their associated surface element is
topologically distant.

Figure 8: Closest facet. (Left) The four vertices in yellow all have
ambiguous signs. (Middle) To sign vertex 5, we generate the local
patch SV5 , which are the segments shown in yellow. The closest facet
(indicated in cyan) lies on a face. (Right) A similar process is illus-
trated for vertex 8, but here the closest facet is a vertex.

When propagating signs from S to xVi , only these local triangles
are considered in order to exclude geometrically close but topologi-
cally distant triangles. We adopt the local point-in-polygon method
of Horn and Taylor [HT89]. First, we compute the closest mesh facet
(including faces) in SVi to xVi by converting SVi to a CGAL surface
mesh and then using the locate function from the Polygon Mesh
Processing package [BSMF20, LRLTY20]. If the closest facet is an
edge or vertex, we add its incident triangles fromS to SVi if theywere
not already included. If more triangles are added, we re-compute the
closest mesh facet. We illustrate this process in Figures 8 and 9. If
the closest facet is a triangle, we compute the sign depending on the
side of the plane containing the triangle that the point lies on. If the
closest facet is an edge or point, we use the conditions from Horn
and Taylor [HT89], which we summarize below:

• If the closest facet is an edge, then the sign is −1 if the edge is
concave (as determined by the normals of the incident faces) and
+1 if it is convex.

• If the closest facet is a vertex, then there exists a discrimination
plane with an empty half-space. Choosing any such plane, the

Figure 9: Patch expansion. The local patch SVi corresponding to
the yellow vertex is shown. The initial patch is indicated in red, and
the closest facet is a vertex. We add the missing incident triangles
(turquoise) and re-compute the closest facet, which is again a vertex
with incident triangles not in the patch. Repeating the process (with
new triangles in dark yellow), the closest feature is now on an edge
and we proceed to the signing criteria.

sign is −1 if the edges defining the plane are concave and +1 if
they are convex.

A discrimination plane is defined by two non-collinear incident
edges and it has an empty half-space if all incident faces and edges
lie on one side of the plane or on the plane itself. Note that ge-
ometries can be constructed at any resolution for which the addition
of more triangles in the closest facet detection can result in an in-
correct sign evaluated from the above conditions. However, we did
not observe this failure in any practical mesh. Even the addition of
more triangles is only rarely needed; among the meshes used in the
present work, only the mesh of Figure 27 requires additional trian-
gles at few resolutions.

6. Interior Extension Region Creation

We grow the volumetric extension U on its interior boundary (de-
fined by vertices with negative sign) to create the remainder of the
volumetric mesh V . To determine where to grow the extension, we
first partition the background grid nodes into connected components
defined by its intersection with S . Viewing G�x as a graph, we de-
fine two grid nodes to be adjacent if they are incident to a common
grid edge that does not intersect S (again using CGAL to deter-
mine intersection). We then compute the connected components us-
ing depth-first search; we refer to connected components as regions.
This is a simplistic criterion which can lead to an over-count in the
number of regions, as demonstrated in Figure 10. We opt not to use
a more accurate criteria using material connectivity determined by
the intersection of S with G�x as in the CSG operations of Sifakis
et al. [SDF07] as these operations are extremely costly (see Li and
Barbič [LB18]) and our approach is robust to over-counting.

We consider a region to be interior if any grid node is geometri-
cally coincident to a negatively signed vertex in xV . All other regions
are considered exterior, and we discard them (Figure 11). We create
at least one hexahedron mesh for each interior region I. Multiple
copies of interior meshes are created in some regions to account for
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Figure 10: Region over-count. As the process of partitioning the
grid only uses connectivity based on grid edges, it is possible for
a contiguous region to be split into multiple regions. Shifting some
of the vertices of S on the left results in the geometry on the right,
which contains an additional region in the upper-right corner since
no edge connects this grid node to the larger blue region.

Figure 11: Connected regions. (Left) The surface partitions the
background grid into contiguous regions. (Middle) The exterior re-
gions are removed. (Right) The volumetric extension U is shown,
along with the negatively signed vertices in green. Multiple geo-
metrically coincident vertices are indicated using blue circles with
green centres.

multiple overlapping portions of the volumetric domain. We denote
copy c of the hexahedron mesh for region I by V I,c = (xV ,mVI,c ).
As before, each of these meshes uses the common vertex array xV .

A region I will have more than one copy if any grid node of I is
geometrically coincident with more than one negatively signed ver-
tex in xV .We count the number of copies as follows. Consider the set
of negatively signed vertices in xV geometrically coincident to some
grid node of I. The number of copies is equal to the connected com-
ponents of this set where two vertices i1 and i2 are adjacent if both
are coincident to a common hexahedron inU , as shown in Figure 12.

We construct the first copy of V I,0 for region I from precursor
hexahedron meshes V I,0

i = (xV ,mVI,0
i ) where i indexes grid nodes

of region I. Note that these are not vertices in xV . For each node
i, mVI,0

i consists of eight hexahedra which are geometrically coin-
cident with the eight local background grid cells incident to i; the
vertices of these hexahedra are defined by the positions of i and the
surrounding 26 background grid nodes, which are added to xV . Of
these 27 vertices, we call the vertex corresponding to i itself a cen-
tral vertex (which will be used in Section 7.1).We again merge these
precursors as described in Section 4.1 where adjacencies between

Figure 12: Copy counting. The two regions from Figure 11 having
multiple copies are shown. Each copy is displayed with its corre-
sponding connected component of vertices with negative sign.

Figure 13: Edge cut criterion. Grid nodes xi of a region are shown,
along with two examples showing that adjacent grid nodes may have
their common edge cut by a triangle (cut edges are indicated by the
dashed yellow lines). In this case, adjacencies are not built between
the corresponding vertices in V I,0

i to avoid unwanted sewing.

the vertices in xV are defined as follows. Two vertices i1 and i2 are
adjacent if

• i1 and i2 are geometrically coincident,
• there are grid nodes i and j of I such i1 is a vertex of V I,0

i and i2 is
a vertex of V I,0

j , and
• i and j are incident to a common edge of G�x which does not
intersect S .

The third criterion prevents connection between geometrically close
but topologically distant features, as illustrated in Figure 13. The
final array mVI,0 is then formed by concatenating all of the arrays
mVI,0

i and removing any duplicate hexahedra. The remaining copies
V I,c are created by duplicatingmVI,0 with new vertices distinct from
those corresponding to V jI ,0 and any other copy.

In general, our copy counting process can result in an over-count.
We note that our process is analogous to the cell creation portion
of the method of Li and Barbič [LB18]. They show that the correct
number of copies is equal to the winding number of the (simple)
region. We do not compute the winding number since our over-
count is typically resolved during the merging process described
in Section 7. However, unresolvable failure cases occur when the
background uniform grid G�x cannot resolve thin features or high-
curvature in S . To resolve these cases, we refine the background
grid using a strategy similar to that of Wang et al. [WJST14] and

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



S. Gagniere et al. / A Robust Grid-Based Meshing Algorithm for Embedding Self-Intersecting Surfaces 9 of 17

Figure 14: Preliminary merge. The construction of the volumetric
extension U may result in geometrically coincident vertices which
do not come from topologically distant parts of the mesh. Green ver-
tices have negative signs, while purple vertices have positive sign.
Above: The process in Section 7.1 merges these vertices into a sin-
gle vertex. Below: We do not merge coincident positive vertices, to
avoid unnecessarily sewing the exterior.

re-run the algorithm. We then use a topology-preserving coarsen-
ing strategy (see Section 8) to achieve the target resolution. We also
note again that unlike Li and Barbič [LB18], we cannot handle non-
simple immersions.

7. Interior Extension Region Merging

Having created the interior extensions V I,c, we merge these meshes
with the volumetric extension U and with each other (to account
for possible over-counting in their creation) in four main steps. We
first merge hexahedra from U into V I,c in a process described below.
We then determine which of the interior extensions should merge
to each other, using information from the previous step to generate
lists of overlapping hexahedra between meshes of different regions
and copies. Next, we use these lists to determine which copies of
the same region are over-counts and merge the duplicates together.
Finally, the lists are used to define the adjacencies between vertices
for the final merge.

7.1. Merge with boundary

Recall from Section 6 that in regions I with multiple copies, we
count the copies using connected components of negatively signed
vertices in xV geometrically coincident with nodes of I. We use
CI,c to denote this set of vertices for component c and region I.
For regions with only one copy, we similarly define CI,0 to be the
collection of all negatively signed vertices in xV geometrically
coincident with nodes in region I. Note that for these single
copy regions, the vertices of CI,0 need not be connected (see the
geometry of Figure 15, where the vertices CI,0 are composed of
two connected components on the outer and inner boundaries). We
perform a preliminary merge of vertices in CI,c for each region I and
copy c. Vertices i and j in xV are adjacent if they are geometrically
coincident and both in CI,c for some I and c. This preliminary merge
closes unwanted interior voids without ‘sewing’ the exterior or
merging topologically distant vertices of U as shown in Figure 14.

Figure 15: Vertex adjacency. The merge process between vertices
of V I,c and CI,c. For the cell highlighted in yellow, there are two
hexahedra from V I,c and therefore four pairs of geometrically coin-
cident vertices. The two negatively signed vertices (in green) from
CI,c are matched to the vertices which came from an interior con-
nected component (marked in cyan) and not the ones which did not
(marked in pink).

Figure 16: Merge with boundary. We illustrate the process of Sec-
tion 7.1 following the preliminary merge of negatively signed ver-
tices. First, specific vertices of V jI ,c are merged with vertices of C jI

c .
Next, hexahedra to be replaced are removed from the V jI ,c. Finally,
copies of hexahedra from U are added to this mesh.

The merge between the vertices of V I,c and CI,c is then defined by
the following adjacency. Vertices i1, i2 in xV are adjacent if

• i2 and i2 are geometrically coincident,
• i1 is a vertex in V I,c and i2 is a vertex in CI,c,
• the connected component from Section 6 corresponding to i1 con-
tains a central vertex (defined in Section 6).

The last requirement means that vertices of CI,c should only merge
to the vertices of V I,c which are actually interior to the region, and
not those which are overlapping from a topologically far part of V I,c

as illustrated in Figure 15. After this merge has been performed,
we update the indices in CI,c accordingly as this set will be used in
further steps of the merging procedure.

We next use a strategy different to that in Section 4.1 for merg-
ing hexahedra of U to their geometrically coincident counterparts
in V I,c. This modified strategy is designed to prefer the structure of
U over that of V I,c (e.g. if two hexahedra of U are geometrically
coincident but share only vertices on one face, then they will still
have this connectivity after this merge). For copy c and region I, we
denote the set of all hexahedra h of U incident to some i ∈ CI,c by
HI,c. Note that it is possible that some hexahedra of U are not in-
cluded in any such set for any region I and copy c. We first remove
hexahedra from mVI,c that are geometrically coincident with a hex-
ahedron in HI,c and incident to a vertex in CI,c. Finally, a copy of
each hexahedra inHI,c is added tomVI,c . We outline this process in
Figure 16.
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Figure 17: Overlap lists. A closeup of the overlap region from the
geometry of Figure 15 is shown here. At the upper left, the seeds for
the overlap between the two copies are shown in purple, as well as
the incident negative vertices (green) to the seeds from each copy. At
each step, the current seed is marked with a cyan border. New ge-
ometrically coincident neighbours of the seed hexahedra are then
added in the next step. When all seeds have been traversed, the pro-
cess stops.

7.2. Overlap lists

We next merge the meshes V I,c of different regions along their ap-
propriately defined common boundaries. The boundary region be-
tween any two meshes V I1,c1 and V I2,c2 is grown from initial seeds,
which we define to be a pair of hexahedra in V I1,c1 and V I2,c2 that
are equal to each other and to a hexahedron in U . An initial seed is
defined as a pair of hexahedra h1, h2 in V I1,c1 and V I2,c2 , respectively,
such that there exists a hexahedron h3 in U withmVI1 ,c1

h1
= mVI2 ,c2

h2
=

mU
h2
. A pair of regions and copies I1, c1 and I2, c2 for which an initial

seed exists will be denoted by q = (I1, c1, I2, c2); these are the pairs
with common boundaries. We now construct an array pq, which we
call an overlap list, which represents the overlapping boundary be-
tween I1, c1 and I2, c2. We refer to the elements of this array as seeds
and denote the ith seed by sqi . We initially set pq to be the array of
all initial seeds and then grow the list using an iterative procedure:

• we first flag every grid cell geometrically coincident to the hexa-
hedra in the seeds as visited.

• Starting from sq0 = (h1, h2), we compute the neighbour hexahedra
of h1 and h2.

• If a neighbour of h1 is geometrically coincident with a neighbour
of h2 and they are not geometrically coincident with a visited grid
cell, the pair is appended to pq as a new seed and the geometrically
coincident grid cell is marked as visited.

• We repeat this process on each subsequent seed in pq until all
seeds are exhausted.

At the end of this expansion, pq is a list of overlapping hexahedra
pairs that will be used to ‘sew’ the regions together. We illustrated
this process in Figure 17.

7.3. Deduplication

As mentioned in Section 6, the number of copies is generally an
over-count. We use the overlap lists pq to deduce which copies c of
a region I are redundant. First, for each hexahedron h in U , we con-
struct a set Dh of regions and copies (I, c) as follows: for each pair
q = (I1, c1, I2, c2) and seed sq = (h1, h2) in pq, if h = h1 or h = h2

Figure 18: Deduplication. We show two of the four copies of the
central region (yellow), corresponding to the right and left segments
of U . Each copy creates an overlap list with the upper region (blue).
The overlap list for copy 0 creates a pair between a non-boundary
yellow hexahedron and a boundary hexahedron from the blue re-
gion. This boundary hexahedron is in a pair with a boundary hexa-
hedron of copy 1, allowing us to deduce that copies 0 and 1 of the
yellow region are duplicates.

then both (I1, c1) and (I2, c2) are in Dh. This creates a set of regions
and copies which have a hexahedra that is either equal to h or will
subsequently merge with h. We note that the condition h = h1 or
h = h2 is to account for the fact that not all seeds in pq are initial
seeds, and as such one or both hexahedra in the seed may not be
equal to hexahedra from U . We next deduce if copies c1 and c2 of a
region I are redundant (meaning that they represent the same copy)
using the following criterion: the copies are redundant if (I, c1) and
(I, c2) are both elements of Dh for some h. This process is shown in
Figure 18.

We merge redundant copies using the process of Section 7.1. For
each region I, we compute connected components of its copies using
duplication as the notion of adjacency. For each connected compo-
nent of copies, we take the copy ci with the smallest index as the
representative copy. As each redundant copy’s mesh contains a dif-
ferent part of the boundary hexahedra from U , we process the repre-
sentative copy to contain the boundaries from all copies by repeat-
ing the merge with boundary process of Section 7.1 on updated data.
Specifically, we replaceCI,ci with the union ofCI,c j where c j ranges
over the connected component of copies. We then form an updated
collection of incident hexahedraHI,ci before repeating the boundary
merge process. Finally, we update each overlap list; any overlap list
corresponding to a duplicated copy is recreated using the represen-
tative copy to account for updated hexahedron ordering. Redundant
overlap lists resulting from this update are then discarded.

7.4. Final merge

We now merge the vertices in xV with adjacencies defined by the
overlap lists: for each seed sqi in an overlap list, the geometrically
coincident nodes of the hexahedra pair in sqi are adjacent. We then
create the final mesh V by combining all of the arrays mVI,c from
copies which are either the minimum representative or not dupli-
cated. Recall from Section 7.1 that some hexahedra of U are not
copied into any copy’s mesh. We add all such hexahedra to V to
guarantee that U is contained in this final mesh, completing the in-
terior extension region merging process.

8. Coarsening

For this section, it will be convenient to consider mesh arrays as
flat arrays as in the example of Figure 4. Our method requires
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Figure 19: Coarsening. An example of fine mesh connections. Hex-
ahedra 0 and 1 are totally connected, while hexahedra 1 and
2 are connected by a face. After merging the vertices of the
coarse mesh (blue), the duplicated hexahedron (indicated in red) is
removed.

high-resolution (small �x) background grids for high-
curvature/detailed surfaces. We provide a topology-aware coars-
ening strategy to provide user control over the final volumetric
mesh resolution/element counts. After the hexahedron mesh V is
created, we coarsen the underlying grid by doubling �x. We then
create a maximal coarse mesh M based on the fine mesh V . For
each index mV

j in V , we define the initial connectivity for M as
mM

j = j; i.e. every fine hexahedron hV corresponds to a maximal
coarse hexahedron hM and none of the hexahedra hM share vertices.
For each maximal coarse hexahedron hM , we bin the centre of
the corresponding fine hexahedron hV into the coarsened grid, i.e.
we record the multi-dimensional grid index ih

M
of the grid cell

containing the centre of hV . We then initialize the position array xM

for M from the coarse grid cell corners of cell ih
M
. Specifically,

for each hexahedron hM of M, we define xM
8hM+ie = x2�x

ihM
+ oie ,

where 0 ≤ ie < 8 indexes the corners of the hexahedron and oie is
an offset from the coarse cell centre x2�x

ihM
to corner ie of the coarse

grid cell ih
M
. To build the final coarsened mesh, we merge portions

of the maximal coarse mesh using the method of Section 4.1
where adjacencies are defined from a hexahedron-wise notion of
connectivity as follows. Two maximal coarse hexahedra hM0 and hM1
are connected if their corresponding fine hexahedra hV0 and h

V
1 share

a face in V (i.e. they share the four vertices on a face). We define
two types of connection: totally connected and partially connected.
Maximal coarse hexahedra are totally connected if they have the
same coarse grid index ih

M
0 = ih

M
1 and their corresponding fine

hexahedra hV0 and hV1 are not geometrically coincident. Maximal
coarse hexahedra are partially connected if they are connected
but are not totally connected. We then define vertex adjacency
from our notions of hexahedron connectivity. If two hexahedra hM0
and hM1 in the maximal coarse mesh are totally connected, then
their eight respective geometrically coincident vertices are defined
to be adjacent, i.e. vertex mM

8hM0 +ie is adjacent to vertex mM
8hM1 +ie ,

0 ≤ ie < 8. If they are partially connected, then their corresponding
fine hexahedra hV0 , hV1 share a face. We then identify an analogous
face in each of hM0 and hM1 , and only the geometrically coincident
vertices corresponding to the analogous face are adjacent. There are
two cases that define the analogous face. First, if the corresponding
fine hexahedra hV0 , hV1 are geometrically coincident, then the analo-
gous face is the one on the analogous side of the coarse hexahedron.
If they are not geometrically coincident, then the analogous face
is the one geometrically coincident with the face shared by the
fine hexahedra. The general coarsening procedure is illustrated in
Figure 19.

Figure 20: Hexahedra tetrahedralization. (Left) A standard inte-
rior face in V . The centres of the two incident hexahedra are com-
bined with two face vertices to form the tetrahedra (red). (Middle)
A standard boundary face uses a face centre instead of the missing
incident hexahedron centre. (Right) A non-standard interior face is
shown. The right-most incident hexahedra are geometrically coin-
cident. We form hexahedra pairs/faces (0,1), (0,2) and treat them,
respectively, as standard interior, as in the left-most image.

9. Hexahedron Mesh To Tetrahedron Mesh Conversion

We design a topologically aware BCC-based approach for the cre-
ation of a tetrahedron mesh T from the hexahedron mesh V . We
initialize the particle array for the tetrahedron mesh xT to be the
same as xV , but we add a new vertex in the centre of each hexa-
hedron and each boundary face. Tetrahedra are computed from the
faces in the mesh V . Normally, a face in V would have one (bound-
ary face) or two (interior face) incident hexahedra. However, sinceV
is comprised of many geometrically coincident hexahedra there are
more cases. We classify them as standard boundary face (one inci-
dent hexahedron), standard interior face (two non-geometrically co-
incident incident hexahedra), non-standard interior (more than two
incident hexahedra, some geometrically coincident and some not
geometrically coincident) and non-standard boundary (more than
one incident hexahedron, all geometrically coincident). Each face
contributes four tetrahedra to T in the case of standard boundary and
standard interior faces. The tetrahedra consist of two vertices from
the face and the cell centres on either side of the face in the case of
standard interior faces. In the case of standard boundary faces, the
face centre is used in place of the second hexahedron centre. For
non-standard interior faces, we take all pairs of non-geometrically
coincident incident hexahedra and add tetrahedra as if their common
face was a standard interior face. For non-standard boundary faces,
tetrahedra are added for each incident hexahedron as if it were in-
cident to a standard boundary face. We illustrate this procedure in
Figure 20.

10. Examples

We consider a variety of examples in both two and three dimensions.
To illustrate the capabilities of the final mesh connectivities, we treat
the objects as deformable solids and run a finite element (FEM) sim-
ulation [SB12]. Performance statistics for the 3D examples are pre-
sented in Table 1. All experiments were run on a workstation with
a single Intel® CoreTM i9-10980XE CPU at 3.00 GHz.

10.1. 2D examples

10.1.1. Ribbon

Figure 21 shows a deformable FEM simulation using a volumetric
mesh produced by our algorithm. One end of a ribbon shape passes
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Table 1: Performance of generating volumetric meshes using our algorithm
for various 3D examples. All times are in seconds and represent the total
runtime of the algorithm. Relative �x is ratio of �x to the shortest side
length of the bounding box.

Example Grid dim. Relative �x # Hex Time (s)

Two boxes 66 × 64 × 86 0.0158730 256,368 2.80219
Simple overlap 194 × 64 × 194 0.0158730 1,606,296 24.0179
Double Möbius 294 × 288 × 64 0.0158730 903,653 33.6324
Twin bunnies 162 × 166 × 128 0.00787402 1,525,821 31.1815
Dragon 512 × 690 × 520 0.00195313 20,110,457 303.301
Fancy ball 130 × 132 × 128 0.00787402 515,400 25.8388
Head 512 × 830 × 718 0.00195313 62,444,819 839.951
Sacht 52 × 104 × 42 0.0243902 135,736 6.97091

Figure 21: A ribbon with a more complicated initial self-
intersection is also treated properly by our method.

Figure 22: A face with multiple boundary components and initially
self-intersecting lips is successfully animated.

through the other, partitioning the surface into several components.
These intersections are successfully resolved, and the mesh is al-
lowed to move without gluing.

10.1.2. Face

Figure 22 demonstrates a similar scenario. In this case, the lips of
the face geometry initially overlap; and, as an added challenge,
the boundary of the input geometry consists of multiple discon-
nected components. Our method successfully treats cases like these
by design.

10.2. 3D examples

10.2.1. Two boxes and simple overlap

We begin our 3D examples by demonstrating that our algorithm
is able to quickly generate consistent meshes for simple self-

Figure 23: Simple self-intersecting 3D geometries are able to sep-
arate and unfurl with our algorithm.

Figure 24: Two intersecting Möbius-strip-like geometries (pink)
naturally fall and separate under our method. The associated hex-
ahedron meshes are shown in the right half of each frame.

intersecting geometries. In Figure 23, basic hand-made geometries
are allowed to separate and unfurl from their initial self-intersecting
states. The two boxes in the left-hand side of each sub-figure were
meshed using a background grid resolution of 66 × 64 × 86 cells
and �x = 0.00955671, taking 2.80219 s to generate the resulting
256,368 hexahedra in the output mesh. The simple overlapping
shape in the right-hand side of each sub-figure was meshed using a
grid with 194 × 64 × 194 cells and �x = 0.00328125, resulting in
1,606,296 hexahedra in the output mesh.

10.2.2. Double Möbius

Figure 24 shows two Möbius-strip-like geometries1 falling and sep-
arating under the effects of gravity, despite substantial intersections
at the start of the simulation. This example was run using a back-
ground grid with 294× 288 × 64 cells and a �x of 0.0347391. The
resulting hexahedron mesh has 903,653 elements. Generating the
volumetric mesh using our algorithm takes 33.6324 s.

We also repeat this example at multiple spatial resolutions in or-
der to demonstrate the effect of resolution on the quality of mesh-
ing results (see Figure 25). The coarsest grid (corresponding to
the leftmost meshes in each sub-figure) is 21 × 19 × 5 with �x =
0.556. An intermediate grid resolution of 39 × 37 × 9 cells with

1‘Mobius Bangle’ by Creative_Hacker is licensed under CC BY 4.0.
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Figure 25: Running the example shown in Figure 24 at different
spatial resolutions. In each frame, from left to right, the background
grids have �x = 0.556, 0.278 and 0.139.

Figure 26: Two overlapping bunnies naturally separate. The top
part of each sub-figure shows the meshes generated by our algo-
rithm, while the bottom part of each sub-figure shows the corre-
sponding surface meshes.

�x = 0.278 corresponds to the middle meshes in each sub-figure.
The rightmost meshes in each sub-figure come from using a grid
with 75 × 73 × 17 cells with �x = 0.139. Proper separation is
achieved at all three of these tested resolutions, and in particular,
our algorithm performs quite well on this example even at extremely
low spatial resolution.

10.2.3. Twin bunnies

Another standard example is the Stanford bunny. Figure 26 demon-
strates that two almost completely overlapping bunny meshes can
naturally separate under our method. No issues are encountered as
different segments of the bunnies pass through one another. This
example uses a grid resolution of 162× 166 × 128 cells with�x =
0.0203027, resulting in a mesh with 1,525,821 hexahedra.

10.2.4. Dragon

The most complicated geometry we test our method on is the
dragon2 shown in Figure 27 (and also shown in Figure 9). Adequate

2‘Asian Dragon’ by Lalo-Bravo.

Figure 27: A complex mesh of a dragon is allowed to fall under
gravity. The left-hand side of each subfigure shows the deforming
mesh we generate, and each right-hand side shows the correspond-
ing surface mesh.

Figure 28: Several ball-like geometries with intricate slices and
holes are successfully meshed with our algorithm and then deform
and collide under an FEM simulation.

resolution is required in order to resolve all the fine-scale features of
this mesh; accordingly, we use a grid resolution of 512× 690 × 520
cells with �x = 0.0708709. Our final mesh, generated in 5 min,
contains just over 20 million hexahedra.

10.2.5. Fancy ball

Figure 28 shows another interesting case where several ball-like ge-
ometries3 deform and collide after beingmeshedwith our algorithm.
Each ball has a number of thin cuts and fine-scale features, which
our algorithm is able to resolve using a grid with 130× 132 × 128
cells and �x = 2.82671. The 515,400 resulting hexahedra are gen-
erated in 25.8388 s.

10.2.6. Head

Modelling of the human body often gives rise to self-intersection.
This is particularly common in the faces, where lip geometries often
self-intersect. To that end, we consider a real-world head geometry
in Figure 29. Note that the lips separate effectively. This example
results in a volumetric mesh with over 62 million elements, using
a background grid resolution of 512 × 830 × 718 cells and �x =
0.000501962. Generating the hexahedron mesh takes 839.951 s.

3‘Abstract object’ by sonic art.
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Figure 29: A face surface with self-intersecting lips is successfully
meshed. The right-hand side of each of the first four frames shows
the deformed hexahedron mesh, while each left-hand side shows the
corresponding surface mesh. The wireframe boxes represent Dirich-
let boundary condition regions. In the bottom four sub-figures, lip
intersection is visualized in the input surface and subsequent hexa-
hedron mesh.

Figure 30: We simulated dropping our 3D examples into a box with
a FEM sim.

10.2.7. Collection

Various objects from 3D examples are dropped in a tank in
Figure 30. The objects naturally deform and collide without mesh-
ing or simulation issues.

Figure 31: Our method can successfully resolve the self intersect-
ing geometry proposed in Sacht et al. [SJP*13]. We visualize the
surface of the output after conversion to a tetrahedron mesh. We
emphasize a sub-section of the mesh on the right sub-figure; the
bristles are attached to the correct parts of the torus and are not
connected to the bristles from the opposite side of the torus.

Figure 32: Versions of the Sacht geometry from VegaFEM. Left is
torus-easy, right is torus-difficult.

10.2.8. Sacht et al. mesh

Finally, we demonstrate that our method, like that of Li and Barbič
[LB18], can successfully resolve the self intersections of the geom-
etry shown in Figure 31 that is not supported by the method of Sacht
et al. [SJP*13]. In Sacht et al. [SJP*13], the bristles in this geome-
try get locked by the surrounding torus. However, both our method
and Li and Barbič [LB18] properly resolve all self-intersections.We
compare our method against the implementation of Li and Barbič
[LB18] in the VegaFEM library [BSS12] using two versions of the
Sacht mesh provided in VegaFEM, torus-easy and torus-difficult.
These meshes are shown in Figure 32. Li and Barbič’s method
takes 14.773 s with 112,554 (output) tetrahedra and 32.845 s with
225,338 tetrahedra for torus-easy and torus-difficult, respectively.
Our method takes 4.708 s with 120,591 (output) hexahedra and
12.949 s with 224,083 hexahedra. We also compare our method
on the non-torus helix and beam meshes provided in VegaFEM.
The helix is highly self intersecting, with every loop intersect-
ing the previous and next loops. Our method takes 59.973 s with
60,925 hexahedra while their method takes 123.758 s with 36,184
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tetrahedra. The beam geometry is simply a rectangular box with
no self-intersections. Our method takes 0.145 s with 495 hexahe-
dra while their method takes 0.255 s with 450 tetrahedra. See Gag-
niere et al. [GHC*23] for visualizations of these two geometries.
Our method runs noticeably faster as nearly all steps are designed
to be highly parallelizable. We additionally note that our method
takes only a triangle mesh as input whereas VegaFEM takes a trian-
gle mesh and a glued tetrahedron mesh.

11. Discussion and Limitations

Our method has various limitations, most of which are attributed
to our reduced use of exact/adaptive precision arithmetic. The most
prominent limitations of our approach are in the types of input sur-
face mesh S that we support. Fine-scale features, e.g. thin parallel
sheets, can cause negatively signed vertices to be located in regions
of the grid corresponding to an incorrect region. In these patholog-
ical cases, the output mesh will have undesirable extraneous col-
lections of hexahedra. We present a 2D example of this failure in
Section A of the supplementary document [GHC*23]. Such cases
result from a background grid which is too coarse relative to the
size of polygonal faces in the finer regions. Hence, we resolve this
by iteratively halving the cell width until fine scale features can be
accurately resolved.We note that such a heuristic strategymay result
in an undesirable level of refinement. However, our coarsening ap-
proach is designed to mitigate this. Even using added resolution and
subsequent coarsening, our methodological simplifications prevent
us from handling certain classes of cases that Li and Barbič [LB18]
can handle, e.g. we cannot resolve non-simple immersions. It would
be interesting to investigate whether our minimal-exact-arithmetic
approach could be extended to handle non-simple immersions as
well. A further failure case arises from one surface mesh being fully
contained within the volume defined by a larger surface mesh. Our
method will generally fail to create enough copies of the smaller
volume. This is not a serious limitation, however, as our focus is on
self-intersection and such situations can easily be avoided by trans-
lating separate meshes by a sufficient amount. Future work includes
improvements to the algorithm to handle known pathological cases
without the need for refinement and subsequent coarsening, as well
as improved detection mechanisms for such cases. In particular, ad-
ditional use of exact arithmetic in the form of segment-triangle inter-
sections should allow for the detection of fine scale signing failures.
It should be possible to combine such a detection mechanism with
an adaptive refinement/coarsening scheme to create an intermediate
step which eliminates the need for heuristic global refinement and
allows for graceful failure (i.e. when a refinement limit is reached).

Lastly, Figure 2 illustrates an interesting case which neither our
approach, that of Li and Barbič [LB18] nor that of Sacht et al.
[SJP*13] can handle. In this case, which is common near e.g. el-
bows and even shoulders in an upper torso, a portion of the domain
overlaps in such a way that φS

S̃
must have negative Jacobian deter-

minant in some regions. Our approach returns a mesh for this case,
but it does not properly copy the overlap region and one of the two
copies that would be required is rejected. In other words, our ap-
proach does not give a result consistent with creating a mesh in S̃V

and pushing it forward under φS
S̃
. In Li and Barbič [LB18], this is

noted as a case for which an immersion does not exist and Sacht

et al. [SJP*13] explicitly require the Jacobian determinant of φS
S̃
to

be non-negative. However, this is a commonly occurring case which
would be beneficial to resolve.
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