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Figure 1: We propose BubbleFormer, a novel generative model for bubble diagram generation. BubbleFormer takes as input a layout
boundary and outputs a large number of reasonable bubble diagrams constrained to the given boundary. These generated bubble diagrams
can further be used as input to existing state-of-the-art generative models to produce high-quality layout plans.

Abstract
Bubble diagrams serve as a crucial tool in the field of architectural planning and graphic design. With the surge of Artificial
Intelligence Generated Content (AIGC), there has been a continuous emergence of research and development efforts focused
on utilizing bubble diagrams for layout design and generation. However, there is a lack of research efforts focused on bubble
diagram generation. In this paper, we propose a novel generative model, BubbleFormer, for generating diverse and plausible
bubble diagrams. BubbleFormer consists of two improved Transformer networks: NodeFormer and EdgeFormer. These networks
generate nodes and edges of the bubble diagram, respectively. To enhance the generation diversity, a VAE module is incorpo-
rated into BubbleFormer, allowing for the sampling and generation of numerous high-quality bubble diagrams. BubbleFormer
is trained end-to-end and evaluated through qualitative and quantitative experiments. The results demonstrate that Bubble-
Former can generate convincing and diverse bubble diagrams, which in turn drive downstream tasks to produce high-quality
layout plans. The model also shows generalization capabilities in other layout generation tasks and outperforms state-of-the-art
techniques in terms of quality and diversity. In previous work, bubble diagrams as input are provided by users, and as a result,
our bubble diagram generative model fills a significant gap in automated layout generation driven by bubble diagrams, thereby
enabling an end-to-end layout design and generation. Code for this paper is at https://github.com/cgjiahui/BubbleFormer.
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1. Introduction

A bubble diagram is a graphical representation that uses circles
or bubbles to depict spaces, activities, or functions in a layout
plan, which is extensively utilized in architectural planning and
graphic design. In the computer graphics and vision community,
the generative model of graph-to-plan has drawn recent interests,
as it is an effective tool for exploring and visualizing spatial re-
lationships and circulation patterns before developing more de-
tailed design solutions. Recently, there have been significant ad-
vancements in deep learning for content generation and computer-
aided design. Starting with bubble diagrams, state-of-the-art tech-
niques help designers to explore possible solutions for various
kinds of space planning, such as floor plans [HHT∗20, SHF22], in-
door scenes [ZWK19, GSM∗23], and graphic layouts [LJE∗20].

Traditionally, bubble diagrams are obtained through hand-drawn
sketches or computer-aided design software. There is a lack of re-
search efforts focused on bubble diagram generation in the fields
of computer graphics and computer vision. Existing graph-driven
layout generative models produce plausible plans either with user-
specified bubble diagrams [NCC∗20,NHC∗21] or with synthesized
bubble diagrams using heuristic methods [HHT∗20]. State-of-the-
art techniques do not actually generate creative bubble diagrams
that embody the true design intent. More importantly, there is a
lack of generation diversity in bubble diagrams which significantly
constrains the exploration space of designers.

To circumvent the need for users to provide bubble diagrams,
as well as enhance the diversity of bubble diagrams, we aim to
develop a generative model for bubble diagram generation. How-
ever, the challenges of achieving this goal are twofold. Firstly, it
is non-trivial to generate bubble diagrams that are both reasonable
and exhibit a certain degree of diversity. Secondly, it is necessary
to generate layouts under different constraints to meet the varying
requirements of layout generation tasks.

In this paper, we propose BubbleFormer, a novel generative
model dedicated to bubble diagram generation. BubbleFormer can
directly produce elements in a layout plan, obtain connections be-
tween elements, and generate diverse plausible bubble diagrams,
while the generated bubble diagrams can serve as the input for
downstream layout generation tasks. Dual transformer models are
implemented in BubbleFormer which consists of two improved
Transformer models: NodeFormer and EdgeFormer. The inputs
(e.g., building boundaries) are fed to NodeFormer and EdgeFormer
to generate elements and connections of the bubble diagram, re-
spectively. The generated elements and connections are matched
and combined to obtain the final bubble diagram. NodeFormer pro-
duces element features that are also fed into EdgeFormer. This en-
ables EdgeFormer to better understand and incorporate the element
features, allowing it to predict connections between elements. In
addition, we aim to provide users with a variety of selectable solu-
tions. Therefore, a VAE (Variational AutoEnceoder) is embedded
into BubbleFormer. The goal is to learn the latent space of bubble
diagrams, allowing us to sample and generate a large number of
high-quality bubble diagrams.

BubbleFormer can be trained and inferred end-to-end. Qualita-
tive and quantitative evaluations demonstrate that BubbleFormer
has the capability to generate convincing bubble diagrams, which

directly drive downstream tasks of layout generation to produce
high-quality layout plans. BubbleFormer can also generate valid
bubble diagrams in other layout generation tasks, such as indoor
scene synthesis and document layout generation, proving the gener-
alization of our method. In addition, it is shown that BubbleFormer
outperforms state-of-the-art techniques in qualitative and quanti-
tative experiments. To the best of our knowledge, BubbleFormer
stands as the pioneering generative model that employs an end-to-
end learning approach for generating bubble diagrams, effectively
filling the longstanding critical gap in automated layout generation
driven by bubble diagrams.

2. Related work

Bubble diagrams establish a connection between the designer’s in-
tent and solution, leading to a great line of literature about layout
design. However, there is relatively little work dedicated to directly
generating bubble diagrams for layout design. As follows, we first
discuss the application of bubble diagrams in architectural design
and indoor scene synthesis, and then introduce some graph genera-
tion approaches more closely related to our work.

2.1. Bubble diagram in architectural design

Bubble diagrams are widely utilized in various architectural de-
signs. The role of handcrafted bubble diagrams in the field of archi-
tecture design has been extensively discussed in [DG01]. [NRS13]
propose a design methodology along with a set of tools for con-
figuring architectural layouts using bubble diagrams. [RMMB22]
employ a bybird mehtod of deep learning and agent-based mod-
eling to generate architectural floorplans. [Der12] utilize bubble
diagrams to assist the space planning and design of hotels, repre-
senting different activity zones and their spatial relationships.

Recently, learning-based approaches are proposed to enable ar-
chitectural floorplan generation by mapping bubble diagrams to
floorplans, achieving state-of-the-art results [CWT∗20, HHT∗20,
NHC∗21,PGK∗21,SWL∗22,SHF22]. However, these works do not
actually generate bubble diagrams, which are predetermined or pre-
defined in most state-of-the-art techniques. Graph2Plan [HHT∗20]
obtains bubble diagrams by retrieving real-world floorplans with
bubble diagrams from a dataset. [PGK∗21] claim to generate lay-
outs using constraint graphs, while it only generates a set of layout
constraints instead of explicit bubble diagrams. In contrast, we aim
to directly generate bubble diagrams for architectural design tasks.

2.2. Bubble diagram for indoor scene synthesis

Bubble diagrams have found direct applications in the field of in-
door scene modeling. Most of these works have adopted bubble di-
agrams to represent the indoor scene layouts. [CMS∗15, MPF∗18,
HQZ∗18]. [LPX∗19] consider the indoor scene layout as a hier-
archical graph and employ a VAE module for generation, resulting
in the indoor scene synthesis. SceneGraphNet [ZWK19] organizes
indoor scene objects into a graph and utilizes message-passing to
model the relationships between objects. PlanIT [WLW∗19] repre-
sents furniture layout using a bubble-diagram-like graph structure
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and completes indoor scene generation by constructing a scene re-
lationship graph. [SCW∗19] train a multi-layer perceptron to pre-
dict a segment affinity graph that describes the indoor scene lay-
out and internal relationships. [LZWT20] learn to generate the
indoor scene layout using a scene graph as input, which can be
viewed as the topological graph of a bubble diagram. More re-
cently, [CZW∗23] propose a graph variational autoencoder with a
structured prior for generating the layout of indoor scenes. These
works highlight the diverse applications and approaches in utiliz-
ing bubble diagrams for indoor scene synthesis. However, similar
to architectural design, bubble diagrams as input for indoor scene
synthesis relies on strong heuristics for defining relations among
indoor objects. Our model can directly create bubble diagrams for
modeling indoor scenes.

2.3. Graph generation

Since bubble diagrams can be abstractly represented as graphs,
some generative models of graphs are closely related to our work.
[LVD∗18] focuse on the topology generation of the graph and pro-
poses a method that generates graphs using a graph neural net-
work in an autoregressive manner. However, for bubble diagrams,
spatial information is also very critical for the task of layout de-
sign. [YYR∗18] employ a deep autoregressive model to decom-
pose graph generation into sequentially generating a sequence of
nodes and edges. [LLS∗19] produce graphs by generating one
block of nodes and associated edges at a time, allowing for a trade-
off between sample quality and efficiency by adjusting the block
size. MolecularRNN [PSOI19] presents a graph recurrent gener-
ative model for the generation of diverse and realistic molecular
graphs, trained on a database of molecules. [SWL∗22] introduce a
new representation of floor plans called wall graph and propose a
well-designed coupled structure network for wall graph generation.
Graph generation tasks are also utilized for scene understanding
and reconstruction. [YLL∗18] propose Graph R-CNN for scene
graph generation, effectively leveraging object-relationship regu-
larities through object set extraction and relationship measurement.
Conv-MPN [ZNF20] introduces a message-passing neural archi-
tecture with convolutional neural networks to generate a graph to
reconstruct the outdoor building. It is worthwhile that the general
reference to a graph will default to a topology structure while the
bubble diagram is a specific form of a graph, we emphasize the spa-
tial attributes of its elements, such as position and size. This is also
the key distinction between our model and existing graph genera-
tion approaches.

While bubble diagrams play a crucial role in layout design, there
is still a lack of automated generation methodologies specifically
for bubble diagram generation, and that’s exactly what we’re aim-
ing for in this work.

3. Overview

An overview of our bubble diagram generation framework is given
in Figure 2. As follows, we discuss our graphical representation
of bubble diagrams, the generation problem, and analysis the chal-
lenges to solving this generation problem. Finally, our method for
bubble diagram generation is introduced.

vi

v j

vk

ei, j

Representation. A bubble diagram is
a graphical representation that uses cir-
cles or bubbles to depict layout elements
in a layout plan while using connections
to emphasize the topological relations
between elements. The bubble contains
various information about the category,
location, and size of elements, and so
on. Therefore, the bubble diagram can
be represented as a graph G = (V,E), where V = {vk}M

k=0 denotes
a node set and E= {ei, j = (vi,v j) | vi,v j ∈V} indicates an edge set.
Each node vk = (ck, pk,sk) is a multi-dimensional vector, depicting
the element category, central location, and space size, respectively.

Dataset. To address the issue of training data, we extract a large-
scale bubble diagram dataset from RPLAN [WFT∗19], obtaining
more than 60,000 bubble diagrams of real-word floorplans. Specif-
ically, we first use rooms in the floorplan as nodes, extracting infor-
mation including room category, central location, and room area.
Then the edges of the bubble diagram are extracted according to
the connectivity between rooms. To our knowledge, this is also the
first bubble diagram dataset.

Problem. We aim to develop a generative model capable of
producing diverse bubble diagrams while adhering to given con-
straints. The generated bubble diagrams can offer designers a wide
range of solutions. In this paper, we illustrate our method with the
bubble diagram generation for floor plans given the building bound-
ary as the generation constraint, as shown in Figure 2. Our method
takes a building boundary B ∈R128×128 as input. Given B, we aim
to design a generative model for P(G) = P(V,E | B).

Challenge. Achieving this goal is non-trivial. On the one hand,
generating a diverse range of reasonable bubble diagrams adher-
ing to the given constraints is not straightforward for a generative
model, not to mention for an end-to-end framework. On the other
hand, topological diversity in bubble diagrams could lead to irra-
tionality, which can be a critical flaw in bubble diagram generation.
Therefore, it is essential to generate the topology of bubble dia-
grams with a careful balance between diversity and rationality.

Methodology. Inspired by DETR [CMS∗20] and
HOTR [KLK∗21], we formulate the bubble diagram gener-
ation problem as node generation and edge prediction. The
process of generating bubble diagrams from a building boundary
involves two steps: generating nodes of the bubble diagram and
obtaining edges between nodes. They are implemented by a
node Transformer called NodeFormer and an edge Transformer
named EdgeFormer. NodeFormer generates nodes for the bubble
diagram. It takes the embedding features of the building boundary
as input and generates the individual nodes of the bubble diagram.
EdgeFormer determines the connections between the generated
nodes. This takes the node features generated by NodeFormer
and the embedding features of the building boundary as input
and predicts the appropriate edges between nodes. Therefore, our
generative model BubbleFormer can be represented as

P(G) = P(E | V,B)P(V | B) (1)

P(E | V,B) = EdgeFormer(Embedding(V),B) (2)
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Figure 2: Architecture of BubbleFormer. The network takes as input a building boundary as well as a sampled noise map from a standard
normal distribution. The core module of BubbleFormer is dual Transformer models: NodeFormer and EdgeFormer, which are responsible
for generating nodes and edges of the bubble diagram, respectively. The generated nodes and connections are matched and combined to get
the final bubble diagram.

P(V | B) = NodeFormer(B) (3)

Here Embedding(V) is the node features generated by Node-
Former.

As shown in Figure 2, we propose dual Transformer models for
bubble diagram generation. The node features outputted by Node-
Former are not only used for node generation but also serve as the
inputs to EdgeFormer, providing guidance for connection predic-
tion. Given a specific building boundary, the design of bubble dia-
grms might not be unique. To this end, a VAE module is embedded
into NodeFormer to learn the latent space of bubble diagrams, al-
lowing us to sample and generate a large number of high-quality
bubble diagrams. We employ the Hungarian matching algorithm
to obtain unique matches between generated nodes and predicted
edges, enabling end-to-end training and inference. More details
about the methodology can be found in Section 4.

4. Method

Given the boundary of a layout, the node transformer NodeFormer
and the edge transformer EdgeFormer of BubbleFormer respec-
tively produce the node set and edge set of the bubble diagram.
These two sets are then matched and combined to construct the fi-
nal bubble diagram.

4.1. Node Generation

Our method to bubble diagram generation is inspired by DETR,
a state-of-the-art work in object detection. The Transformer
model [VSP∗17] is known for its ability to capture long-range de-
pendencies and has been successful in various natural language
processing tasks. Therefore, a Transformer model NodeFormer is
employed to generate the node set of the bubble diagram. With a
given input boundary, there may exist multiple reasonable bubble
diagrams. We aim to provide users with a variety of selectable solu-
tions. Therefore, a VAE module NodeVAE is embedded into Node-
Former. By combining NodeVAE and NodeFormer, the model can

BNet

Positional encoding ENet

     NodeFormer

Encoder

D
ecoder

Training

Testing

Figure 3: Node generation. A VAE module is embedded into Node-
Former. In the stage of training, we embed the given boundary with
BNet and the ground truth bubble diagram with ENet. These fea-
tures are fed to NodeFormer after positional encoding. Note that
here positional encoding refers to the regular processing of in-
puts by adding positional information in the Transformer network,
which helps to better encode inputs and does not require additional
location information from the dataset. The output of NodeFormer
can be used to reconstruct the nodes of the bubble diagram. In test-
ing, we directly use a noise map sampled from a standard normal
distribution.

produce diverse sets of bubble diagram nodes by sampling differ-
ent latent variables. This provides designers with multiple ideas or
solutions for the bubble diagram.

NodeVAE. Given a specific boundary B, there exists a distribu-
tion of possible node sets of bubble diagrams. Thus, we propose to
learn their distributions P(V | B) from the real bubble diagrams.
We introduce NodeVAE which learns the distribution of input bub-
ble diagrams, as shown in Figure 3. The key idea is to map the real
bubble diagram G to a latent space using an encoder ENet, and then
mapping a latent variable z in the latent space back to reconstruct
the original node set V of the real bubble diagram by a decoder, and
here we adopt NodeFormer. In addition, we design an embedding
module BNet for the input boundary, which is designed based on a
traditional convolutional neural network ResNet [HZRS16].
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By feeding BNet with B, it outputs an embedded boundary fea-
ture map γ. Specifically, we represent the input boundary as a
three-channel image that stores necessary information about the
layout space, which includes the boundary grayscale mask, inside
grayscale mask, and the front door grayscale mask. We use specific
integers (e.g., 1 to indicate the presence and 0 for absence) to repre-
sent different semantics. After passing through BNet, we compress
the input boundary feature map to a size of 30×30.

Then, {µ,Σ} = ENet(G) where µ ∈ R32×32 and Σ ∈ R32×32

are the mean and covariance of a Gaussian distribution. Further-
more, a latent variable z is sampled from N (µ,Σ) using the repa-
rameterization trick [KW13]. Given z and γ, we reconstruct V by
V = NodeFormer(z,γ). We employ a standard VAE loss for train-
ing. Similar to BNet, ENet is also designed based on the ResNet,
which is sensitive to spatial positions and maps the real bubble di-
agram to a latent space that approximates a standard normal distri-
bution. ENet takes a three-channel grayscale image as input, which
stores essential information of the bubble diagram, including the
node mask, connect mask, and connect-living-room mask. Specific
integers are used to represent specific semantics, similar to CNet.
During inference, for a new boundary B, we sample z from N (0,1)
and predict V by V = NodeFormer(z,BNet(B)).

NodeFormer. The encoding of BNet and ENet will be fed to the
decoder network, NodeFormer. NodeFormer generates node rep-
resentation for each query, which will be used to produce each
node’s attributes. NodeFormer adopts the Transformer architecture
modified from HOTR [KLK∗21] as shown in the supplementary
material. NodeFormer adopts non-autoregressive parallel decoding,
generating predictions for all nodes in the bubble diagram simulta-
neously, similar to the previous work DETR [CMS∗20] and HOTR.
To this end, we employ a non-autoregressive approach to generate
nodes of the bubble diagram, significantly improving the genera-
tion efficiency of our method. Specifically, we set the number of
queries of NodeFormer to 8, which is enough for our task. The
spatial feed-forward neural network FNNs of NodeFormer infers
the central location and size of nodes (denoted as vs

i ), while the
semantic feed-forward neural network FNNc infers the node cat-
egories (denoted as vc

i ). For the node feature αi generated from
NodeFormer, both the spatial and semantic attributes are obtained
through two fully connected layers:

vs
i = FNNs(αi) ∈ R3 (4)

vc
i = FNNc(αi) ∈ R7 (5)

During training, we generate all nodes in an end-to-end man-
ner. Therefore, we face a similar problem to DETR, that is, the
match between the generated and real nodes. Therefore, we mod-
ify Hungarian matching algorithm [Kuh55], which is used in target
detection, to make it suitable for our generation task. We employ
Hungarian matching algorithm to find the node pairs that minimize
the matching loss by considering the similarity between the pre-
dicted nodes’ locations and categories and the real node set. We
then compute the error loss for the matched node pairs. The real
node set is denoted as y, and ŷ represents the generated node set.
For each of the N predicted nodes, we compute the permutation of
N combinations SN and calculate the permutation σ ∈SN that has

EdgeFormer

BNet

Positional encoding 

N
ode m

atching

Encoder

D
ecoder

Figure 4: Edge generation. We do not add a VAE module in Edge-
Former. Besides embedding the input boundary by BNet, we also
incorporate the generated embeddings of nodes by NodeFormer as
inputs. These features are fed to EdgeFormer after positional en-
coding. We employ the Hungarian matching algorithm to obtain
unique matches between the generated nodes and edges.

the lowest matching loss.

σ̂ = argmin
σ∈SN

N

∑
i
Lmatch

(
yi, ŷσ(i)

)
(6)

Here y = {(vs
i ,v

c
i ), i = 0,1, ...} and Lmatch

(
yi, ŷσ(i)

)
computes the

matching loss for a given index i with the real nodes, which takes
into account both the room spatial and semantic attributes similari-
ties with GT. We borrow the Lmatch calculation from DETR. With
the index σ obtained after Hungarian matching algorithm, we de-
fine the matching loss as:

Lmatch =− log p̂σ(i)
(
vc

i
)
+Lbox{vc

i ̸=∅}

(
vs

i , v̂
s
σ(i)

)
(7)

With the index σ, we can obtain the room type probability of
log p̂σ(i) (v

c
i ) for calculating loss of cross entropy for binary clas-

sification and the predicted box as
(

vs
i , v̂

s
σ(i)

)
for calculating the

loss of bounding box coordinates Lbox . More details can refer to
DETR. For the error loss, we used weighted cross-entropy loss for
node types and L1 loss for node locations and sizes.

4.2. Edge generation

Edge generation is to produce a coherent topological structure for
bubble diagrams. We translate the edge generation problem into
edge prediction.

Edge prediction. We have mentioned that it is challenging to
achieve variable nodes and stable connection in an end-to-end
framework. Topological diversity in bubble diagrams could lead
to irrationality. Therefore, we do not add a VAE module in Edge-
Former. This decision is based on the observation that the diversity
of the bubble diagram is primarily manifested through the distri-
bution of nodes. Once the spatial positions of the nodes are deter-
mined, the arrangement of edges in the bubble diagram is predom-
inantly governed by the node positions. As the plausible solution
space for nodes is relatively limited, we aim to minimize the im-
pact of sampled feature maps from the prior distribution on edge
generation, thereby reducing the diversity of edge generation while
emphasizing its coherence and plausibility. In addition, the sam-
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pling space and the sampled hidden vectors of the two VAEs may
not coincide, which may generate crashing results.

EdgeFormer. Instead of directly using the generated nodes as
input, we incorporate the generated embeddings of nodes by Node-
Former as inputs to the EdgeFormer. This enables EdgeFormer to
capture the generated nodes by NodeFormer and generate edges
conditioned on them. Simultaneously, EdgeFormer independently
encodes the input layout boundary using BNet, which generates
feature maps that capture boundary information. Taking inspiration
from HOTR, we use node pointers in a predicted edge, each specif-
ically indicating a particular node. This approach proves effective
in avoiding redundant predictions for nodes that participate in mul-
tiple connections, as opposed to making separate predictions for
the attributes of each connection. To predict edges, we aim to gen-
erate a triplet (idx1, idx2,e), where idx1 and idx2 are two indices
of the nodes generated by NodeFormer. We also introduce a pres-
ence flag e for each triple to prevent the prediction of redundant
and illogical connection groups. We perform similarity queries be-
tween the node pointers and each node feature. The node with the
highest score in the query is selected as the indicated node. Similar
to NodeFormer, EdgeFormer also adopts the Transformer architec-
ture modified from HOTR, with non-autoregressive parallel decod-
ing, generating predictions for all edges in the bubble diagram si-
multaneously. Specifically, we utilize the connection feed-forward
neural network FNNidx1 and FNNidx2 to generate the ith connec-
tion vectors vidx1

i and vidx2
i from the edge feature βi outputted by

EdgeFormer. This can be expressed as:

vidx1
i = FNNidx1(βi) ∈ Rd (8)

vidx2
i = FNNidx2(βi) ∈ Rd (9)

Here d represents the embedding length of the EdgeFormer and we
set d = 192. Finally, two output node indices cidx1

i and cidx2
i can be

obtained based on the similarity of the generated connection vector
and the node feature:

cidx1
i = argmax

(
sim

(
vidx1

i ,α j

))
(10)

cidx2
i = argmax

(
sim

(
vidx2

i ,α j

))
(11)

Here α j is the node feature generated by NodeFormer and the sim-
ilarity sim can be calculated by matrix multiplication sim(u,v) =
u⊤v/∥u∥∥v∥.

The objective of BubbleFormer is to generate node groups in
the form of (Nidx1,Nidx2,e). The output of the EdgeFormer aims
to generate edges in the form of (idx1, idx2,e). These two pointers
point to different nodes V generated by NodeFormer. During train-
ing, we are provided with the real node group (Ngt

idx1,N
gt
idx2,e

gt).
Therefore, in this phase, our goal is to match the generated edge
triplets and GT edge triplets, and then the corresponding loss is
calculated based on these correspondences, as in HOTR. Specifi-
cally, we apply the Hungarian matching to establish one-to-one cor-
respondences between between the GT edges (idx1gt , idx2gt ,egt)
and the generated edges (idx1, idx2,e). The algorithmic process is
shown below:

(a) The pointers of generated nodes V by NodeFormer to GT

nodes Vgt and the index of the two nodes in the GT edges Egt to
the Vgt are obtained.

(b) Use the above correspondences to obtain the indices of the
nodes in the Egt to the generated nodes V.

(c) Following HOTR, with indices from the last step and the out-
put of EdgeFormer, we can obtain the matching cost matrix of the
generated edges E and the GT edges Egt .

(d) With the cost matrix in the last step, we use Hungarian match-
ing on the matrix from (c) to obtain the indices of the generated
edges E and the GT edges Egt .

To train EdgeFormerr, we also perform Hungarian matching al-
gorithm as introduced in the node generation for edge matching.
After that, we adopt the cross entropy loss to compute the loss of
the matched edges. More details can be found in HOTR.

Avoiding redundant prediction. In EdgeFormer, we referenced
HOTR as mentioned in the paper. Generating indexed representa-
tions of edge triples can avoid redundant prediction. If nodes are
predicted directly, the repeated predictions for the same node are
not exactly the same, requiring complex post-processing. Bubble-
Former generates the node only once and then generates pointers to
the node in multiple edges by Hungarian matching, which avoids
redundant prediction of nodes. In our experiments, the predicted
two triplets rarely correspond to the same node indices, which can
also be avoided by the presence flag e.

5. Experiment

We first present the implementation details of BubbleFormer. Then,
we conduct various experiments to demonstrate our method.

5.1. Network training

We implemented BubbleFormer using PyTorch and trained our
model on an NVIDIA GeForce GTX 3090 GPU. The training data
of bubble diagrams is extracted from the RPLAN dataset, with 80%
used for training, 5% for validation, and 15% for testing. More
implementation details of BubbleFormer are given in the supple-
mentation material. Although our method consists of several sub-
networks, including BNet, ENet, and two Transformer models:
NodeFormer and EdgeFormer, these sub-networks can be trained
end-to-end thanks to our clever network design and the use of a
non-autoregressive generation approach. This means that we can
generate all the nodes and edges of the bubble diagram in a sin-
gle forward pass using the non-autoregressive manner, allowing
our method to be trained and inferred end-to-end. Furthermore,
the non-autoregressive generation approach exhibits excellent time
performance.

5.2. Ablation study

Different from NodeFormer, we do not include a VAE module in
EdgeFormer. Instead, we incorporate the generated embeddings of
nodes by NodeFormer as inputs to the EdgeFormer after perform-
ing dimensionality transformations. We aim to enable EdgeFormer
to perceive the node features generated by NodeFormer and use

© 2023 Eurographics - The European Association
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Living room Bedroom Kitchen Bathroom Balcony Storage

(a) Dual VAEs

(b) Parallel Transformers

(c) BubbleFormer

Figure 5: Ablation studies. To verify the effectiveness of our algorithm design, we have conducted ablation experiments. On the one hand,
we add another VAE module into EdgeFormer to form dual VAES, to validate our network design in edge generation, as shown in the first
row. On the other hand, we delete the connection of NodeFormer and EdgeFormerthe to form a fully parallel Transformer architecture, as
shown in the second row.

them as conditions to generate plausible edges. Our rationale be-
hind this decision is that the diversity of the bubble diagram is pri-
marily manifested in the distribution of nodes. Once the spatial po-
sitions of these nodes are determined, the topological structure can
be optimized and finalized. In other words, our objective is to find
the optimal solution for the topological structure.

To validate the effectiveness of this strategy, we conduct rele-
vant ablation studies, as depicted in Figure 5. We add another VAE
module into EdgeFormer to enable variable edge generation to form
dual VAEs (Figure 5(a)). It can be seen that using dual VAEs not
only make it difficult to generate plausible connections but also
compromise the quality of node generation due to conflicting noise
sampling. The conflicting noise map sampled by the two VAE mod-
ules makes training challenging and results in inferior results. Fig-
ure 5(a) illustrates several semantic issues in the generated bubble
diagrams, including the absence of living room nodes. These se-
mantic problems further contribute to topological chaos, making it
challenging to establish satisfactory connectivity relationships.

On the other hand, we also modify the network to a fully paral-
lel Transformer architecture of NodeFormer and EdgeFormer (Fig-
ure 5(b)), where EdgeFormer can not receive inputs from Node-
Former, and the two Transformer models are completely indepen-
dent, as HOTR. Compared to the complete BubbleFormer, this ab-
lation experiment exhibits a clear inclination toward generating un-
stable connections. As shown in Figure. 5(b), although the ablated
version generates a relatively reasonable set of rooms. However,
there are some problems with the topology of the generated room

nodes. In conclusion, the results of both ablation experiments are
inferior to the complete BubbleFormer.

5.3. Bubble diagram generation.

Our model can achieve constrained and unconstrained bubble dia-
gram generation.

Diversity generation. Our method can generate bubble dia-
grams that accommodate different user needs. We sample the re-
sults from the output of BubbleFormer to implement constraints
on the type and number of rooms, consisting of first sampling the
user-requested rooms and then generating other rooms, similar to
the rooms constraint operations in RPLAN [WFT∗19].

Figure 6 illustrates the results generated with different bound-
aries and user constraints. We applied the same user constraints
on different boundaries in each column. Each column controls
the number of bedrooms, bathrooms, and balconies. The results
demonstrate the generative capability of our method.

Unconstrained generation. We have observed that some exist-
ing layout generative models [NCC∗20,NHC∗21,SHF23] only use
bubble diagrams as inputs. Therefore, we have also tested the abil-
ity of BubbleFormer to generate bubble diagrams without any in-
put, allowing our method to drive this type of layout generation ap-
proach. In the experiment, we remove the boundary embedding net-
work BNet of BubbleFormer. This enables BubbleFormer to gener-
ate different bubble diagrams by sampling from the learned latent
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(2, 1, 1) (2, 1, 2) (2, 2, 1) (3, 1, 1) (3, 1, 2)

Figure 6: Constrained generation. We illustrate the bubble dia-
grams generated with different boundaries and user constraints.
The number of bedrooms, bathrooms, and balconies constrained
are shown at the bottom.

Figure 7: Unconstrained generation. We have tested the capability
of BubbleFormer to generate bubble diagrams without any input.

space without constraints. As shown in Figure 7, we generate vari-
ous bubble diagrams without using any constraints, only sampling
from the learned latent space.

5.4. Application

BubbleFormer successfully accomplishes the fundamental task of
bubble diagram generation. Our method BubbleFormer can further
drive floor plan generation and other graphic design tasks. More
implementation details are given in the supplementation material.

Generated by HouseGAN++

Generated by WallPlan

Figure 8: Bubble diagram driven floor plan generation. Our
method can further drive floor plan generation. Our generated bub-
ble diagram can directly drive HouseGAN++ and WallPlan to ob-
tain high-quality floor plans.

Floor plan generation. We experimentally demonstrate that our
generated bubble diagram can directly drive the existing floor plan
generation method to obtain high-quality floor plans. We select two
state-of-the-art methods. One is HouseGAN++ [NHC∗21] which
only uses the semantics and topology of the bubble diagram as in-
put, and another is WallPlan [SWL∗22] which uses the complete
bubble diagram as input. We use the unconstrained generated bub-
ble diagrams as the input of HouseGAN++ and the boundary con-
strained generated bubble diagrams as the input of WallPlan re-
spectively. The results are shown in Figure 8, where the top shows
the results of HouseGAN++, and the bottom shows the results gen-
erated using WallPlan. In the results of HouseGAN++, each row
shows the generated floor plans with the first input bubble diagram.
For the WallPlan, each floor plan is obtained from the bubble dia-
grams we generated on the left as well as its boundaries.

Graphic deisgn. BubbleFormer exhibits excellent scalability, as
we have demonstrated its applicability to a wider range of graphic
design tasks. In Figure 9, we expand our method to furniture ar-
rangement and document layout generation. The first row show-
cases the indoor furniture arrangement results for different room
boundaries. In the second row, we present some results of docu-
ment layout within the same canvas size. For both generation tasks,
we only employ a single NodeFormer to achieve their generation
in a non-progressive manner. That is we only generate the layout
information for each furniture item in the furniture layout or each
document element in the document layout.

6. Evaluation

We perform qualitative and quantitative comparisons to compre-
hensively evaluate our method. In the context of bubble diagrams,
the nodes represent spatial elements and their locations and sizes
convey important information. Therefore, when evaluating and
comparing methods for generating bubble diagrams, it becomes
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text image headline text-over-image head-over-image

Table TV stand Wardrobe Nightstand Bed

Indoor furniture arrangement

Documnet layout generation

Figure 9: BubbleFormer can be applied to indoor furniture ar-
rangemen and document layout generation.Top: indoor furniture
arrangement of our method; Bottom: documnet layout generation
of our method.

crucial to consider their ability to capture and represent spatial at-
tributes accurately. Since there are currently no existing methods
specifically designed for directly generating professional bubble di-
agrams in the field of architectural design, we have modified exist-
ing graph generation methods for comparison and evaluation.

DGMG. We have implemented a graph generation network
based DGMG [LVD∗18], an autoregressive-based deep generative
model for graphs, to directly generate bubble diagrams. We modi-
fied the DGMG to enable it to generate bubble diagrams using the
layout boundary as input. DGMG utilizes the graph neural network
(GNN) to capture the probabilistic dependencies between graph
nodes and edges, making it capable of learning the distribution of
arbitrary graphs. In the implmentation, we have encode the layout
boundary using CNN to accept the boundary image as input. To
adress the problem of generating the spatial attributes of bubble
diagrams, we added linear layers for predicting node semantics, lo-
cations, and sizes.

Retrieval of Graph2plan. Another comparative approach is the
retrieval method of Graph2Plan (denoted as Graph2Plan), which
utilizes the turning function [ACH∗91] of boundaries to represent
the characteristics of the boundary and obtains bubble diagrams
by retrieving bubble diagrams from a dataset. For comparison, our
method selects the bubble diagram of a boundary with the highest
similarity of the turning function.

Expert Design. We also request experienced experts to design
bubble diagrams for comparing and evaluating our method, de-
noted as Expert. For the expert design comparison, we selected
three graduate students in the College of Architecture and Art, who
also have a bachelor’s degree in Architecture. The selected designer
has strong graphic design experience, especially in the use of bub-
ble diagrams to assist in the generation of floor plans.

6.1. Qualitative evaluation

Dataset boundary constrained generation. We first test bubble
diagram generation on dataset boundaries. The comparison results

(a) GT (b) DGMG (c) Graph2Plan (d) Expert (e) Ours

Figure 10: Dataset boundary constrained generation. We test bub-
ble diagram generation on dataset boundaries.

can be seen in Figure 10. Given the input boundaries from our bub-
ble daigram dataset, the ground truth bubble daigrams (denoted as
GT) are presented in column (a), where column (b), (c), and (d)
correspond to DGMG, Graph2Plan, and Expert, respectively. The
bubble diagrams geneated by our method are shown in column (e).

BubbleFormer is capable of generating different high-quality
bubble diagrams for the same boundary input, thanks to the VAE
module that learns a well-defined and continuous latent space. Bub-
bleFormer produces bubble diagrams that are visually closer in
quality and style to the ground truth (as seen in the row 1, row 3
and row6). On the other hand, our method is also capable of gen-
erating results that are distinctly different from the ground truth (as
observed in the row 2, row 4 and row 5). In terms of the gener-
ation quality, our method demonstrates a significant improvement
over DGMG in terms of visual perception. For example, we can
observe that the node sizes in the first row of DGMG’s results are
irrational, as the living room node does not have a noticeably larger
area than the other nodes. Additionally, the node distribution and
positioning in the first and second rows of DGMG’s results are
noticeably unrealistic. In the third result of DGMG, there are ev-
ident issues with the room topology, as the living room is not con-
nected to the bedroom and kitchen. It is evident that DGMG, as a
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(a) DGMG (b) Graph2Plan (c) Expert (d) Ours

Figure 11: Hand-drawn boundary constrained generation. We test
bubble diagram generation on hand-drawn boundaries.

topology-based graph generation method, is clearly not suitable for
generating bubble diagrams as it produces irrational nodes distribu-
tion and topological structures. The bubble diagrams retrieved by
Graph2Plan require further post-processing to prevent some rooms
from obstructing the front door (see row 1, 2, 3, and 6) or to align
the graphics with the boundaries (see row 4 and 5).

For the expert design, it can seen that our results have both sim-
ilarities and differences with respect to their comparison. For the
similarities, the expert design and our method both follow simi-
lar design principles, i.e. the rooms are mostly evenly distributed
within the boundaries, and most of them are connected to the living
room node. The expert’s design also contains designs that are sim-
ilar to (row 1, 3, 5) and different from (row 4, 6) GT respectively.
And for the differences, we found that the experts designed a little
more rooms than our method, and our number of rooms is closer to
GT, due to the fact that we are learning from the GT dataset.

Hand-drawn boundary constrained generation. To demon-
strate the validity of BubbleFormer, we introduce hand-drawn
boundaries, which are newly created through drawing software.
Compared to the real boundaries, the hand-drawn boundaries are
simpler, rougher, without design considerations, and exhibit higher
variability. The style of hand-drawn boundaries differs from those
in the dataset. While the boundaries in the dataset are real architec-
tural boundaries, hand-drawn boundaries exhibit a more arbitrary
style. In addition to evaluating our algorithm using boundaries from
the dataset, we also attempted algorithm evaluation using hand-

drawn boundaries to better assess the generative capacity and gen-
eralizability of our method. The comparison results can be seen in
Figure 11. Given the hand-drawn boundaries, columns (a), (b) and
(c) show the generated bubble diagram of DGMG, Graph2Plan and
expert respectively. The bubble diagrams generated our method are
shown in column (d).

In the comparison, DGMG generates the least desirable results
with a cluttered room distribution and disorganized topological
structure. Graph2Plan clearly struggles to retrieve the appropri-
ate boundaries from the dataset. The problem with using retrieval-
based methods to obtain bubble diagrams is that if the differences
between the boundaries are significant compared to the boundaries
in the dataset, it becomes challenging to use the retrieval algorithm
to find a bubble diagram that matches the input boundary. The bub-
ble diagrams directly retrieved using Graph2Plan do not match the
hand-drawn boundaries well, with some nodes even located outside
the boundaries. Such results require further manual adjustments or
post-processing algorithms to be usable in subsequent analysis.

The ineffectiveness of DGMG can be attributed to two main rea-
sons. Firstly, the original DGMG was primarily designed for topo-
logical graph generation, lacking spatial attention. This prevents
DGMG from effectively capturing spatial relationships, which are
crucial in bubble diagram generation. Figure 10 clearly illustrates
that DGMG tends to generate collapsed nodes. Secondly, DGMG
was initially developed for generating topology graphs, which are
simpler than bubble diagrams. DGMG is hard to encode complex
structures compared to Transformer-based networks.

On the other hand, the results from experts and our method have
a higher quality compared to the previous two methods, with the
generated bubble diagrams all fitting the boundaries better. Similar
to the dataset boundary comparison, this shows that our method is
able to outperform DGMG and Graph2Plan methods while approx-
imating the quality of expert designs.

Generalizaion Given the boundary as input, Figure 10 shows
our method can generate very different floorplans compared with
the ground truth. Our method can generate multiple floorplans from
the same input boundary with different input noise maps, as also
shown in Figure 6. It also shows that our method explores different
possible settings of type and number of rooms, and generates vary-
ing bubble diagrams adapting to the corresponding constraints.

To better test the generalization capability, we interpolate two
input noise maps and generate bubble diagrams for each interpo-
lated noise map using our method as shown in Figure 12. As the
input noise slowly changes, the bubble diagrams also change ac-
cordingly. This demonstrates the desirable generalization capabil-
ity of BubbleFormer.

6.2. Quantitative evaluation

In addition to qualitative evaluations for visual perception of design
differences among different generation methods, we have also con-
ducted quantitative experiments to provide a more objective evalu-
ation of the generation quality of BubbleFormer.

FID comparison. FID (Fréchet Inception Distance) is a global
metric used to measure the distribution similarity between the
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0 1

Figure 12: Interpolation test. BubbleFormer generates bubble diagrams from a set of interpolated noise maps. The first and last ones are
generated with two different noise maps sampled from a standard normal distribution, and the intermediate results are interpolated using
these two noise maps.

Table 1: FID comparison for generated bubble diagrams.

Method DGMG BubbleFormer Graph2Plan
FID 177.00 16.97 82.64

Table 2: FID comparison for the generated floor plan with different
bubble diagrams input

Method DGMG BubbleFormer GT
FID 80.18 4.17 0.63

generated results and the real data [HHT∗20, NCC∗20, PGK∗21,
SWL∗22]. A lower FID score indicates that the generated results
are statistically more similar to the ground truth dataset, indicating
higher diversity. The FID score is highly dependent on the amount
of data, so we have ensured a consistent data volume in our com-
parisons.

Given the boundary constraint, we have calculated the FID of
our model BubbleFormer and the competitor DGMG. For each
method, we have generated 9000 bubble diagrams and we com-
pare each generated dataset to the ground truth dataset. The FID
result is shown in Table 1. With the same boundary input, the FID
score of our generated bubble diagrams is reduced by 90.4% com-
pared with DGMGboundary. This quantitative result is also consis-
tent with the performance of our previous qualitative evaluation.
This suggests that the graph convolution used by DGMG is clearly
not suitable for the generation of spatially informative bubble dia-
grams. The transformer-based network also has a higher number of
parameters to model more complex structural representations than
the DGMG. Also compared to Graph2Plan’s retrieval method, the
FID of our results are also reduced by 79.5%. This is due to the
fact that we are comparing bubble diagrams with boundaries. Al-
though Graph2Plan retrieves the GT bubble diagrams, it does not
necessarily match that boundary, resulting in a higher FID.

We have experimentally demonstrated that the bubble diagrams
generated by BubbleFormer can directly help high-quality floor
plan generation. We used the bubble diagrams generated by our
method BubbleFormer, DGMG, and the ground truth bubble dia-
grams as inputs to generate the final floor plans using WallPlan.
We have collected a total of 6308 generated bubble diagrams from
these methods and calculated their FID scores compared to the
ground truth results in the test set. As shown in Table 2, our method
achieved a 19.2 times lower FID score compared to DGMG. This

Table 3: Statistics comparsion. Each statistic is the ratio calculated
based on the ground truth floor plans. The ratio close to 1 shows
that our method can generate the topology similar to the GT.

Method Ravg Cl
avg Cr

avg Rl
avg La

avg
DGMG 0.895 0.398 0.413 0.536 0.401

BubbleFormer 0.945 0.851 0.906 1.001 1.026

significant improvement is attributed to the fact that DGMG strug-
gles to generate reasonably coherent topology and spatial posi-
tioning. As WallPlan is sensitive to the quality of the input bub-
ble diagrams, it generates numerous flawed results when fed with
DGMG’s outputs. However, when compared to the results using
the ground truth bubble diagrams as input, our FID score is still
relatively high. This is primarily because when the ground truth
bubble diagrams are used as input, WallPlan tends to generate lay-
outs that closely resemble the ground truth, resulting in a lower FID
score. On the other hand, our method focuses on generating diverse
bubble diagrams, which introduces more variation in the resulting
floorplans and leads to a higher FID score when compared to the
ground truth floorplans.

Statistics comparsion. FID is a metric evaluation that can re-
flect the similarity between the overall distribution of the generated
results and the real, but it does not explicitly reflect the detailed ge-
ometrical and topological generation quality for bubble diagrams.
Therefore, we have collected some statistical metrics to evaluate
the geometry and topology of the generated bubble diagrams.

We have collected some statistics: the number of rooms (denoted
as R), the number of rooms connected to the living room (denoted
as Cl), the ratio between the number of rooms connected to the
living room and the total number of non-living rooms (denoted as
Cr), the number of living rooms (denoted as Rl), and the proportion
of the living room area (denoted as La). We calculate the average
of each statistical metric for the test dataset and calculate its ratio
with the corresponding data from the ground truth. The comparison
results are shown in Table 3. The result reveals that our method
is closer to ground truth on all data indicators, while DGMG can
only achieve similar results to ours in R. Our method significantly
outperforms the baseline method in the other four indicators (Cl ,
Cr, Rl , La) that reflect the topology quality of the generated bubble
diagrams.

Perceptual study. To better evaluate from a professional per-
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Figure 13: The result of perceptual study. The results indicate that
most of the bubble diagrams generated by our method achieve a
high level of quality, and we can provide designers with a variety
of inspiring alternative solutions.

spective, we have also conducted a perceptual study to evaluate the
perceived realism of the generated bubble diagrams. We generate
the bubble diagrams for the perceptual study using the five floor
plan boundaries in the test set. For each input boundary, we gener-
ated 10 bubble diagrams, which yield a total of 50 bubble diagrams.
For each task, the participants were asked to rate the results on a
five-point scale.

We have informed participants of the following basis for scoring:
(1) Terrible: The design has significant issues. Major revisions or a
complete redesign are needed to reach an acceptable level. (2) Poor:
The design has some problems and requires adjustments and im-
provements to enhance quality and effectiveness. (3) Average: The
design meets basic requirements but may need further adjustment
to be more competitive or effective. (4) Good: The design excels in
multiple aspects, meeting or exceeding general standards. (5) Ex-
cellent: The design excels in multiple aspects far beyond general
standards and is a highly successful design.

We selected 20 current graduate students with strong graphic de-
sign backgrounds in the College of Architecture and Art as subjects
for the study. They are also skilled in designing bubble diagrams
themselves to assist in the generation of architectural floor plans.

Each participant needs to test a total of 50 tasks, so we count a
total of 1000 results for 20 designers. In Figure 13, We show the
percentage of scores from "Terrible" to "Excellent". The statistics
can reflect that the percentage of results with scores of "Average",
"Good", and "Excellent" are 27.7%, 27.6%, and 15.3%. In the opin-
ion of designers with professional design backgrounds, 70.6% of
the results achieved a score of three or more. This shows that the
majority of our results achieve high quality and that we can pro-
vide designers with a variety of inspiring alternatives for the same
boundary.

7. Conclusion

For a long time, bubble diagrams have been an important tool
for expressing high-level constraints in the fields of floor plan de-
sign and architectural design. Many works have introduced the im-
portant role of bubble diagrams in architectural design [HHT∗20,
NCC∗20, NHC∗21, SWL∗22, CWT∗20]. However, these bubble

diagram-driven methods only use retrieved or user-inputted bubble
diagrams. Essentially, they do not generate truly original designs
but only complete the transformation from input bubble diagrams
to spatial division. This obviously increases the user’s usage cost
and reduces the generation efficiency.

In view of this situation, we propose a dedicated generation
method called BubbleFormer, with the goal of generating diverse
bubble diagrams under constrained or unconstrained conditions. To
our knowledge, this is the first learning-based approach for generat-
ing bubble diagrams, and it complements existing bubble-diagram-
driven generation methods by addressing an important missing
piece: the generation of its input. We make full use of dual Trans-
formers to model the nodes and edges in bubble diagrams. We use a
Hungarian matching algorithm inspired by object detection, which
enables end-to-end training and inference for each network. In ad-
dition, we have ingeniously embedded VAE into NodeFormer to
provide designers and users with a variety of design options. We
conduct ablation studies, qualitative evaluations, and quantitative
comparisons to fully evaluate the high-quality results. Moreover,
we also proved that BubbleFormer can achieve user constraints and
support various applications.
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