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Reconstructing 3D Human Pose from RGB-D Data with Occlusions
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Figure 1: Given a monocular RGB-D image and the scene mesh, our method reconstructs the 3D human body with a more plausible pose
compared with SMPLify-D and PROX-D [HCTB19] by reducing the solution space using free zone and truncated shadow volume. The
difference between results is highlighted using red dashed box and arrows.

Abstract
We propose a new method to reconstruct the 3D human body from RGB-D images with occlusions. The foremost challenge
is the incompleteness of the RGB-D data due to occlusions between the body and the environment, leading to implausible
reconstructions that suffer from severe human-scene penetration. To reconstruct a semantically and physically plausible human
body, we propose to reduce the solution space based on scene information and prior knowledge. Our key idea is to constrain
the solution space of the human body by considering the occluded body parts and visible body parts separately: modeling all
plausible poses where the occluded body parts do not penetrate the scene, and constraining the visible body parts using depth
data. Specifically, the first component is realized by a neural network that estimates the candidate region named the "free zone",
a region carved out of the open space within which it is safe to search for poses of the invisible body parts without concern
for penetration. The second component constrains the visible body parts using the "truncated shadow volume" of the scanned
body point cloud. Furthermore, we propose to use a volume matching strategy, which yields better performance than surface
matching, to match the human body with the confined region. We conducted experiments on the PROX dataset, and the results
demonstrate that our method produces more accurate and plausible results compared with other methods.
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1. Introduction

3D human reconstruction is an important research area with broad
applications in human behavior understanding and human-scene in-
teraction analysis [ZZB∗21]. Most current works focus on recon-
structing 3D human body from monocular RGB images and match-
ing the reconstructed result with the 2D image [BKL∗16,KBJM18,
PCG∗19,KPBD19,JNV21,LWL21,CPMAMN22]. With the devel-
opment of human-scene interaction datasets [SCH∗16, HCTB19,
WCR∗19, ZMZ∗22], many methods [HCTB19, ZZB∗21, LSS∗22]
have been dedicated to reconstructing 3D human body that not
only matches with the 2D human contour in image but also keeps
reasonable spatial relationship with the environment by using 3D
scene information. In this paper, we also follow this line and work
on 3D human reconstruction from monocular RGB-D images. We
specifically focus on situations which contain close interactions and
serious occlusions between the human and the environment.

3D human reconstruction methods can be divided into two types:
optimization-based and regression-based methods. Optimization-
based methods attempt to reconstruct the 3D human body by mini-
mizing an objective function to optimize the parameters of the hu-
man body model [BKL∗16, PCG∗19] or vertices [CPMAMN22].
Regression-based methods directly regress the parameters of the
human body model [KBJM18] or vertices [LWL21] in an end-
to-end manner, which requires a lot of data to train and might
lead to inaccurate pose. So the regression-based method is nor-
mally followed by a post-process to optimize the pose [KPBD19,
JNV21]. Although Current methods all consider the penetration
terms [HCTB19], they suffer from penetrations between the body
and the environment. The most important reason is that it is quite
hard to improve or resolve the penetration once it happens and the
system may stuck in the local minimum. The penetration problem
is getting even harder when dealing with scenes with close interac-
tions and serious occlusions.

Our method falls into the optimization type. Our key idea is to
explicitly reduce the solution space based on scene information and
prior knowledge. We propose two strategies to constrain the solu-
tion space. First, with the 3D scene around the human body, we can
infer the possible region where the human body can lie in without
penetrations. We refer to this region as the free zone (FZ). Consider-
ing a person sitting on a chair with her/his legs under a table in front
of the chair, the free zone is mainly the space between the chair and
the table. With the free zone, we can significantly reduce the solu-
tion space for searching plausible poses of the invisible body parts.
Second, inspired by the concept of shadow volume in computer
graphics [Cro77], we consider the camera as a point light source,
and construct a truncated shadow volume (TSV) to constrain the
possible space for the visible body parts. The main idea is that the
partially scanned body should fit and locate "behind" the seen point
cloud in the direction of camera ray. In summary, in stead of esti-
mating the human pose inside the whole space, we use above two
strategies to make a confined region, within which the the 3D hu-
man pose is searched. By doing this, our results can avoid most
penetrations between the body and the environment.

We design two methods based on above strategies. First, inspired
by neural implicit fields [PFS∗19, MON∗19, CMPM20, KYZ∗20,
XBPM22], we use a neural network to estimate the free zone. Given

a randomly sampled point in the whole space, the network can pre-
dict two field values: the body field value and scene field value.
We construct the free zone by collecting those points whose body
field value is below a certain threshold. Second, we compute the
shadow volume of the body point cloud by shooting rays from the
camera toward each point in the scanned body point cloud until
they hit the environment. We further truncate the shadow rays from
the scanned body point cloud to a certain maximum length limit
and build the truncated shadow volume. We represent the truncated
shadow volume discretely by uniformly sampled points along the
truncated shadow rays. After obtaining the free zone and the trun-
cated shadow volume, the next step is to match the body with them.
We sample the human body by a differentiable interpolation algo-
rithm, which produces points inside the body. Then we minimize
the distances from the points in the body to points in the confined
region. Our experiments show that such a volume matching method
outperforms the surface matching method in terms of accuracy and
robustness.

We also propose a more comprehensive metric to evaluate the
penetration. Non-Collision (NC) is a traditional metric that mea-
sures the penetration between the body and the environment. It
calculates the ratio of body vertices with positive Signed Distance
Field (SDF) values. However, NC only considers body surface ver-
tices and does not work well when part of the environment is inside
the body. To address this limitation, we introduce a Volume Non-
Collision (VNC) metric, which considers the points inside the body
when calculating the similar ratio.

In summary, our contributions are as follows:

1. We propose two novel schemes, which consider the invisible
and visible body part separately, to reduce the solution space for
optimization-based pose reconstruction systems;

2. We design novel methods to apply above strategies by matching
the body with the confined region as a volume;

3. We demonstrate that our system can reconstruct human poses
with higher accuracy and less penetration compared to baseline
methods.

2. Related Work

3D Human Reconstruction: 3D human reconstruction methods
can be divided into optimization-based and regression-based meth-
ods. Optimization-based methods aim to reconstruct the 3D hu-
man body that matches with the RGB or RGB-D image by it-
eratively optimizing the parameters of the human body model
[BKL∗16, PCG∗19, HCTB19, ZZB∗21, LSS∗22]. The key differ-
ence of these methods lie in the objective function, which typ-
ically consists of two parts: data terms and regularization terms
[TZLW22]. Data terms are designed to align the human body with
the input data, including RGB data and depth data. Regularization
terms are used to constrain the parameters and prevent unrealis-
tic poses and shapes. Bogo et al. [BKL∗16] propose to iteratively
fit the SMPL [LMR∗15] human body model to the 2D keypoints
detected by DeepCut [PIT∗16]. Pavlakos et al. [PCG∗19] follow a
similar scheme but provide more detailed output for hands and face.
However, these methods often suffer from visual artifacts, includ-
ing scene penetration, feet sliding, and body leaning [TZLW22]. To
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address these limitations, recent research has focused on leveraging
scene information to constrain the pose and produce more plausi-
ble results. Hassan et al. [HCTB19] propose a human-scene pene-
tration term and a contact term on top of SMPLify-X [PCG∗19].
By considering the scene constraint, they achieve more realistic
results with less penetration and necessary contact. Given partial
observations, Zhang et al. [ZZB∗21] introduce a motion smooth-
ness prior to address jittering issues and employ a contact-aware
motion infiller to infer plausible motions of occluded body parts.
Compared with PROX-D [HCTB19], they produce improved re-
sults with smoother motions and more plausible body-scene inter-
actions. In contrast to methods that treat the scene as a rigid ob-
ject, Li et al. [LSS∗22] jointly optimize the human body and the
non-rigid deformation of the scene, leading to superior accuracy in
reconstructing the 3D human body compared with other methods.
Regression-based methods directly regress the parameters of the
human body model in an end-to-end manner [KBJM18]. Kanazawa
et al. [KBJM18] design a deep neural network to predict the param-
eters of SMPL human body model without requiring the 3D paired
data. Kolotouros et al. [KPBD19] incorporate a post-process opti-
mization module based on HMR [KBJM18] to improve the preci-
sion of the result. Our method is based on the optimization back-
bone, and it considers two new constraints: the free zone term and
truncated shadow volume term to reduce the solution space.

Neural Implicit Field: The 3D model can be represented explicitly
or implicitly. Recently, many works have been focused on using the
implicit functions such as the DeepSDF [PFS∗19], Occupancy Net-
works [MON∗19], and UDF [CMPM20] to represent the 3D shape.
There are also works using this method to represent the relation-
ship between two objects [KYZ∗20, XBPM22]. Karunratanakul et
al. [KYZ∗20] represent the hand and the grasped object using im-
plicit field including the signed distances to the hand and the ob-
ject. This representation can be used for grasp generation. Xie et
al. [XBPM22] propose to extract the the body distance field, ob-
ject distance field, object pose field, and body part field from an
RGB image. These fields are used to optimize the parameters of
the human body and the object, facilitating accurate and realistic
reconstruction. Our method leverages a similar approach to model
the relationship between the human body and the scene.

Interaction Representation: Various methods have been proposed
to extract the interaction feature between two parts, such as a
hand and a object or a human body and the surrounding environ-
ment [ZWK14, SHX∗22]. Zhao et al. [ZWK14] propose to extract
the Interaction Bisector Surface (IBS) between two objects using
a geometry-based method, and use this feature for the classifica-
tion and retrieval of 3D objects. She et al. [SHX∗22] use IBS to
represent the gripper-object interaction between gripper and object
to solve the high-DOF reaching-and-grasping problem. The study
of interaction feature between the human body and the surround-
ing scene has been explored in the field of 3D human reconstruc-
tion and generation [ZHN∗20, ZZM∗20, HGT∗21]. Zhang et al.
[ZHN∗20] use the conditional Variational Auto-Encoder (cVAE)
[SYL15] to predict semantically plausible 3D human body based
on latent scene features. The generated human body are further re-
fined by incorporating scene constraints to ensure plausible inter-
actions. Zhang et al. [ZZM∗20] model the proximal relationship
between the human body and the scene using BPS [PLR19] fea-

ture. Hassan et al. [HGT∗21] propose a body-centric human-scene
interaction model that can be generalized to new scenes. These
approaches contribute to the understanding and representation of
human-scene interactions in the context of 3D human reconstruc-
tion and generation. Different from above methods that constrain
the human pose in latent space, we explicitly reduce the solution
space, within which the human pose is searched to align with the
image and avoid penetrations.

3. Method

Our goal is to reconstruct the human body mesh from a monocu-
lar RGB-D image and the scene mesh. Our main idea is to reduce
the solution space for body parts based on their visibility. In this
section, we present details of our method.

3.1. Preliminaries

SMPL-X human body model: The SMPL-X [PCG∗19] human
body model is a differentiable function used to model the hu-
man body. It takes shape parameters β ∈ R12, pose parameters
θ ∈ RK×3, facial expression parameters ψ, and global translation
t ∈ R3 as input. The output is a human body mesh Mb = (Vb,Fb)
composed of Nb vertices:

M(β,θ,ψ, t) : R|β|×|θ|×|ψ|×|t| → RNb×3 (1)

The pose parameters include poses for the body, hands, and jaw
with axis-angle representation. K represents the total number of
joints in the model, including 22 for the body, 30 for the hands (15
per hand), and 3 for the face. J(β) is the 3D coordinates of each
joint, which can be inferred from the vertices of the human body
mesh using linear blend skinning. The parameters of the SMPL-X
human body model can be optimized by adjusting the coordinates
of the vertices or joints.

SMPLify-D and PROX-D: SMPLify-D and PROX-D [HCTB19]
reconstruct the human body to align with the RGB-D data by op-
timizing the parameters of the SMPL-X human body model. The
objective function is represented as follows:

ESMPLify−D = EJ +λdEd +λrEr (2)

EJ is a re-projection loss that aims to minimize the robust weighted
distance between 2D joints estimated from the RGB image using
OpenPose [CHS∗21] and the 2D projections of the correspond-
ing posed 3D joints of SMPL-X human body model. The depth
term Ed minimizes the distances between the visible body ver-
tices V v

b ∈ Vb and scanned body point cloud Pb which is extracted
using the depth image and the body segmentation mask detected
by DeepLab V3 [CPSA17] from the RGB image. The regulariza-
tion term Er is composed of multiple terms including pose prior
term, shape prior term, self-penetration term, et al. Specifically,
the self-penetration term [PCG∗19] is used to avoid collisions be-
tween different body parts. λd and λr denote the weights for the
depth term and regularization term respectively. PROX-D extends
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Figure 2: The overview of our method. The input include a monocular RGB-D image and the scene mesh. In the first stage, we optimize
the SMPL-X parameters from T-pose using SMPLify-D to get an initial result. In the second stage, we employ two strategies to reduce the
solution space and use a volume matching algorithm to match the human body with the confined region. We design the free zone network
(FZNet) to estimate the region where the human body can be positioned, which is used to constrain the invisible body parts; we calculate the
truncated shadow volume behind the scanned body point cloud and use it to constrain the visible body parts.

the SMPLify-D framework by adding a penetration term Ep and a
contact term Ec to enforce scene constraint on the human body:

EPROX−D = ESMPLify−D +λpEp +λcEc (3)

The penetration term Ep penalizes all penetrating vertices using the
Signed Distance Field (SDF) of the scene mesh Ms. The contact
term Ec encourages contact and proximity between the body and
the scene by minimizing the distances from body vertices to scene
vertices around contact areas. λp and λc denote the weights for the
penetration term and contact term respectively.

3.2. Overview

Our optimization framework takes a monocular RGB-D image and
the scene mesh as input. The output is the human body mesh. As
depicted in Figure 2, our optimization framework consists of two
stages. In the first stage, we use SMPLify-D to obtain an initial
result. In the second stage, we employ two strategies to reduce the
solution space and use the volume matching algorithm to match the
human body with the confined region. The objective function of our
method is defined as follows:

E = ESMPLify−D +λfzEfz +λtsvEtsv +λcEc (4)

We extend SMPLify-D by introducing the free zone term Efz and
truncated shadow volume term Etsv into the objective function. To
prevent the issue of the body floating and encourage necessary con-
tact, we also incorporate the contact term from PROX-D. λfz and

Figure 3: Examples of the free zone and the corresponding recon-
structed body.

λtsv denote the weights for the free zone term and truncated shadow
volume respectively.

3.3. Free Zone

Current methods tries to solve the penetration problem by penal-
izing all penetrating body vertices using the SDF of the scene
[HCTB19]. The effectiveness of this intuitive approach heavily re-
lies on the accuracy and completeness of the scene. In reality, limi-
tations in the scanning devices and the complexity of the scene can
cause errors. Besides, this approach becomes even more ineffective
in scenarios where the body part penetrates into the scene deeply
or penetrates through thin objects. To solve these problems, we in-
troduce a novel approach that uses a neural network to learn the
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Figure 4: The structure of the free zone network (FZNet). The in-
put are the scene point cloud, the scanned body point cloud, and
a query point. The output are the body field value and scene field
value.

potential region where the human body can lie in without penetrat-
ing the environment. This region is referred to as the "free zone",
and it serves as a confined region within which we search for plau-
sible poses of the invisible body parts. In Figure 3, we show some
examples of free zone and corresponding reconstructed body.

We propose to use an encoder-decoder-style network, the free
zone network (FZNet), to estimate the free zone. The structure of
FZNet is shown in Figure 4. The scanned body point cloud Pb and
scene point cloud Ps are encoded separately using the OccNet en-
coder [MON∗19]. The encoded scene point cloud feature is fed
back to the body point cloud encoder to enforce condition. Then
the scene feature, the body feature and the query point p are con-
catenated together and fed to a MLP decoder to predict the the field
value for p in body field Fb and scene field Fs:

FZNet(Pb,Ps, p) = (Fb(p),Fs(p)) (5)

To extract Pb, we first detect the body segmentation mask from the
RGB image using DeepLab V3 [CPSA17]. Then, we obtain the
whole point cloud, which includes both the human and the scene,
from the depth image. Finally, we extract the body point cloud
from the whole point cloud using the segmentation mask and ob-
tain 1024 points using Farthest Point Sampling (FPS). Ps is sam-
pled on the scene mesh with 4096 points. We train the free zone
network by minimizing the L1 distance between clamped predic-
tion and ground truth distance:

LFZNet = ∑
p∈Pq

(|min(Fb(p),δ)−min(GTb(p),δ)|+

|min(Fs(p),δ)−min(GTs(p),δ)|)
(6)

where Pq are the sampled query points. δ is the clamping distance
and we set it as 0.1.

Figure 5: The illustration of calculating the shadow volume points
from the scanned body point cloud. Pink points denote the scanned
body point cloud and green points denote the shadow volume
points. The maximum length limit for truncation is set to infinity
for better visualization.

After getting the initial pose, we use the trained free zone net-
work to get the free zone points. Assuming that the root joint of
current human body is Jroot. First, we sample scene point cloud
within an unit sphere from scene mesh Ms centered at Jroot. Next,
we uniformly sample query points Pgrid within a voxel grid with
side length of 2 and resolution of 64 centered at Jroot. For each
sampled query point, we query its body field value. We then re-
tain points with field value below a certain threshold, and consider
these points as the free zone points used in the second stage of the
optimization:

Pfz = {p|Fb(p)< µ, p ∈ Pgrid} (7)

where µ is the threshold and we set it as 1e-3.

3.4. Truncated Shadow Volume

Existing methods may generate implausible results that appear in
front of the scanned body point cloud. However, the visible body
parts should be located behind the scanned body point cloud in the
direction of the camera ray. We propose to calculate the truncated
shadow volume behind the scanned body point cloud and use it to
constrain the visible body parts.

We represent the shadow volume by shadow rays that are cast
from the camera toward the scanned body. In Figure 5, we show
the shadow rays, from which we can compute the truncated shadow
rays. Let pc represent the camera coordinate. The ray direction r is
calculated as:

r =
ps − pc

∥ ps − pc ∥
(8)

where ps ∈ Pb denotes the body point, which is also the start point
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of the truncated shadow rays. We set a maximum length limit dl
to truncate the shadow rays, ensuring that the truncated shadow
ray is not far from the scanned body. The distance from the first
intersection point of the ray with the scene mesh to the start point
is di. Then the end point pe is computed by:

pe = ps +min(dl ,di) · r (9)

By adding offsets to the start point ps at a fixed interval, we can
obtain a set of intermediate points that gradually move toward the
end point pe. These intermediate points form the truncated shadow
volume points Ptsv. We empirically set the maximum length limit
dl as 0.1 and the interval as 0.01.

3.5. Differentiable Volume Matching

We propose to represent the human body as a volume composed of
points located inside the body. To implement this, we need to obtain
the internal points from body vertices while ensuring the process is
differentiable.

As illustrated in Figure 6, we use an interpolation-based method
to get the internal points from vertices. We use the SMPL-X human
body model at T-pose as a template mesh to get the interpolation
vertex pairs. We first divide the body vertices into front vertices
and back vertices by calculating the visibility using a virtual cam-
era in front of the body. Then we sample front vertices using FPS
to make the vertices uniformly distributed. For each front vertex
v f , we cast a ray towards the back vertices. We can get the nearest
back vertex vb from the intersection point of the ray with the human
body mesh. v f and vb form an interpolation vertex pair. By repeat-
ing above steps for all selected front vertices, we can obtain a set
of interpolation vertex pairs. Then we perform linear interpolation
and get 6 points for each pair, resulting in the internal points Pint.
Assuming the body is locally convex, Pint will not extend beyond
the body boundary and can remain the body pose and shape.

Free zone can be seen as a superset of the body and truncated
shadow volume can be seen as a subset of the body. We match the
human body with free zone points and truncated shadow volume
points separately. For the free zone points, we employ the following
loss:

Efz = ∑
pi∈Pint

ρfz( min
p j∈Pfz

∥ pi − p j ∥) (10)

where ρfz denotes a robust Geman-McClure error function
[GEM87] for down weighting the points in Pfz that are far from
Pint, so that the human body will not become too fat. For the trun-
cated shadow volume points, we employ the following loss:

Etsv = ∑
pi∈Ptsv

ρtsv( min
p j∈Pint

∥ pi − p j ∥) (11)

where ρtsv denotes a robust Geman-McClure error function for
down weighting points in Pint that are far from Ptsv, so that the
human body will not become too thin.

Figure 6: The process of getting the internal points from body ver-
tices. Purple denotes the front and red denotes the back.

4. Experiments

4.1. Datasets

We conduct experiments on the PROX dataset [HCTB19]. The
PROX dataset is divided into two parts: a qualitative set and a
quantitative set. The qualitative set consists of monocular videos of
20 human subjects interacting with 12 indoor scenes. The dataset
contains 100K RGB-D frames recorded at 30 fps, along with the
scene mesh. The pseudo-ground-truth SMPL-X [PCG∗19] param-
eters are fitted using PROX-D [HCTB19]. The quantitative set con-
sists of 180 static RGB-D frames, with one human subject wear-
ing markers and interacting with a living room containing daily
furniture. The ground-truth SMPL-X parameters are fitted using
MoSh++ [MGT∗19]. We use the scene data from POSA [HGT∗21],
which aligns the scene data of the PROX dataset for easy process-
ing.

4.2. Experiment Details

Dataset Split: We randomly split the qualitative set into training
and testing sets with a ratio of 4:1. The training set is used to train
the free zone network. We exclude the data that has high penetra-
tions and extract frames every second. The testing set is used to
evaluate our method. We also conduct experiments on the quantita-
tive set.

Free Zone Network Training: We sample 20K query points ev-
ery training sample. Among these points, 95% are located near the
surface and 5% are uniformly distributed within the bounding box.
To generate points near the surface, we first sample surface points
on both the body and the scene. Then we introduce perturbations to
each surface point along three axes. These perturbations are gener-
ated by applying zero-mean Gaussian noise with variances of 0.02
and 0.002, resulting in two query points every surface point. For
each generated point, we calculate its nearest distance to the body
points and scene points. This allows us to determine the point’s
proximity to the body and scene, providing valuable information
for training the free zone network. To enhance the generalization of
the free zone network, we apply two data augmentation techniques,
including random rotation along the z-axis and online query points
generation. By employing these data augmentation techniques, we
aim to create a diverse training set that enables the free zone net-
work to generalize on different visible ratios and scene types. We
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Figure 7: Examples to illustrate that Non-Collision can not eval-
uate the penetration correctly. The penetration area is highlighted
using red dashed box.

train the free zone network using the Adam optimizer [KB14] with
a learning rate of 1e-4. We employ a step learning rate schedule
with a decay rate of 0.5 after 100 epochs. The models are trained
for 200 epochs on a single 3090Ti GPU.

Optimization: We use the scene as the world coordinate and both
the free zone and truncated shadow volume are defined in this coor-
dinate. Before matching with the confined region, we transform the
human body from the camera coordinate to the world coordinate.
The weights for each term in the objective function are set empir-
ically. Specifically, we set the weight of the free free zone term to
5e2 and the weight of the truncated shadow volume term to 2e2.
We use the same optimizer with SMPLify-X [PCG∗19].

4.3. Results

Figure 8 presents a gallery of our results. We can see that our
method can produce accurate and plausible poses on different scene
types and visible ratios. When the human body is sitting on a chair
and only the upper body is visible (row 1, 2), the free zone can
guide the human body to be in a sitting pose, no matter the human
is sitting back or facing to the camera. When the human has a lot
of contact with the scene (row 3), such as when the human is lying
on a sofa, our method can produce plausible results with little pen-
etration and necessary contact. In cases where the scenes are more
complex (row 4), such as when the human is standing between a
sofa and a pot of plants, our free zone network can still identify
the correct region. Even when the human is not captured by the
depth camera (row 5), the free zone network can still estimate the
free zone correctly using only the scene information. Additionally,
when the human is in an irregular pose (row 6), our method can still
produce results that match with the image.

4.4. Comparison and Evaluation

We compare our method with SMPLify-D and PROX-D [HCTB19]
using a series of evaluation metrics on both PROX quantitative and
qualitative sets.

Evaluation Metrics: We evaluate the performance using a set of

metrics, which can be categorized into accuracy metrics and plau-
sibility metrics. We assess the 3D reconstruction accuracy using
Joint Position Error (JPE) and Vertex-to-Vertex Error (V2V). JPE
measures the mean per joint position error and V2V represents the
mean error between corresponding vertices of the reconstructed
and the ground truth mesh. We also apply Procrustes alignment
to the meshes and calculate the aligned JPE (p.JPE) and aligned
V2V (p.V2V). To evaluate the alignment accuracy with the depth
data, we use a Partial Matching (PM) metric, which measures the
mean distance between each body point and its closest vertex on
the reconstructed mesh. The PM score is lower when the matching
is more accurate.

To evaluate the plausibility, we employ the Non-Collision (NC)
metric introduced in PSI [ZHN∗20]. This metric is calculated as
the ratio of body vertices with a positive SDF value. The NC score
is lower when the penetration is more severe. However, we find this
metric does not work well in scenarios where the environment is in-
side the body. For example, in Figure 7, the NC scores of these two
examples are both 0.93. However, the penetrations are completely
different. In the left example, only part of the hands penetrates the
table. In the right example, the chair penetrates into the body com-
pletely. This highlights a potential discrepancy in evaluating pene-
tration using the NC. To address this problem, we propose a modi-
fied version called Volume Non-Collision (VNC), which calculates
the ratio of the internal points with a positive SDF value. The VNC
score is lower when the penetration is more severe. By considering
the points inside the body, this metric provides a more comprehen-
sive evaluation of penetration. In Figure 7, the VNC scores of these
two examples are 0.99 and 0.79 respectively, suggesting a more ac-
curate evaluation of penetration compared with the NC.

Quantitative Results: The comparison results on the quantitative
set are listed in Table 1. Our method achieves the lowest error in all
metrics, although there is only one scene in the quantitative set and
the interactions are simple.

Table 1: Results on PROX quantitative set.

JPE ↓ V2V ↓ p.JPE ↓ p.V2V ↓

SMPLify-D 73.80 76.81 45.61 44.57
PROX-D 69.46 72.70 42.43 42.20
Ours 66.74 70.04 41.86 41.46

Qualitative Results: The comparison results on the qualitative set
are listed in Table 2. Our method achieves the best performance in
all metrics.

Table 2: Results on PROX qualitative set.

Ep Ec Efz Etsv NC ↑ VNC ↑ PM/1e-3 ↓

SMPLify-D 95.6% 95.2% 4.42
PROX-D ✓ ✓ 96.8% 97.3% 4.53
Ours ✓ ✓ ✓ 97.1% 97.9% 4.10

In Figure 9, we visually compare our method with other methods
on the PROX qualitative set. In the first 4 rows, where the human is
partially occluded by the scene or by themselves, both SMPLify-
D and PROX-D produce results where some parts penetrate the

© 2023 Eurographics - The European Association
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RGB Camera View Side View Free Zone

Figure 8: Gallery of our results. We show examples from different scenes and poses. Pink points denote the scanned body point cloud.
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Table 3: Evaluation based on different scene types.

Sitting Booth Chair Sofa Bed

NC ↑ VNC ↑ PM/1e-3 ↓ NC ↑ VNC ↑ PM/1e-3 ↓ NC ↑ VNC ↑ PM/1e-3 ↓ NC ↑ VNC ↑ PM/1e-3 ↓

SMPLify-D 93.8% 93.1% 8.97 96.9% 96.5% 3.17 96.7% 96.2% 3.75 92.6% 92.3% 5.14
PROX-D 95.8% 96.4% 9.20 97.4% 97.8% 3.38 97.5% 97.9% 4.14 95.5% 96.4% 5.41
Ours 96.1% 97.3% 8.44 97.6% 98.2% 3.04 97.8% 98.4% 3.56 96.5% 97.3% 4.72

Table 4: Evaluation based on different visible ratios.

0%−25% 25%−50% 50%−75% 75%−100%

NC ↑ VNC ↑ PM/1e-3 ↓ NC ↑ VNC ↑ PM/1e-3 ↓ NC ↑ VNC ↑ PM/1e-3 ↓ NC ↑ VNC ↑ PM/1e-3 ↓

SMPLify-D 94.9% 91.1% 12.40 94.3% 93.8% 5.71 96.6% 96.7% 2.85 99.8% 99.8% 1.16
PROX-D 97.1% 96.9% 14.62 95.9% 96.4% 5.97 97.4% 98.1% 2.69 99.3% 99.7% 1.12
Ours 97.6% 98.0% 12.00 96.4% 97.3% 5.35 97.7% 98.3% 2.56 99.2% 99.7% 1.13

scene. However, our method can infer the correct pose of the in-
visible body parts and avoid penetrations. When some body parts
penetrate deeply into objects, such as a leg penetrating into a sofa
or a hand penetrating into a wall (row 1, 2), it is hard for current
methods to pull the body out of the object completely. However, our
method uses the free zone to guide the body away from the object,
effectively reducing the penetration. Our method can also handle
cases where some body parts penetrate through thin objects like a
table (row 3, 4), preventing such penetrations from occurring. In
the last 2 rows, where different body parts overlap with each other,
our results exhibit better alignment with the scanned body point
cloud compared with other methods thanks to the constraint of the
truncated shadow volume.

We further analyse of the qualitative results by scene types and
visible ratios. Results based on different scene types are shown in
Table 3. We can see that our method has a more significant im-
provement on scenes with sitting booths or beds. In scenes with sit-
ting booths, the legs may be occluded by the table or chair. Current
methods often reconstructs the wrong pose with the leg penetrat-
ing the chair and struggles to pull the leg out. Our method is more
capable of handling such occlusions with the aid of the free zone
term. For scenes with beds, the geometry of the bed can serve as
a strong clue to generate accurate free zone and truncated shadow
volume, leading to more accurate and plausible reconstruction. Re-
sults based on different visible ratios are shown in Table 4. The
visible ratio is calculated by comparing the scanned body point
cloud with the reconstructed results of PROX-D. We can see that
our method has a more significant improvement when the visible
ratio is lower, which demonstrates the effectiveness of our method
in situations with serious occlusions.

4.5. Ablation Study

We conduct the ablation study on the PROX qualitative set and the
results are shown in Table 5. We consider the following ablation
versions:

• Ours (w/o FZ): we test how our method performs when the free
zone term is removed.

• Ours (w/o TSV): we test how our method performs when the
truncated shadow volume term is removed.

• Ours (w/o VM): we replace the volume matching with surface
matching.

We can see that the final version which includes all the proposed
components achieves the best overall performance.

Table 5: Ablation study on PROX qualitative set.

Efz Etsv VM NC ↑ VNC ↑ PM/1e-3 ↓

Ours (w/o FZ) ✓ ✓ 95.1% 95.4% 4.18
Ours (w/o TSV) ✓ ✓ 96.6% 96.4% 4.47
Ours (w/o VM) ✓ ✓ 96.2% 96.3% 4.25
Ours ✓ ✓ ✓ 97.1% 97.9% 4.10

Without the free zone term, the reconstructed results have more
penetrations with the scene, and both the NC score and VNC
score decrease. Figure 10 presents two representative examples to
demonstrate this effect. In the first example, when our method is ap-
plied without the free zone term, the reconstructed result shows that
the left leg penetrates into the sitting booth. In the second example,
we can observe a similar scenario where the right hand penetrates
into the wall. By using the free zone term to constrain the invisible
body parts, we can effectively reduce the penetration issue, ensur-
ing a more plausible reconstruction.

Without the truncated shadow volume term, the reconstructed
results do not match with the scanned body point cloud well and
the PM score decreases. Figure 11 presents two representative ex-
amples to demonstrate this effect. In the first example, when our
method is applied without the truncated shadow volume term, the
reconstructed result displays a mismatch between the left hand and
the scanned body point cloud, leading to an unnatural pose. In the
second example, although the pose is natural, there is a clear mis-
match between the body and the RGB image because the right hand
is positioned incorrectly. These examples highlight the important
role played by the truncated shadow volume term. By incorporat-
ing the truncated shadow volume term, there is a better alignment
with the scanned body point cloud, resulting in a visually coherent
reconstruction.
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for Computer Graphics and John Wiley & Sons Ltd.



10 of 13 Bowen Dang, Xi Zhao, Bowen Zhang, He Wang / Reconstructing 3D Human Pose from RGB-D Data with Occlusions

RGB SMPLify-D PROX-D Ours

Figure 9: Comparison of the reconstructed results by our method with those of SMPLify-D and PROX-D. Pink points denote the scanned
body point cloud. The difference between results is highlighted using red dashed box.
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RGB Ours (w/o FZ) Free Zone Ours

Figure 10: Ablation study: compare our method with the version
that does not use free zone term. Pink points denote the scanned
body point cloud. The difference between results is highlighted us-
ing red dashed box.

RGB Ours (w/o TSV) Ours

Figure 11: Ablation study: compare our method with the version
that does not use truncated shadow volume term. Pink points de-
note the scanned body point cloud. The difference between results
is highlighted using red dashed box.

When the volume matching is replaced with surface matching,
the effectiveness of the free zone term and truncated shadow vol-
ume term both decrease, and all metrics have a slight decline. Fig-
ure 12 presents two representative examples to demonstrate this
effect. In the first example, when volume matching is replaced with
surface matching, the reconstructed result does not match with the
scanned body point cloud correctly. In the second example, the hu-
man body does not match with the free zone correctly and the left
leg penetrates into the sofa. After applying the volume matching
algorithm, the reconstructed result is more accurate and plausible.
These examples demonstrate the importance of volume matching
algorithm. By matching with the confined region using internal
points, the free zone and truncated shadow volume can have a more
significant effect.

RGB Ours (w/o VM) Ours

Figure 12: Ablation study: compare our method with the version
that uses surface matching instead of volume matching. Pink points
denote the scanned body point cloud. The difference between re-
sults is highlighted using red dashed box.

5. Conclusion and Discussions

We present a novel method for 3D human body reconstruction from
a monocular RGB-D image and the scene mesh. We introduce two
schemes to explicitly reduce the solution space based on scene in-
formation and prior knowledge. We show that the free zone term
can reduce the penetrations and the truncated shadow volume term
can increase the matching accuracy. Additionally, a novel volume
matching algorithm is proposed to match the human body with
the confined region, which yields better performance than surface
matching. We also introduce a more comprehensive metric, Volume
Non-Collision (VNC), to evaluate the penetration by considering
the entire body as a volume. Extensive experiments demonstrate
that the proposed method produces more accurate and plausible re-
sults compared to other methods, especially in situations with close
interactions and serious occlusions.

Limitations and future work: Our method is deterministic and
can only reconstruct one result every time. However, there exists
multiple possible results due to occlusion and diversity of pose.
In the future, we will explore how to reconstruct multiple possible
results which are diverse and plausible. Furthermore, our method
assumes a rigid scene, neglecting the deformations that may oc-
cur during human-scene interactions in real-world scenarios. To
enhance the realism of the reconstructed results, we consider in-
corporating scene deformations into our approach in future work.
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