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Fast Grayscale Morphology for Circular Window

Yuji Moroto and Nobuyuki Umetani

The University of Tokyo

(a) Input image (b) Circular window morphology (c) Rectangular window morphology

Figure 1: Example of a bokeh filter using dilation, a type of morphological operation. By filtering at the maximum value within the circular
window, highlights are enhanced, creating a beautiful expression that differs from actual lens blur. As a blur effect, circular windows are
typically preferred over rectangle windows due to their isotropic feature.

Abstract
Morphological operations are among the most popular classic image filters. The filter assumes the maximum or minimum value
within a window and is often used for light object thickening and thinning operations, which are important components of
various workflows, such as object recognition and stylization. Circular windows are preferred over rectangular windows for
obtaining isotropic filter results. However, the existing efficient algorithms focus on rectangular or binary input images. Efficient
morphological operations with circular windows for grayscale images remain challenging. In this study, we present a fast
grayscale morphology heuristic computation algorithm that decomposes circular windows using the convex hull of circles. We
significantly accelerate traditional methods based on Minkowski addition by introducing new decomposition rules specialized
for circular windows. As our morphological operation using a convex hull can be computed independently for each pixel, the
algorithm is efficient for modern multithreaded hardware.

CCS Concepts
• Computing methodologies → Image processing; Parallel algorithms; Computer vision;

1. Introduction

Since the inception of digital image processing, morphological op-
erations have become an integral part of various image and video
processing operations. The filter calculates the maximum or min-
imum values inside the window around each pixel, and combina-
tions of these filters can produce various effects, such as opening

and closing, which are popular noise reduction tools. Typical video
editing software, such as Adobe After Effects, provides morpholog-
ical effects to extract smooth matte in chromakeys or to calculate
the outline of illustrations. Max pooling operations in deep neural
networks are morphological operations.

Although morphological operations are often applied to binary
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images for segmentation tasks, they are frequently used for grey
scale or RGB images. For example, as shown in Figure 1, dilating
each channel in a color image results in a blurred image. Although
the morphological operation does not correspond to an actual opti-
cal lens model, it is useful for artistic bokeh expressions. In image-
filtering operations, particularly blurring, circular windows are pre-
ferred to rectangular windows because the result is more isotropic.
However, performing morphological operations using circular win-
dows for grayscale images is challenging. Efficient algorithms for
larger window sizes are in high demand as the resolution of images
and videos continues to increase.

Although grayscale morphological operations with rectangular
windows can be computed efficiently in constant time, regard-
less of the window size [VH92, GW93, DD11], few studies have
addressed the problem of efficient grayscale morphological op-
erations with circular windows. Methods targeting arbitrary win-
dow shapes require approximately O(R) times per pixel, where
R is the window radius [DT96, UW08]. Furthermore, there is
a method that efficiently computes large arbitrarily shaped win-
dows using Minkowski addition, decomposing a large window into
several smaller windows, and repeating the morphological opera-
tions [VV97, HBF00]. However, circular windows are difficult to
decompose and must be approximated as regular polygons (e.g.,
hexadecagons).

This paper presents a method that performs grayscale morphol-
ogy operations on circular windows many times faster than the ex-
isting baseline approaches [UW08, VV97, VKM07]. Our method
specializes in circular windows, and uses Minkowski addition to
achieve acceleration. Specifically, we present a decomposition ap-
proach for a circular window that considers the convex hulls of el-
ements. Our method can accurately reproduce approximately 87%
of the circular windows with different radii without any error. The
remaining windows have considerably small approximation errors,
making our approach sufficiently practical for circular morpholo-
gies. Our algorithm can be computed independently on a pixel-by-
pixel basis, making it compatible with new hardware with multi-
threaded or vector arithmetic units.

2. Related Work

Morphological operations simply replace the value of a pixel with
the minimum or maximum value in a window around the pixel.
Morphological operations were among the earliest filters developed
in image processing, and Kirsch et al. [KCRU57] discussed several
3×3 morphological operators. The use of the maximum value in
the window is called dilation, and the use of the minimum value is
called erosion.

Haralick et al. [HSZ87] defined the composition of the mor-
phological operations for both binary and grayscale images. Di-
lation after erosion is called opening, and it removes noise without
changing the thickness of the object. Filling the voids in an object
by erosion after dilation is called closing. The process of detect-
ing contours by differentiating dilated and eroded images is called
the gradient. Morphological operations are integral parts of several
classical image-processing methods.

2.1. Binary Morphology

The morphology of a rectangular window can be separated into hor-
izontal and vertical one-dimensional morphologies, and the binary
morphology can be easily computed at a constant time per pixel by
preparing a counter.

For morphology operations with circular and elliptical windows
for binary images, constant-time computation is possible using a
distance transform. Distance transform [RP66] is a process that as-
sumes a binary image as input and outputs an array of distances
(i.e., called a distance map) to the nearest 0 value of each pixel. Ya-
mada et al. [Yam84] presented an algorithm for computing the Eu-
clidean distance transform [Dan80], which computes the Euclidean
distance as a distance function. Dilation can be computed in con-
stant time by setting the pixels whose Euclidean distance from each
black pixel is less than or equal to R to black.

2.2. Grayscale Morphology with Rectangular Windows

Although the binary morphology can be computed efficiently us-
ing simple AND and OR operations on a binary array, the grayscale
morphology is difficult because the minimum and maximum values
must be computed. The naïve implementation of grayscale mor-
phology with a window width of W pixels requires only W − 1
comparisons per pixel.

The seminal works of van Herk [VH92] and Gil and Werman
[GW93] presented efficient methods for computing grayscale mor-
phology. This algorithm is known as the vHGW algorithm. This
algorithm corresponds to a rectangular kernel and is a constant-
time computation requiring only 3 comparisons in the horizontal
and vertical directions for each pixel. This algorithm was further
improved by Gil and Kimmel [GK02] to reduce the number of
comparisons per pixel to an average of less than 1.5 per dimen-
sion, although its implementation was more complex, with more
conditional branches. This constant-time algorithm with rectangu-
lar windows can be applied to binary operations (e.g., add, mul,
etc.) other than min/max, and is currently being studied under the
name sliding window aggregation [THS15].

2.3. Arbitrary-shaped Windows

For 1D arrays, the method is based on the fact that morphological
operations can be performed with O(1) per pixel for fixed window
lengths, and can be applied by decomposing arbitrarily shaped win-
dows into lines [UW08]. In the case of a circular window, this can
be computed as O(H) per pixel, where H is the window height.
Our method has a complexity of approximately O(H); however,
their method must adjust the line morphology H times if there are
H lines of windows, whereas ours is a constant order of magni-
tude improvement because we can integrate multiple lines. Vaz
et al. [VKM07] proposed a method for approximately computing
O(H) by interpreting a circular window as a superposition of sev-
eral rectangular windows. Our method works faster because it effi-
ciently reduces the computational cost of the diagonal linear com-
ponent, although it may involve a small approximation.

Another method for arbitrarily shaped windows is to use
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Minkowski addition [Min01] to decompose the window into multi-
ple morphological operations. This method decomposes a window
into smaller windows typically called structural elements (SEs).
This decomposition allows morphological operations to be com-
puted more efficiently than the morphological operations in the
original window. Vanrell et al. [VV97] demonstrated that a cir-
cle can be efficiently decomposed into 3×3 windows by approx-
imating it as a hexadecagon. Hashimoto et al. [HBF00] proposed
a method to decompose any shape into 3×3 windows. However,
the decomposition of circular windows is not always possible for
some radii, while radii 2 and 4 are decomposable, and radii 3 and
5-50 are not. Even if it can be decomposed, the decomposition al-
gorithm requires an exponential time from a few seconds to tens of
seconds. The number of windows after decomposition is approxi-
mately O(H), resulting in a computation time per pixel of approx-
imately O(H). Our method uses the fast greedy method to decom-
pose the input window into fewer than H windows by changing the
decomposition rule to a window consisting of two elements instead
of decomposing it into 3×3 windows.

2.4. Median Filter

The median filter determined the median values within a win-
dow. Morphological operations are related to the median filter in
that they use statistical information within the windows. There
are two main approaches to median filtering: the sorting network
method [Ada21] and the histogram-based method [Gre17]. Moroto
et al. [MU22] presented another approach using a wavelet matrix,
and discussed its extension to polygonal windows. However, it re-
mains difficult to apply the same approach to morphology opera-
tions with circular windows because the computation becomes slow
when the polygon has many edges.

2.5. Lens Blur Filter

The lens-blur filter computationally emulates the blur in a defo-
cused photograph. Another filter that performs statistical operations
on polygonal windows is lens blur. It uses a flat polygon or circle
as the blur kernel, and is available in Adobe Photoshop and other
software packages. The lens blur can be used as a filter to calculate
the sum or average of the values in a window. There are methods to
speed up the process by using subtraction, which is the inverse of
addition, by approximating the kernel as a polygon and considering
the difference in each direction [MHU21], or by using the fact that
the flat kernel is sparse in Laplacian space and performing a convo-
lution in Laplacian space [LSR18]. Our method shares the common
approach of approximating a circle as a polygon.

3. Background

The window of the morphology operation K contains a set of in-
teger coordinates (taps) to offset the indices of the input array. For
example, the dilation result J from the input image I can be cal-
culated as follows:

J [x][y] = max
(dx,dy)∈K

I[x+dx][y+dy]. (1)

a b c d d⊕d

a⊕b a⊕c a⊕d (a⊕d)⊕d = a⊕(d⊕d)

Figure 2: Examples of Minkowski addition of multiple structural
elements. The Minkowski addition has the associative property.

3.1. Window Decomposition using Minkowski Addition

The composition of the two morphology operations corresponds
to a morphology operation with a larger window, as computed by
Minkowski addition of the two windows [Ser84]. The Minkowski
addition follows the associative law: For example, let K1,K2,K3
be the shapes of the windows. The associative law results in
(K1 ⊕K2)⊕K3 = K1 ⊕ (K2 ⊕K3), where ⊕ denotes a morphologi-
cal convolution operation. In particular, a morphological operation
with a large window can be decomposed into several sequential
operations using smaller windows. Smaller windows that typically
appear after decomposition are often called structuring elements
(SE). Figure 2 shows several examples of Minkowski addition.

The efficiency of the morphological operations can be signifi-
cantly improved by decomposing a large input window into smaller
SEs [HBF00]. For example, dilating a W × H rectangular win-
dow assumes approximately O(WH) time per pixel in a nav̈e cal-
culation, while decomposing the window into W -sized horizontal
and H-sized horizontal windows assumes approximately O(W +H)
time.

Determining the decomposition of an arbitrary window shape
is an NP-complete problem [SPR97], which is extremely diffi-
cult. Hashimoto et al. [HBF00] presented a technique to determine
whether decomposition existed, but the algorithm grew exponen-
tially for large window sizes. As their approach finds a decomposi-
tion with 3×3 SEs, the search space is limited. This study presents
a method for instantly determining the exact decomposition of most
circular windows. Furthermore, the proposed algorithm determines
an approximate decomposition even when an exact solution is un-
available.

3.2. vHGW Algorithm for Rectangular Windows

The vHGW algorithm [VH92, GW93] computes the maximum
(minimum) value inside and within rectangular windows for a 2D
grayscale image O(1) times per pixel, regardless of the window
size.

First, we describe how the algorithm determines the minimum
and maximum within an interval of size W for an input 1D grey
scale array I. The algorithm computes the intermediate buffers F
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Figure 3: Example of using the vHGW algorithm to find the max-
imum in a window of length 4. The array is divided by the length
of the window, and the cumulative maximum is computed from the
beginning for the array F and from the end for the array B. Im-
mediately F and B are computed, the maximum of an interval of
length 4 can be obtained at any point by assuming the larger ele-
ment of F and B.

and B as follows:

F [x] =

{
I[x] if x ≡ 0 (mod W ),
I[x]⊙F [x−1] otherwise,

(2)

B[x] =

{
I[x] if x ≡−1 (mod W ),
I[x]⊙B[x+1] otherwise,

(3)

where ⊙ is the binary operation corresponding to the desired mor-
phological operation, such as maximum or minimum. Arrays F
and B are the results of cumulative operations in the forward and
backward directions, respectively , within chunks, where the input
array is divided into chunks of length W . Note that if the length of
the input is not a multiple of W , the remainder will be filled with
dummy values (e.g., 255 for a min operation on 8-bit values). Fig-
ure 3 shows an example of how F and B are constructed for the
input I.

Using these intermediate computations, an array of maxi-
mum/minimum values J in an interval of length W from the ith
element is computed as follows:

J [x] =
x+W−1⊙

x̂=x
I[x̂],

= B[x]⊙F [x+W −1]. (4)

The number of comparison operations performed during the con-
struction of F and B is at most 2N, where N is the length of the in-
put I. Because N comparison operations are performed during the
construction of J , the maximum value of the fixed-length window
can be obtained in approximately 3N comparisons.

This algorithm is memory-efficient because it uses only O(W )
space. We reuse the buffers of size W for F and B repeatedly for
each chunk. The morphology of the rectangular window for the im-
ages can be computed by applying the algorithm to the horizontal
and vertical directions separately, as described in Section 3.1.

4. Method

In this study, we present a method for decomposing large circular
windows into a set of SEs with two points, where the Minkowski
additions (Section 3) of these SEs reconstruct the original circular
windows. We define a circular window of radius R as:

KR = {(x,y) ∈ Z2 : x2 + y2 ≤ R2}. (5)

Figure 4(a) shows a sample window for K√
27. This definition ac-

curately captures the shape of a circle, contrary to the hexadecagon
approximation proposed by Vanrell et al. [VV97].

Algorithm Our decomposition algorithm is based on our simple
but powerful heuristic in that the boundary edges of the circular
windows produce good SEs. Specifically, we computed the convex
hull of the upper half of the circular window and extracted the in-
teger coordinates of the edge directions as SEs (see Figure 4(b)).
This simple strategy decomposes most of the circular windows of
different radii. For example, out of 10000 circular windows with
radii ranging from

√
1 to

√
10000, 8699 can be decomposed ex-

actly without errors. If the convex hull decomposition has more
than two identical edges, the computation can be accelerated by
grouping them (Section 4.1).

Empirically, we observed that significant errors can occur only
when the circular window pattern has only one element in the top
row (see Section 4.2). In these cases, the reconstructed patterns may
be sparse. This problem can easily be alleviated by slightly chang-
ing the radius or adding another element to the top row. Conse-
quently, the resulting decomposition has only a small error that is
hardly visible if an error exists.

Figure 4(b) presents the decomposition when R2 = 27, where the
decomposition can be computed by extracting the edges of the con-
vex hull. Because the computational complexity of the morphology
operation is proportional to the number of elements in the SEs, the
computational complexity is significantly reduced compared with
performing the morphology directly on the original circle window.
The time required to decompose the SE is also O(R) to scan the
convex hull of the circle.

4.1. Speed Up by Grouping Identical Segments

We extracted the smallest edges when decomposing a convex hull.
For example, the convex hull of K√

30 (see Figure 5) contains long
line segments {(2,0), (3,3), (0,2)}, which the elements (i.e., taps)
touch these line segments. The decomposition of these long seg-
ments should yield the 7 smallest line segments {(1,0), (1,0), (1,1),
(1,1), (1,1), (0,1), and (0,1)} to reconstruct the input window.

Subsequently, we grouped the line segments that appeared more
than thrice. For example, line segments (1,1),(1,1),(1,1) were
grouped into fewer SEs {(1,1), (2,2)}. If there are n SEs with
(x,y) ∈ Z2 : gcd(x,y) = 1, we group 1,2,4, . . . ,2k,r SEs using the
Minkowski addition. Note that k = ⌊log2(n)− 1⌋ and r is the re-
mainder; that is, r = n− (1+ 2+ 4+ · · ·+ 2k). For example, we
divided the 5 SEs into groups of {1, 2, 2} SEs as well as the 15
SEs into groups of {1, 2, 4, 8} SEs. This grouping did not change
the results and reduced the number of SEs that contributed to the
acceleration.
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(a) Window of K√
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(b) Line segments of the convex hull of
K√

27(upper half)

(k1) (k2) (k3) (k4) (k5)

(k1’) (k2’) (k3’) (k4’) (k5’)

(c) Line segments of the convex hull are used as SEs. Note that the posi-
tions of the origin are adjusted to balance the up- and down-movements.

(r0) (r1) (r2) (r3)

(r5)

(r4)

(r6)(r7)

(r8) (r9) (r10)

(d) Morphological operations are performed on the decomposed SEs
to restore the original circular window. r1 = k1 ⊕ r0, r2 = k2 ⊕ r1, ...,

r6 = k′1 ⊕ r5, ..., r10 = k′5 ⊕ r9 = K√
27.

Figure 4: The circular window is decomposed by extracting the
line segments of the convex hull of the window. The original window
K√

27, is exactly reconstructed by the Minkowski additions of the
decomposed structural elements (SEs) as K√

27 = k1 ⊕ k2 ⊕ ·· ·⊕
k5 ⊕ k′1 ⊕ k′2 ⊕·· ·⊕ k′5.

Next, although this is optional we applied the vHGW algorithm
(see Section 3.2) to the long horizontal line segment for further ac-
celeration. For example, K√

30 contains a long horizontal line seg-
ment (4,0), which is decomposed into {(1,0), (2,0), and (1,0)} af-
ter the previous grouping procedure. A line element of length n is
decomposed into ⌊log2 n⌋+ 1 SEs, and because morphology op-
erations assume time proportional to the number of SEs, they will
assume approximately O(logn) per pixel. Here, the horizontal mor-
phology is processed in O(1) time per pixel by using the vHGW
algorithm.

The use of the vHGW algorithm for the vertical morphology,
whose components are represented by (0,y), theoretically results
in a smaller computational complexity. However, in practice, we
found it difficult to compute the morphology operation faster with
this approach. Furthermore, the complexity of the implementation
increases because a separate vHGW must be prepared for the verti-
cal direction, and additional buffer memory is required. Regarding
the number of decomposed SEs, all SEs except the horizontal SEs
have a y component greater than or equal to 1; thus, the number of
SEs is less than or equal to 2R+1.

(a) Window of K√
30

(x) (y)

(z) (y’)

(b) Structural elements (SEs) com-
puted from the edge of the convex
hull

Figure 5: The line segments that form the upper right part of the
convex hull of K√

30 consist of seven elements, x,x,y,y,y,z,z. The
number can be reduced to six by decomposing as x,x,y,y′,z,z.

4.2. Approximated Decomposition

Of the 10000 circular SEs from K√
1 to K√

10000, our algorithm
finds 8699 exact decomposition patterns; however, the remaining
13% of the decomposed SEs do not reconstruct the original win-
dow shapes. Below, we describe two cases in which exact decom-
position is impossible.

In the first case, the first row (and thus, the last column) has only
one element, and the transition to the next SE is not smooth during
decomposition. The decomposition of this window shape has an
incorrect grid pattern and is significantly different from that of the
input. Figure 6 shows the example of K√

25. This problem is caused
by the lack of smallest SEs {(1,0), (0,1)} in the decomposition.

There are two simple methods to overcome this problem. One
approach is to check whether the number of elements in the first
row is one, and if it is, slightly modify the radius such that there are
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at least two elements in the first row. Another approach is to add
new elements next to a single element in the first row before the
decomposition (see Figure 6(d)). To check whether the number of
elements in the first row is one, we use the condition ∥(1,⌊

√
R⌋)∥=√

1+ ⌊
√

R⌋2 < R.

The second case of exact decomposition failure occurs when the
edges of the reconstructed window are slightly jagged compared
with the input. Because our method considers only the convex hull
of the window, a boundary that is not touched by the convex hull
cannot be faithfully reproduced. Figure 7 shows the reconstruction
of the concave part of the input window, which is missing from the
example in the window of K√

73. It is difficult to fix a jagged border.
However, as far as we tested with many circular windows, the error
was considerably small and not noticeable in practical applications.
If readers are interested in the size of the error, please refer to the
plots of the reconstructed circular windows with radii ranging from√

1 to
√

10000 in the supplementary material.

(a) Window of K√
25 (b) Reconstruction of K√

25 from
SEs

(c) Reconstruction with decomposed
SEs

(d) Approximation with point added
to K√

25

Figure 6: Decomposing and reconstructing K√
25 from input (a)

yields a sparse grid pattern as observed in (b). This is because the
decomposed SEs {(3,1), (1,1), (1,3)} do not contain any smallest
SEs {(1,0), (0,1)} that can move directly beside or below. If it can-
not move directly beside or below, a point cannot move from the top
to any element inside the input window, as shown in (c). To avoid
this, circular windows with only one element in the first row can be
rejected before decomposition. Alternatively, as in (d), we add new
points in the first and last rows and columns.

(a) Window of K√
73 (b) Reconstruction from SEs de-

composing K√
73

Figure 7: Because our method is a decomposition of circular win-
dows using convex hulls, the vertices of convex hulls can be recon-
structed correctly; however, other edges may not be reconstructed
correctly depending on the decomposed SEs. Considering the re-
construction (b), two points are missing.

5. Results

This section describes runtime measurements of the proposed algo-
rithm. All benchmarks were run on the 4000×2162 pixel grayscale
version of the input image in Figure 1 with an Intel i9-9900X
CPU and an NVIDIA GeForce 3090 RTX GPU running on Ubuntu
20.04. Measurements were considered 7 times and averaged by
subtracting the maximum and minimum values. The benchmark
codes written in C++ and CUDA are included in the Supplementary
Material. Upon acceptance, the code and data will be published to
make the results more reproducible.

We compared our method to several existing methods and a pop-
ular open-source package, OpenCV, with a single-threaded CPU
implementation and a parallelized implementation on the GPU.
Figure 8 presents the results. The details of these methods are as
follows.

1. OpenCV is one of the world’s most widely used open-source
image processing libraries and supports morphological opera-
tions, including dilation and erosion. For SE, MORPH_RECT,
MORPH_CROSS, and MORPH_ELLIPSE are available as
templates. Efficient implementations are provided for RECT
and CROSS. However, for ELLIPSE, the implementation is
O(R2) time per pixel to brute-force the window (R is the window
radius). However, its brute-force method is highly optimized
and has a low constant multiplier.

2. Urbach et al. [UW08] proposed a morphological operation
method that is more efficient than the brute-force method by
partitioning windows of arbitrary input shapes into rows. For a
convex hull, such as a circle, this algorithm decomposes it into
2R+1 one-dimensional SEs, and morphological operations can
be performed in O(R) time per pixel. Reusing row buffers al-
lows efficient filtering even for large images. However, efficient
parallelization on GPUs was not obvious this comparison; thus,
was done on CPUs only.

3. Vaz et al. [VKM07] showed an accurate and efficient circular
morphology operation by superimposing a circular window with
several rectangular windows. It is particularly efficient when the
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(a) Comparison in 8bit. Our method has some variability in execution time,
but fastest for radii larger than 2. OpenCV uses a brute-force method; how-
ever, it slower as the radius increases, but is very fast at smaller radii. For a
radius of 100, our method was approximately 2.1 times faster than the second
best method.
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(b) Comparison with 32-bit float. Even with high depth images, our method
was efficient and 2.0 times faster at a radius of 100.
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(c) Comparison on GPU with CUDA. When the radius was small, kernel
startup time had a large impact, and there was slight difference in speed be-
tween the methods. Our method efficiently handled parallelization with many
threads, and was approximately 2.1 times faster when the radius was 150.

Figure 8: Comparison with existing methods and the popular im-
age processing library. The lower the value, the better.

edges of the discretized circular windows contain horizontal and
vertical linear components. Their algorithm has a computational
complexity of O(R). However, in the case of grayscale, multiple
image buffers are required, and they are a memory speed limiter.

4. Vanrell et al. [VV97] showed that the circular windows can be
efficiently decomposed into 3×3 SEs by approximating them
as hexadecagons. This approach decomposes the input into ap-
proximately R SEs, and by repeating the morphology operation
for the number of SEs, the hexadecagonal morphology opera-
tion is performed at O(R) per pixel. Because our method does
almost the same except for the SE decomposition method, the
implementation was almost the same as our method.

Our method has some variations in runtime because the decom-
posed SE varies finely with the radius of the circle; however, it
is faster than any other method when the radius is approximately
eight or larger. When the circle is small, our method is similar to
Vanrell et al. [VV97]’s method, which approximates the circle by
a hexadecagon; thus, it has the same speed. However, our method
limits the SEs to 3×3, as well as decomposes them using large
SEs; therefore, if the circle is large, our method has an advantage.
With 8 bits of CPU, the proposed method was approximately twice
as fast at a radius of 50, more than 2 times faster at a radius of
100, and five to eight times faster at a radius of 500. At 32 bits,
the speed of all methods decreased as the data size increased. The
method proposed by Vanrell et al. [VV97] was considered to have
high memory locality and easy data storage in a fast cache because
of its row-by-row computation, and the effect of the high depth was
small.

Our method and that of Urbach et al. [UW08] use temporary
buffers of approximately W ×D in size, excluding inputs and out-
puts, where W is the width of the image and D is the diameter of the
circular window. Vanrell et al.’s method requires only W temporary
buffers, making it memory efficient and easy to fit into a fast cache.
However, our method and that of Vanrell et al. [VV97], which de-
composes data into SEs of approximately half the number of rows
or less, are faster, and our method is approximately 2.5 times faster
than that of Urbach et al. [UW08] at a radius of 100.

Furthermore, because our method decomposes SEs and performs
several simple morphological operations, it can be efficiently par-
allelized using many threads on a GPU. In particular, a compar-
ison using CUDA shows that our method is 64 times faster than
OpenCV and 1.8 times faster than Urbach et al. at a radius of 50,
and more than 2.5 times faster at a radius of 150.

In this comparison, the method of Vanrell et al. [VV97] produced
results that approximated a circle as hexadecagon, and our method
produced almost accurate circular morphology operations. On the
other hand, the other methods calculated perfect circular morphol-
ogy operations. Our method could not accurately recover 13% of
the circles with radii of up to

√
10000. Figure 9 graphically illus-

trates the reconstruction errors for different radii in the heat map. If
the radius is an exact integer, the number of SEs in the top row is
1; thus, it cannot be accurately represented (see Section 4.2). The
other radii at which errors occurred were unevenly distributed. Fig-
ure 10 shows a circular window of radius

√
1514, which is one of

the windows with the highest error. The filtered results obtained us-
ing this window are shown in Figure 11. By close observation, the
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circular bokeh is slightly jagged in the decomposed result; other-
wise, the difference is invisible. If the error is critical, we can check
in advance whether the decomposed windows or the software can
prevent the user from selecting problematic radii.

0 25 50 75 100 125 150 175 200
+X

0

20

40

60

80

100

R

Error Heatmap

0
Error Ratio (higher )

Figure 9: This heatmap shows how much error occurs when re-
constructing a decomposed circular window using our method. The
vertical axis is R and the horizontal axis is X, showing the amount
of error in a circle with radius

√
R2 +X. The area of the error is

shown in pink, and the larger the error, the darker the red. The
number of pixels with errors is counted and divided by the radius
as the error.

Figure 10: Circular window with radius
√

1514 ≃ 38.91 recon-
structed with our method. This is one of the radii with the largest
error. There are 1226 grid points in the circle, of which 12 points
near the edges cannot be recovered (marked with ×).

6. Limitations and Future Work

The proposed method approximates a circular window with a con-
vex hull. Approximately 87% of the radii, including the fractional

(a) Ground truth (b) Ours

(c) Ground truth scale-up (d) Ours scale-up

Figure 11: Filtering results with the window of radius
√

1514, one
of the windows with the highest error. The edges are slightly jagged
compared to the ground truth when extremely zoomed in, but we
consider these small artifacts visually acceptable.

radii, could be filtered exactly without errors. However, the remain-
ing 13% was not computed exactly, and a small artifact was ob-
served around the edges. Although this is not a major visual prob-
lem, it is a fast and ideal filtering method for future studies.

In this study, we focused on circular windows. However, the
method can be extended to ellipses and arbitrary convex hulls. Be-
cause circular windows are in great demand for morphological op-
eration filters as well as for various other types of filters, we believe
it is appropriate to target circular windows; however, we await ap-
plications to other window shapes as a technical challenge. In the
case of circular windows, the directions of the edges of the convex
hull changed smoothly; thus, the reconstruction error was rather
small. However, if we extend this method to ellipses or arbitrary
convex hulls, we may need to add further constraints to the decom-
position.

The computational complexity of the proposed algorithm is
O(R) per pixel radius, R. Although this is relatively fast, exploring
algorithms faster than O(R) is a future challenge because morpho-
logical operations can be performed in O(1) for rectangular win-
dows and in O(1) for circular windows in the case of binary im-
ages.

In this study, we propose a morphological operation algorithm
for two-dimensional images. However, the direct application of this
algorithm to three dimensions is not straightforward. Morphologi-
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cal operations on 3D voxel grids may prove useful in cases dealing
with density or occupancy fields. Thus, future research in this area
is anticipated.

7. Conclusion

We focused on circular windows and proposed a morphological
computation method for decomposing SEs that is several times
faster than existing methods. Most importantly, existing methods
impose a limit of 3×3 on the window size after decomposition
when decomposing large windows; however, we used a decompo-
sition method that does not limit the size of the SEs instead of lim-
iting the number of elements to two. This reduces the total number
of SEs; thus, the computational complexity. Our method is an ap-
proximate method, similar to the conventional SE decomposition
method. However, the proposed method corresponds to approxi-
mately 87% of the decimal radii and provides an exact decomposi-
tion, whereas the conventional method itself has only a few decom-
posable circular windows. Even if exact decomposition is impossi-
ble, filtering can be performed without a significant visual impact.
Our method also supports parallel operations and is significantly
faster than the existing methods on GPUs.
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