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Figure 1: The creation and application of Neural Impostor. Neural Impostor takes multi-view captured images as input and build a coarse
geometry proxy with local radiance fields encoded within the barycentric coordinate. With the help of the coarse geometry proxy, Neural
Impostor empowers novice users to conduct vivid physical simulations and perform versatile editing operations on radiance fields, including
Boolean operation, local deformation and composition.

Abstract

Neural Radiance Fields (NeRF) have significantly advanced the generation of highly realistic and expressive 3D scenes. How-
ever, the task of editing NeRF, particularly in terms of geometry modification, poses a significant challenge. This issue has
obstructed NeRF’s wider adoption across various applications. To tackle the problem of efficiently editing neural implicit fields,
we introduce Neural Impostor, a hybrid representation incorporating an explicit tetrahedral mesh alongside a multigrid im-
plicit field designated for each tetrahedron within the explicit mesh. Our framework bridges the explicit shape manipulation and
the geometric editing of implicit fields by utilizing multigrid barycentric coordinate encoding, thus offering a pragmatic solution
to deform, composite, and generate neural implicit fields while maintaining a complex volumetric appearance. Furthermore,
we propose a comprehensive pipeline for editing neural implicit fields based on a set of explicit geometric editing operations.
We show the robustness and adaptability of our system through diverse examples and experiments, including the editing of both
synthetic objects and real captured data. Finally, we demonstrate the authoring process of a hybrid synthetic-captured object
utilizing a variety of editing operations, underlining the transformative potential of Neural Impostor in the field of 3D content
creation and manipulation.
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• Computing methodologies → Rendering; Appearance and texture representations; Image-based rendering;
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1. Introduction

The Neural Radiance Field (NeRF) serves as a groundbreaking
neural implicit representation that revolutionizes novel view syn-
thesis processes. It allows users to rebuild a scene directly from
multi-view photographs using a standard camera through an end-
to-end training process. This significant advancement has stream-
lined complex 3D reconstruction processes, signifying a consid-
erable paradigm shift in the field. However, the transformation of
3D scene data into a higher-dimensional feature space implicitly
stored within neural networks presents notable challenges, includ-
ing incompatibility with most existing modeling and editing soft-
ware. As a result, editing neural radiance fields, especially in terms
of geometry modification, remains a considerable challenge.

Recent research in editing neural radiance fields have been split
primarily into two categories: implicit and explicit mapping. Im-
plicit methods, though widely adopted, are often limited due to
their dependence on high-dimensional feature space interpolation,
restricted to accommodate only simple edits. On the other hand,
explicit methods that employ dedicated proxies for direct manip-
ulation of the radiance field provide enhanced editing capabili-
ties, albeit with inherent challenges such as modeling limitations
and increased computational complexity. For example, while trian-
gle meshes based methods [CFHT22, CJH∗22, WXB∗23] favored
for their compatibility with existing 3D modeling tools and high-
speed rendering capabilities, they struggle with modeling volu-
metric appearances like furs and hairs. The employment of point
clouds [XXP∗22, CLW23] enables volumetric modeling but lacks
geometry constraints, complicating contiguous authoring. The uti-
lization of volumetric cages [GKE∗22, YSL∗22, XH22, PYL∗22,
JKK∗23], on the other hand, offers topology constraints for stable
authoring and benefits in physical simulation. Despite these advan-
tages, their rendering speed is often hampered by complex point-
in-tetrahedron queries.

In response to these challenges, we introduce Neural Impostor, a
hybrid model that addresses the primary considerations necessary
for creating a fully editable neural radiance field that compatible
with common geometric editing pipeline. It is also capable of high
fidelity reconstruction and optimized for real-time rendering.

The Neural Impostor segments the modeling space of NeRF with
explicit tetrahedral meshes, transitioning from Cartesian space en-
coding to local barycentric encoding within the tetrahedral proxy.
Each tetrahedron is assigned a distinct Multi-grid Neural Radi-
ance Field for detailed local depictions, enhancing scalability in the
modeling and rendering process. Our barycentric encoding scheme
maintains visual uniformity during physical simulations driven by
vertex transformations due to its harmonic nature around n+1 con-
trol points. Furthermore, Neural Impostor’s compatibility with ex-
isting 3D animation software, such as Houdini, offers distinct ad-
vantages in animations and games. Drawing inspiration from space
partitioning concepts, our model facilitates high-quality, real-time
rendering and is crucial for modeling, rendering, and simulating
complex volumetric objects like plush toys.

In essence, the Neural Impostor framework brings together the
advantages of explicit mesh editing with the volumetric appearance
of implicit fields, thereby offering a powerful and versatile tool for

manipulating Neural Radiance Fields. We highlight our key contri-
butions as follows:

• The design and implementation of Neural Impostor, a novel hy-
brid representation that bolsters the editing capabilities of Neu-
ral Radiance Fields by adeptly leveraging the benefits of both
explicit meshes and implicit fields.

• The deployment of a Robust Hash Encoding method combined
with Sophisticated Spatial Sampling techniques. By utilizing
barycentric coordinates encoding of impostor geometric ele-
ments, we ensure high-quality reconstruction and rendering dur-
ing animations.

• The introduction of a diverse suite of Geometric Operations un-
derpinned by the Neural Impostor. This approach enables the
seamless transfer of local geometry editing operations, such as
shape morphing, remeshing and boolean operations, from con-
temporary 3D modeling software into Neural Radiance Fields
through local retraining.

• The creation of an efficient, hardware-accelerated rendering al-
gorithm, which streamlines the traditionally laborious barycen-
tric coordinate mapping process. This algorithm fulfills real-time
requirements, achieving an impressive performance of approxi-
mately 30 FPS for 1080×1080 rendering.

In the forthcoming sections, we will first delve into the model-
ing of Neural Impostor (Section 3)). Alongside this, we detail a set
of editing operations for Neural Impostor that accommodate edits
at the animation, geometric, and appearance levels (Section 4). We
then demonstrate the modeling and editing capabilities of Neural
Impostor through systematic testing on the nerf-synthetic dataset,
as well as on a few custom-built plush toy models with complex
volumetric appearances(Section 5). Additionally, we will present
operations such as shape morphing, soft body deformation, frac-
ture, and composition made possible by Neural Impostor, thereby
effectively underlining the utility of Neural Impostor in real-world
content creation workflows. This will be exemplified through a
practical demonstration of constructing a snowman toy by editing
multiple pre-trained Neural Impostors (Section 6).

2. Related Work

Neural Impostor builds upon the foundation of Neural Radiance
Fields (NeRF) [MST∗20], which presents a method for represent-
ing a 3D scene using a scalar density field σ and a view-dependent
color field c. These fields enable NeRF to generate high-quality ren-
derings from novel viewpoints using volume rendering techniques
like [Max95]. The core idea of NeRF is to employ an implicit rep-
resentation due to the inherent complexity of capturing both 3D
geometry and appearance. This representation involves encoding
the spatial information, which typically consists of positional pa-
rameter x and directional parameter d, into a learnable function
fθ : (x,d) 7→ (c,σ) with adjustable parameters θ. With a space sam-
pler S, the novel view appearance can be rendered by integrating
(c,σ) along the sampling ray r:

C(r) =
N

∑
i=1

Ti(1− exp(σi,δi))ci, where Ti = exp
(
−

i

∑
j=1

σ jδ j
)

(1)
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where δi denotes the sampling intervals along the ray r and the
transmittance Ti is the accumulated density along the ray. With
multi-view images as supervision, the learnable function fθ can be
trained by minimizing the reconstruction loss between the rendered
image and the ground truth image.

Recent surveys on NeRF [TTM∗22] and [TTM∗22] presented a
comprehensive review of every process in computing NeRF. This
paper primarily concentrates on the geometric editing of NeRF
among all the stages involved in its construction and manipulation.
Rather than providing an exhaustive overview of all existing NeRF
research, we specifically focus on reviewing the approach that di-
rectly pertains to our topic.

2.1. Spatial Encoding in Neural Radiance fields

When it comes to geometric editing of 3D content, the core of
the problem is to encode and manipulate the spatial information
of the scene. The spatial encoding process of NeRF is to map
the low-dimensional smooth inputs such as position and direc-
tion to a high-dimensional feature space that can be trained to en-
code high-frequency details. Initially, researchers use a fully con-
nected MLP with positional encoding [MST∗20] to encode the
spatial information of the entire scene, which synthesizes realis-
tic novel views with fine details, but also suffers from high com-
putational cost when querying the large neural network for every
sample. To enhance the training efficiency, hybrid spatial repre-
sentations utilizes the sparsity of spatial data, factorize the scene
into explicitly stored features and implicit neural functions. De-
pending on the underlying structure, we categorize spatial encod-
ing methods into grid-based and mesh-based structures. Grid-based
encoding schemes, here we refer to pre-constructed regular spatial
structures, such as sparse voxel grids [LGL∗20, HSM∗21], octree
grids [YLT∗21, YFKT∗21], triplanar structures [CLC∗21], code-
books [TET∗22], tensorial decomposition [CXG∗22] and multi-
grid hash encoding [MESK22]. The grid-based approaches pro-
vide efficient querying of features stored in the grid, which greatly
improves the training and rendering speed. Mesh-based encoding,
on the other hand, uses a mesh-like structure with more flexible
topologies, such as point cloud [XXP∗22](point clouds can be seen
as unconnected mesh vertices), triangle soup [CFHT22], manifold
mesh [CJH∗22,WXB∗23], duplex mesh [WRB∗23] and tetrahedral
mesh [GCX∗20]. Mesh-based encoding provides additional flexi-
bility in manipulating implicit fields; however, its irregular struc-
ture necessitates a robust adaptive mesh generator. Furthermore,
when storing all the features on explicit meshes, mesh-based en-
coding often lacks volumetric appearances.

In this paper, we aim to achieve both the efficiency of grid-based
encoding and the flexibility of mesh-based encoding, therefore en-
ables the geometric editing of NeRF while maintaining the high-
quality volumetric rendering. In the proposed method, we utilize a
tetrahedral based proxy, and bounds the explicit mesh and implicit
field with a generalized barycentric encoding method.

2.2. Proxy-based manipulation of 3D models

Using explicit proxies to manipulate 3D models is a common prac-
tice in computer graphics. Proxies usually retain a lower dimen-

sional representation of the original model, which serve as a model
reduction process and can be used to accelerate the rendering pro-
cess or provide a more intuitive interface for users to manipulate
the model. For example, in geometric modeling and shape manip-
ulation, proxies reduces the complexity of original models, there-
fore enables structure preserving shape manipulation [ZFCO∗11],
shape collection synthesis [XZCOC12] and image-based geomet-
ric modeling [XZZ∗11]. Bounding volumes, which are one of
the simplest form of proxies, are widely used in collision detec-
tion [GLM96,KHM∗98], ray tracing [MOB∗21] and shape approx-
imation [CB17]. Proxy-based methods are also used in manipulat-
ing NeRF, one of the commonly used proxies is the tetrahedral
mesh, which is used to approximate the geometry of the scene.
By mapping the samples in the deformed tetrahedral mesh to the
canonical space [GKE∗22, XH22, YSL∗22, PYL∗22], one can ma-
nipulate the neural implicit field with geometric operations on the
explicit tetrahedral mesh. In this paper, we follow the general idea
of using tetrahedral mesh as proxy, but instead of bending sampling
rays to the canonical space, we propose a generalized barycentric
encoding method efficiently store the implicit field in the tetrahe-
dral mesh, which allows more flexible operations, please see Sec. 4.
Worth to mention that there is a special type of proxy called im-
postor [Jes05], which originally is a 2D image that approximates
the appearance of a 3D model from a specific viewpoint by in-
terpolating pre-rendered multi-view appearances. The concept of
impostor is later extended to 3D models, such as [JW02, YD08],
and is widely used in real-time rendering of large-scale scenes. In
this paper, we introduce the term, "Neural Impostor," which is de-
rived from the concept of Impostor. Our proposed method entails
the creation of an editable 3D proxy that approximates the volu-
metric appearance of a 3D model from arbitrary viewpoints, just
like traditional impostor did in real-time rendering.

2.3. Editing Neural Radiance Fields

Recently, Editing Neural Radiance Fields has seen significant
progress in terms of reconstructing and modifying various aspects
of appearance, such as relighting, controlling shapes, and alter-
ing colors or palettes of objects [LZZ∗21, KLB∗22]. Some tech-
niques [YSL∗22, GKE∗22, JKK∗23] have enabled modification of
scene parts and their respective locations, thus providing more con-
trol over the rendered scene. However, editing the dynamics of
moving objects, especially with topological changes, has been a
major challenge. These changes can lead to motion discontinuities,
causing noticeable artifacts if not properly modeled [YSL∗22].
[KYK∗21] has tried to mitigate these challenges using manual su-
pervision, but its capabilities are limited to one-dimensional edit-
ing per scene part, necessitating user annotations for supervision.
In contrast, EditableNeRF [ZcLX22] uses an image sequence from
a single camera to train a network, modeling topologically varying
dynamics via surface key points. Users can edit the scene by manip-
ulating these key points, enabling more intuitive multi-dimensional
editing (up to 3D). NeuralEditor [CLW23] is another novel ap-
proach that leverages the explicit point cloud representation un-
derlying NeRFs for shape editing tasks. It employs a unique ren-
dering scheme based on deterministic integration within K-D tree-
guided density-adaptive voxels, which results in high-quality ren-
dering and precise point clouds. Despite these advancements, edit-
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ing capabilities within a computed NeRF scene remain relatively
limited, especially when compared to traditional CGI workflows.
Recent progress in pre-trained large-scale models has enabled
rapid progress in a brand new instruction or prompt based cre-
ation and interaction with digital contents. For instance, Instruct-
NeRF2NeRF [HTE∗23] leverages an image-conditioned diffusion
model to iteratively edit input images while simultaneously opti-
mizing the underlying radiance field of the 3D scene, resulting in
a realistic 3D scene that adheres to the provided editing instruc-
tions. [MPE∗23] offering genuine, personalized, temporal consis-
tent 3D avatar edit by combining text-to-image diffusion model
with neural radiance field (NeRF) through an innovative sampling
strategy to incorporates multiple keyframes representing different
camera viewpoints and timestamps into a single diffusion model.
The edits are made in a canonical space and propagated to remain-
ing time steps through a pretrained deformation network.

In this study, we revisit the issue of geometry editing using a
new localized retraining technique that allows for the flawless inte-
gration of geometry manipulation tasks from modern 3D modeling
software into Neural Radiance Fields. This improves NeRF’s suit-
ability as a representation for User Generated Content (UGC) and
AI Generated Content (AIGC).

3. Neural Impostor: A Hybrid Explicit-Implicit Neural Field

Neural Impostor uses barycentric coordinates defined by the tetra-
hedron mesh as the encoding space. Compared to the Cartesian
coordinate-based encoding in the neural radiance field, barycen-
tric coordinates have inherent advantages. On one hand, barycen-
tric coordinates are symmetrical to the n + 1 vertices of the n-
simplex that defines them. During the vertex-based deformation
process, the points within this simplex have a unique barycentric
representation. This allows the Neural Impostor to maintain sta-
bility during the model’s physical deformation process and avoids
effects like flickering. On the other hand, barycentric coordinates
are intrinsically normalized expressions. During the encoding pro-
cess, no additional normalization is needed, providing good sup-
port for scenes of any scale. Simultaneously, barycentric coordi-
nates establish a continuous space subject to linear interpolation.
Consequently, Neural Impostor transcends resolution limitations,
facilitating the high-quality rendering of intricate structures, such
as hair. In the following sections, we will reconstruct the five com-
ponents of the neural radiance field to elaborate on the modeling
method of the Neural Impostor.

3.1. Tetrahedral Neural Representation

As shown in Figure 1, to construct an editable implicit radiance
field, we reintroduce an explicit representation of its geometric
form while modeling the radiance field representing the appear-
ance. That is, a coarse tetrahedron mesh that acts as the boundary
for shape editing, also known as the "cage" [JSW05,JMD∗07]. Un-
like those traditional cage-based shape editing methods, the tetra-
hedral cage in our NeRF model does not have a fine mesh embed-
ded in—after all, the bare bones of a NeRF model lie in its implicit
representation of the radiance field. Therefore, within each tetrahe-
dron of the cage, we use MLPs to represent its view-dependent ra-
diance field distribution, maintain a separate radiance field in each

tetrahedron of the cage, and convert the position encoding under
the original Cartesian coordinate system into the barycentric co-
ordinate space defined by the cage. At the same time, because the
definition of distance and angle under barycentric coordinates is not
clear, we retain the original direction encoding method of NeRF un-
der the Cartesian coordinate system, to model the view-dependent
effect by introducing the direction of light in the subsequent decod-
ing process (as seen in Figure 2).

Specifically, we use M = (V,T ) to represent the tetrahedron
mesh of the Neural Impostor, where V = (v1,v2, ...,vN) represents
the set of N vertices of the tetrahedron mesh, and T = (t1, t2, ..., tK)
represents the K tetrahedron that make up the tetrahedron mesh.
Each tetrahedron tk ∈ T is represented by its four vertices Vt =
vk

0,v
k
1,v

k
2,v

k
3. For each position coordinate p in Cartesian space, we

map it to the corresponding tetrahedron t and the corresponding
barycentric coordinates Λt = λ0,λ1,λ2,λ3 using the barycentric
coordinate query function Q(·) to construct the encoding space, that
is:

GM =
⋃

t∈T
Λt

Λt =
{
{λt

0,λ
t
1,λ

t
2,λ

t
3} | 0≤ λ

t
i ≤ 1 and ∑

i
λ

t
i = 1

}
Q : R3→ R5, Q(p) = (t,Λt), and p = ΛtVt

(2)

during rendering, p can be transformed to be represented in a ray
coordinate system with the ray origin ȯ as the coordinate origin and
the ray direction d⃗ as the z-axis. Considering the good linear inter-
polation characteristics of barycentric coordinates, for any point p
inside the tetrahedron, we can obtain it by linearly interpolating the
barycentric coordinates of the incident and exit points of the ray
relative to the tetrahedron, namely:

Λ
p
t = αΛ

p0
t +(1−α)Λ

p1
t ,

where p0 = ȯ+ t0d⃗, p1 = ȯ+ t1d⃗, and t0 < t1
(3)

where α ∈ [0,1] determines the relative distance of p to the en-
trance/exit points. Finally, we pack the barycentric coordinates of
each sampling point Λ

p
t , the tetrahedron index t, and the light ray

direction in the Cartesian coordinate system d⃗ together to represent
a sample in the encoded space G.

Apart from enabling shape editing (see Section 4.1), the tetra-
hedral cage can be also used as a proxy for collision processing.
It allows the use of full-fledged collision processing algorithms
to detect and resolve collisions between a NeRF model and other
objects—an essential component for bringing NeRF models in a
physical simulation. Last but not least, the tetrahedral cage offers
a natural data structure that helps to speed up the image rendering
process. Typically, the NeRF rendering algorithm samples a set of
points along each camera ray and accumulates a color value. With
the cage, this process can be implemented more efficiently.

3.2. Robust Space Sampler

NeRF [MST∗20] treats the target scene as a volume space with
a certain density, and the physical quantities of discrete sam-
pling points are approximated by integration using body rendering.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



R. Liu, J. Xiang, B. Zhao, R. Zhang, J. Yu & C. Zheng / Neural Impostor: Editing Neural Radiance Fields with Explicit Shape Manipulation 5 of 19

(d) Early
Integration

(b) Hash Table

(e) Appearance MLP

(a) Barycentric Sampling (c) Density MLPs (f) Final Rendering

Ray Direction
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Figure 2: Rendering of the Neural Impostor starts by determining intersection points between a ray and a tetrahedron mesh, then samples
query points between the in and out intersections, based on the size of the tetrahedron (a). For each sample point, we use its barycentric
coordinates and corresponding tetrahedron to query the hash table (b). A series of small multi-layer perceptrons (MLPs) calculate the spatial
density for each sampling point from positional features stored in the hash table (c). To improve rendering efficiency, the early integration
process aggregates the features of the sampling points, then alpha blends them into a final appearance feature vector for each ray (d). The
final step involves calculating the per-ray RGB color with a substantial appearance MLP and summing over all tetrahedrons (e-f).

Within a certain limit of the number of samples, in order to accu-
rately model the scene details, we want the sampling points to be
concentrated as much as possible in places that contribute to the
pixel color to avoid computational waste, i.e., the sampling den-
sity should approximate the real density distribution of the scene as
much as possible. For this reason, in NeRF [MST∗20], researchers
designed a sampling method based on probability distribution,
i.e., first obtain the approximate density distribution in space by
coarse-grained uniform sampling, then perform fine-grained sam-
pling according to the probability density of coarse-grained sam-
pling points, and fuse the coarse and fine-grained sampling points
for the integration process of body rendering. This process in-
volves querying the spatial density decoder for both coarse- and
fine-grained sampling, and therefore greatly reduces the rendering
effectiveness.

Instant-NGP [MESK22] accelerates the rendering process with
an explicit spatial occupancy grid that roughly marks the empty and
non-empty states of space using binary bits. The sampling process
then skips over sparse space (i.e., empty space), thereby concen-
trating the sample points near the surface. This method of sampling
based on the spatial occupancy grid can greatly speed up the ren-
dering process in NeRF. However, this approach also requires the
spatial occupancy grid to be updated at a certain frequency dur-
ing the training process, namely re-querying the MLP to obtain the
spatial density of the grid vertices. Besides, the misalignment be-
tween the voxel grid structure defining the occupancy field and the
tetrahedron grid may cause jittering or ghosting artifacts.

Therefore, we designed a sampling method based on barycen-
tric coordinates. According to the truncation theorem [MESK22],
the sampling step length during light propagation should be pro-
portional to the propagation distance along the ray. This proportion
is determined by the predefined cone angle θ. Considering that the
size of each tetrahedron may change significantly during the defor-
mation process, while the barycentric coordinate distances defined
by the incident and outgoing points of the tetrahedron remain rela-

tively stable, we use the interpolation weight α from Equation (3)
to replace the step length in the Cartesian coordinate system, which
means:

∆αi+1 = ∆αi +θ ·Ai (4)

where Ai = ∑i ∆αi represents the cumulative sampling distance
starting from the incident point of the first valid tetrahedron. Con-
sequently, the sampling process can be described as:

S : R6→ RN×8

S(ȯ, d⃗) =

{
{t,Λt , d⃗}×N | t ∈ T,Λt ∈ R4,0≤ Λt ≤ 1 and ∥Λt∥1 = 1

}
(5)

where ȯ, d⃗ represent the origin and direction of the ray, N stands
for the number of sample points for each ray, and (t,Λt) respec-
tively represent the index of the tetrahedron to which the sample
point belongs and its 4-dimentional barycentric coordinates. After
sampling, each sample point is represented as a set composed of
tetrahedron index, barycentric coordinates, and ray direction.

3.3. Neural Encoding in a Tetrahedron

In every single tetrahedron, we need to store a view-dependent neu-
ral radiance field. Furthermore, the radiance field must transform
smoothly when the tetrahedron is deformed to avoid flickering ar-
tifacts. With this in mind, we represent the positional quantity of
the neural radiance field in barycentric coordinates. As the light ray
direction of the neural radiance field is a deformation-independent
quantity, we encode the light ray direction in the form of spher-
ical harmonic functions in original Cartesian coordinate system.
The barycentric coordinate system is a local linear space relative
to each tetrahedron. When we change the tetrahedron’s vertex po-
sitions, points with fixed barycentric coordinates will move corre-
spondingly. Therefore, under the encoding method of the Neural
Impostors based on the tetrahedron barycentric coordinates, when
the tetrahedron acting as a proxy deforms, the neural radiance field
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encoded by each tetrahedron will also undergo corresponding shape
changes. Represent the tetrahedron lookup function as Q, local co-
ordinate encoder inside tetrahedron t as Et

p and the global direction
encoder as Ed , then the encoding process of the Neural Impostors
at sampling point p can be represented as:

Q : R3→ I, t =Q(p)

Et
p : R4→ RF×L, fp = Et

p(Λ
p
t ) = ht(Λ

p
t )

Ed : R3→ RD2
, fd = Ed(d⃗) = SHD(d⃗)

(6)

where Λ
p
t is the barycentric coordinate of the sampling point p in-

side the tetrahedron t, L is the number of levels in the multiresolu-
tion hash, F is the number of features in each level, D is the order of
the spherical harmonic function encoding, ht represents the feature
querying processing from tetrahedron t’s local hash table, and SHD
is the D-order spherical harmonic function. After encoding, we can
obtain the position feature fp and direction feature fd correspond-
ing to each sampling point p.

However, the use of barycentric coordinates complexes the en-
coding process (i.e., Et

p in Equation (6)). We wish to leverage the
multi-resolution hash encoding scheme proposed in [MESK22],
as it offers high rendering quality and low memory footprint. This
encoding scheme conceptually stores trainable features on a multi-
resolution Cartesian grid, and directly transferring this encoding
scheme in barycentric coordinates requires the creation of a multi-
resolution tetrahedron mesh within a tetrahedron and the storage
of feature vectors on the tetrahedron mesh’s vertices. Yet, this ap-
proach is troublesome. When a tetrahedron is subdivided for finer
level mesh creation, it results in four smaller tetrahedron and an oc-
tahedron in the center. It is unclear how to split the octahedron into
a set of tetrahedron in a consistent way. More importantly, when
it comes to image rendering, a recurring step is to find, on each
multi-resolution level, the tetrahedron in which a sampled point on
a camera ray is located. This, however, is computationally much
more expensive than its counterpart in [MESK22] (i.e. finding in
an axis-aligned Cartesian grid the voxel in which a sampled point
is located).

Instead, we propose to maintain trainable features not on any
tetrahedral vertices but on a four-dimensional (4D) grid associated
with the tetrahedron. The 4D grid is multiresolution, constructed
in the following way. Consider a point p inside the tetrahedron t
with barycentric coordinates Λt(p) = λ

t
0,λ

t
1,λ

t
2,λ

t
3. Although its

barycentric coordinates only have three degrees of freedom (i.e.,
constrained by ∑

3
i=0 λ

t
i = 1), algebraically it can be regarded as

a 4D point located inside a 4D voxel. This 4D voxel has 16 ver-
tices (corners), each with a coordinate (u1,u2,u3,u4) ∈ 0,14. This
voxel forms the highest-level grid with a resolution of 1×1×1×1.
We create the multiresolution grid by progressively subdividing this
highest-level grid, and bind the trainable features characterizing the
radiance field of the tetrahedron to the nodes of the multiresolution
grid.

The relation of a tetrahedron to its 4D grid can be interpreted
geometrically. On the highest-level grid—which is a single 4D
voxel—there are 16 voxel vertices. Four of them have coordinates
satisfying ∑

4
i=1 ui = 1, which are valid barycentric coordinates cor-

responding to the tetrahedron’s four vertices. In light of this, the

(a) (b)

(c) (d)

Figure 3: Multi-grid hash encoding for a triangle, its barycen-
tric coordinates define a three-dimensional encoding space, but the
valid encoding space is merely a two-dimensional embedding (pur-
ple triangle) within this three-dimensional space. (a) and (c) gives
the valid voxels and voxel corners used for interpolation under the
first grid level, while (b) and (d) demonstrate the corresponding
scenario after subdivision.

tetrahedron can be viewed as a 3D region embedded in a 4D hy-
perspace. A sampled point p on a camera ray is always located in
the tetrahedron, but in order to compute the feature vector at p,
we interpolate the features stored in the corners of a 4D voxel (see
Figure 3). Further, the highest-level grid is subdivided into 16 4D
voxels on the second level of the grid. But the 3D tetrahedron is em-
bedded in only 5 of the 16 voxels. The rest of the voxels remains
unused when we compute feature vectors of sampled ray points.
See Figure 3 for visualization of this interpretation in 3D space.

We note that the unused voxels will not waste memory storage,
because following Instant-NGP [MESK22], the feature vectors on
grid nodes are stored in a hash table, and the hash table size is set on
purpose much smaller than the grid size to “compress” feature vec-
tor storage. Meanwhile, considering that we need to maintain sepa-
rate hash tables for each tetrahedron in the tetrahedron mesh of the
Neural Impostor, when the number of tetrahedrons increases, the
amount of information each tetrahedron actually needs to encode
also decreases. Therefore, in practice, we reduce the hash table size
of each tetrahedron according to the number of tetrahedrons in the
mesh, in order to maintain the hash table size of the entire tetrahe-
dron mesh comparable to that in the original Instant-NGP with a
given level. For instance, consider a tetrahedron mesh with T tetra-
hedrons and base-2 logarithmic hash table size H , the correspond-
ing local base-2 logarithmic hash table size in each tetrahedron
would be H′ = H/⌊(log2 T + 1)⌋. The rest of the encoding pro-
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cess is similar to Instant-NGP. At each multiresolution grid level l,
the feature vector f l(x) at the sampling point x is obtained through
four-dimensional linear interpolation, using the feature vectors at
the 16 corner points of the voxel containing x. We concatenate fea-
ture vectors f l(x) from all levels l = 1...L to form the feature vec-
tor f p used for decoding. The decoding process of Neural Impostor
mirrors that of NeRF [MST∗20]. Given a density decoder, denoted
Dσ, and a radiance decoder Dr, we have:

Dσ : RF×L→ R, σ(p) = Dσ( fp)

Dr : RD2+F×L→ R3, c(p) = Dr( fp⊕ fd)
(7)

herein, p = ȯ+ td⃗ denotes a sampled point along the ray, fp and fd
represent the position feature and the direction feature of p and ⊕
indicates feature concatenation.

3.4. Efficient Image Rendering

During rendering, we need to calculate the color value C(r) along
the sampled camera ray r(t) = ȯ+ t · d⃗, where ȯ is the origin of
the ray and d⃗ is the ray direction. Similar to the original NeRF
model [MST∗20], following the principles of Direct Volume Ren-
dering (DVR), the color of the ray C(r) can be estimated by inte-
grating over a bounded distance interval [tn, t f ]:

C(r) =
∫ t f

tn
T (t)σ(r(t))c(r(t), d⃗)dt, (8)

here, T (t) = exp
(
−

∫ t
tn σ(r(s))ds

)
represents the accumulated

transmittance from tn to t along the ray direction. σ(r) is the vol-
ume density at location r(t); c(r(t), d⃗) is the radiance at r(t) in the
direction d⃗.

The fundamental idea of NeRF [MST∗20] is to represent σ(r(t))
and c(r(t), d⃗) using neural networks. In our tetrahedron neural rep-
resentation, the camera ray r intersects with a series of tetrahedron.
During the deformation process, the volume of each tetrahedron
might undergo significant changes. Under these circumstances, if
we keep the Cartesian coordinate-based integral method, the final
color and transparency of the ray would directly correlate with the
integral distance. Consequently, any changes in the integral dis-
tance due to the deformation of the tetrahedron would also affect
the output color.

To dissociate the color of the ray from the integral distance, we
leverage the sampling method discussed in Section 3.2. We rewrite
Equation (8) as a sum of the integrals for each tetrahedron, while
converting the integral distance into a distance representation in
barycentric coordinates. This ensures that the color of the ray re-
mains unaffected, even when the volume of the tetrahedron experi-
ences significant deformation. As illustrated in Figure 2, we denote
the K tetrahedron that the ray passes through during propagation as
t1, t1, · · · , tK . Each tetrahedron intersects with the ray at entry point
p0 and exit point p1, with corresponding barycentric coordinates
Λ

0
t and Λ

1
t , respectively. We use the Manhattan distance between

Λ
0
t and Λ

1
t as the integral distance, and recast Equation (8) as a

sum of integrals over each tetrahedron:

C(r) =
K

∑
i=1

∫ Λ
1
ti

Λ0
ti

T (Λp
ti )σ(Λ

p
ti )c(p, d⃗) dΛ

p
ti (9)

Here, Λ
p
ti represents the barycentric coordinates of the sampling

point p within the tetrahedron ti. Due to the linearity of the barycen-
tric coordinates, Λ

p
ti can be determined by the barycentric coordi-

nates of the entry and exit points, Λ
0
t and Λ

1
t , respectively, as well

as the interpolation weight α as defined in Equation (3).

The radiance in a scene typically carries a higher frequency of in-
formation than the spatial density. Therefore, the radiance decoder
in the process of constructing a neural radiance field usually ex-
hibits more complexity than the spatial density decoder. Moreover,
the forward process of a MLP is more costly in terms of time ef-
ficiency compared to encoding and rendering. To further optimize
the rendering efficiency, we first decode the position features of
the sample points into density values using a few density decoders
Dσ. In contrast to previous rendering schemes that decode before
integration for radiance, we propose a rendering scheme that inte-
grates before decoding. Specifically, we first integrate the position
features of the sampling points and ray transmittance onto its be-
longing tetrahedron surfaces, then alpha composite them together
into a final appearance feature for each ray. Subsequently, the com-
posited appearance feature are combined with the ray directional
feature for radiance decoding, as such we only need to computer
the appearance decoder once for each ray:

C(r) = Dr

[ K

∑
i=1

∫ Λ
1
ti

Λ0
ti

T (Λp
ti )σ(Λ

p
ti )E

ti
p(Λ

p
ti ) dΛ

p
ti︸ ︷︷ ︸

integrated positional feature

⊕ Ed(d⃗)
]

(10)

here, Dr is the radiance decoder, and Ep,Ed are the encoders
for the barycentric coordinates and ray direction, respectively.
The density values of the sample points are obtained by decod-
ing the barycentric coordinates according to Equation (7). This
"integration-before-decoding" rendering approach effectively pre-
bakes the scalar field of the encoding space onto the surface of each
tetrahedron. As each ray can define a unique surface point for each
tetrahedron, this "integration-before-decoding" approach allows us
to rasterize the tetrahedron in the space layer by layer and project
them onto the imaging plane to further accelerate the rendering pro-
cess during inference.

While the "integration-before-decoding" rendering approach can
accelerate the rendering process during inference, in the barycen-
tric coordinate-based encoding method, we also need to determine
the tetrahedron to which each sample point belongs during the
training process. For a 1080p image, the forward process of train-
ing requires conducting a barycentric coordinate test for approxi-
mately 1080× 1080 ≈ 108 points. Traditional tests based on ma-
trix multiplication would require us to compute the determinant of
a Nrays×Npoints× 4× 3 matrix, which is unfeasible for complex
tetrahedron meshes in one forward pass. Building upon the work of
Wald et al. (2019) [WUM∗19], we consider the triangles that make
up the tetrahedron as the testing units during the rendering process.
For non-self-intersecting tetrahedron meshes, the concept of a point
being "in front of a triangle" or "behind a triangle" can be uniquely
determined by the winding order of the triangle vertices. In their
method, determining to which tetrahedron a point belongs is equiv-
alent to casting a ray from that point in a random direction, evalu-
ating the winding order at the first intersection point, and checking
on which side of the triangle the sample lies. Since each triangle
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(b) Non-Adjacent
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(b) Intersected
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Figure 4: Three tetrahedron connection scenarios observed dur-
ing sampling. For adjacent tetrahedrons sharing a triangle face,
the entry point p0 originates the ray, and steps determine the exit
point p1, which then updates to the new entry point. For separate
tetrahedron, we link them at runtime, moving a point at p2 to p3
before sampling. With intersecting tetrahedron, an aggressive sam-
pling approach adds a point p4 that belongs to both tetrahedron A
and B to the sampling set.

belongs to at most two tetrahedron, this winding order-based test-
ing approach can yield a unique tetrahedron index for any point in
space. When hardware acceleration is available, the triangle-based
query operation is also very efficient in terms of memory and com-
putation.

We extend the method of [WUM∗19] to the framework of ray
tracing to support the sampling process in Section 3.2. Specifically,
in the context of ray tracing, we can perform stepwise sampling
along the direction of the ray. Unlike the separate testing for each
point in the method of Wald et al. (2019) [WUM∗19], we only need
to determine the entry and exit points of the tetrahedron that each
ray passes through. Depending on the arrangement of tetrahedron
in space, the progression of the ray may encounter three situations
shown in Figure 4, namely adjacent/non-adjacent tetrahedron and
intersecting tetrahedron. We adopt different stepping strategies for
these three situations. As shown in Figure 4, for adjacent tetrahe-
dron that share one triangle faces, we take the entry point as the ori-
gin of the ray and step to determine the exit point. After sampling,
the entry point is updated to the exit point. For separated tetrahe-
dron, we connect them at runtime. That is, if the sample point is at
position p2 in Figure 4, we first update it to p3 before sampling. For
intersecting tetrahedron, we use an aggressive sampling approach,
i.e., for a sample point p4 that belongs to both tetrahedron A and B,
we add its position in both A and B to the sampling set.

Rendering Acceleration Besides the raymaching-based rendering
algorithm stated in Section 3.4, we provide a tailored algorithm
for ultra-fast rendering in large-scale and multi-object scenes. We
achieve the ultra-fast rendering by baking the appearance of a tetra-
hedron onto it’s faces as view-dependent neural textures. For each
image in the input image set, we cast a ray from the camera through
each pixel. As shown in Figure 2 (a), we first compute the inter-
section points between the ray and the tetrahedral mesh envelope,
using the NVIDIA Optix library for this computation. Then, along
each ray, we sample the implicit field and integrate the feature val-
ues of the sampled points onto the tetrahedral surface using an early
integration approach. Finally, we obtain the pixel color through
opacity blending. During inference, we can bake the volumetric
features of each tetrahedron onto the tetrahedral surface and render

the scene using rasterization. Table 1 provides the efficiency com-
parison between our implementation and the barycentric coordinate
query-based rendering approach used in NeRF-Editing [YSL∗22]
with KNN neighborhood query. As seen, even without baking, we
can achieve real-time volume rendering with the hardware accel-
eration of Optix (method "Optix Accelerated" in Table 1). After
baking, rendering efficiency can be significantly improved by us-
ing rasterization-based rendering in a multi-layer fashion (method
"Baking+Rasterization" in Table 1).

4. Editing operations of Neural Impostor

A comprehensive explicit geometric editing framework typically
includes continuous editing based on spatial transformations, and
topology editing which changes the topological structure of the
shape. More specifically, we divide editing operations into three
categories: continuous shape morphing, explicit remeshing, and
boolean operations. Continuous shape morphing changes only the
positions of the vertices of the explicit tetrahedron mesh without
altering its topological structure. Explicit remeshing regenerates
the explicit mesh to enable detailed editing. Boolean operations are
used to logically combine two or more shapes to create a new ob-
ject.

In addition to supporting basic geometric editing operations, the
hybrid modeling approach based on Neural Impostor allows com-
plex combinations of operations on implicit fields. By utilizing the
aforementioned operations, our system achieves a wide range of
editing tasks, including physical simulation, mesh reconstruction,
and scene composition. In the following, we will explain how we
leverage explicit tetrahedron meshes in Neural Impostor to realize
the aforementioned editing operations for neural implicit field.

4.1. Shape Transformation and Deformation

Shape transformation and deformation are the most fundamental
geometric editing operations. Fundamentally, shape transforma-
tion and deformation reveal geometric invariance under continuous
mappings, which can naturally be satisfied by the hybrid model-
ing of Neural Impostor. Thanks to the centroid coordinate encod-
ing method described in Section 3.1, in Neural Impostor any spatial
transformation based on tetrahedron vertices can be naturally trans-
formed into the implicit field. For example, in Figure 5, the input
shape morphs from the original shape M on the left to the head
rescaled scaled shape M′ on the right. Recalling equation 2, the
sampled points in the deformed tetrahedron mesh M′ are given by:

t,Λp
t ← S(p,M′), where p ∈ R3 and t ∈M′ (11)

In this case, both the sampling spaces before and after defor-
mation are defined in the Cartesian space of the scene. When the
tetrahedron vertices move, the implicit neural field inside the de-
formed tetrahedron remain unchanged under the barycentric co-
ordinate. Thus, we can adopt the same sampling, encoding, and
rendering methods as the original process without any additional
transformations. Moreover, as this process only involves updates to
the tetrahedron mesh vertices without calculating the transforma-
tions on sampling points, the deformation process in Neural Im-
postor is more efficient than approaches based on bending rays
[XH22, PYL∗22, GKE∗22, YSL∗22].
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(a) Original (c) Rotate Head(b) Zoom Head (d) Move Horns

Figure 5: Shape morphing based on vertices with local remeshing. In this process, we scale some vertices of (a) the original tetrahedron
mesh to achieve (b) local scaling and (c) the rotating motion of the neural radiance field. Further, (d) we remesh the ear region for finer scale
shape morphing.

4.2. Subdivision and Remeshing

Compared to continuous shape morphing, topological operations
pose more challenges. When the mesh topology changes, the num-
ber and connectivity of the original tetrahedron are altered. How-
ever, in Neural Impostor the radiance field is strictly tied to the
tetrahedron topology. This requires an effective mapping scheme to
transfer the radiance field baked into the original tetrahedron mesh
to the new tetrahedron structure.

To achieve this goal, we propose a local retraining strategy to
synthesize neural implicit fields from existing neural implicit fields
with different explicit tetrahedral mesh. When remeshing happens,
rather than performing a global retraining, we select local tetrahe-
dron where the topology changes for retraining while keeping the
other tetrahedron unchanged. Besides, to accelerate convergence,
we initialize the updated multigrid hash table based on feature-only
supervision shown inFigure 6 (c). Then follow a joint optimization
on both the feature hash table and the MLP weights. As shown in
Figure 6, during the retraining stage, our input is the pre-trained
Neural Impostor which includes its tetrahedron mesh and the im-
plicit neural field encoded in each tetrahedron illustrated in Figure 6
(b), as well as the explicit tetrahedron mesh after the topological
transformation as shown in Figure 6 (a). The goal of local retrain-
ing is to transfer the radiance field defined on the original tetrahe-
drons to the new radiance field on the remeshed tetrahedral mesh.
The retraining process consists of two stages. In the first stage, as
shown in Figure 6(c), we randomly sample points inside (solid dots
in Figure 6 (a)) and outside (hollow dots in Figure 6 (a)) of the new
mesh to optimize the hash table. In the second stage (Figure 6 (d)),
we use ray tracing to locate the pixel positions in that region and
select effective rays to obtain pixel colors as further supervision
according to the rendering process in Equation (10), this improv-
ing the accuracy of the rendered results after retraining. Specifi-
cally, let (M,h,D) represent the tetrahedron mesh, hash encoding
table, and decoder of the Neural Impostor before retraining, and let
(M′,h′,D′) represent the reconstructed tetrahedron mesh and its
to-be-trained hash encoding table and decoder. Let R and Ed repre-
sent the renderer and ray direction encoder used in the second stage

training. The training process can be formalized as follows:

Stage 1: Lhash = ∥h(Λp)−h′(Λp)∥1, where p ∈M∪M′.

Stage 2: Lrender =

∥∥∥∥∥R◦D[h(Λp)⊕Ed(d⃗)
]
−R◦D′[h′(Λp)⊕Ed(d⃗)

]∥∥∥∥∥
2

,

where p ∈ ȯ+ td⃗.
(12)

where ◦ denotes function composition and ⊕ represents feature
concatenation.

4.3. Boolean Operation

Besides the operations on the explicit part in the tetrahedral neural
representation, inter-operations between different neural radiance
fields are essential to certain cases, such as Boolean operations.
To merge or subtract two neural radiance fields, we need to de-
fine boolean status on the implicit fields. Luckily, its much easier
to define the boolean status on the implicit field(such as NeRF)
than the explicit geometry(such as mesh). For explicit geometry,
the boolean status is defined by the in/out status of the sampling
point, which is not well defined for non-watertight geometry, and
usually hard to compute. On the other hand, the implicit field is
indexed with positional parameters in a universal encoding space
G, which allows us to define the boolean status based on the scalar
values interpreted for each sampling point. Here we use a straight-
forward filtering algorithm to define the boolean status B(λ) based
on simple thresholds:

B(λ) =

{
1, if Dσ(λ)> ε

0, otherwise
(13)

Therefore, the boolean field B is a binary function of the density
fieldD. Based on the boolean field, we can define the basic boolean
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(a) Updated Proxy

(d) Optimizing NI(b) Existing NI

Stage 2
Stage 1

Rendering

Density MLP

Color MLP

NI Trainables Applications

(c) Optimizing hash encoding

(f) Boolean operations

(e) Finer scale deformation

Figure 6: Two-Stage Retraining Process. During (c) Stage 1, the hashtable is optimized using randomly sampled points to align with the
existing Neural Impostor. Only points located within the updated proxy (solid green points) are taken as valid samples, while others (hollow
points with green borders) are disregarded. However, solely updating the hash table could potentially result in noisy rendering due to hash
collision. To mitigate this issue, a 2nd-stage training (d) is introduced to refine the decoder MLPs and resolve hash collision. Here, rays are
randomly traced into the updated proxy, with the accumulated per-ray color further guiding the adjustment of density and color decoders for
the new Neural Impostor. This efficient local retraining mechanism facilitates (e) fine-scale deformation and (f) local appearance editing.

operations between neural radiance fields Bi and B j as follows:

Bi∪B j = Bi +B j−Bi ·B j

Bi∩B j = Bi ·B j

Bi \B j = Bi−Bi ·B j

Bi⊕B j = Bi +B j(mod2)

(14)

Then we mask out the corresponding region of the objects and
do the local re-training by using the result boolean field as binary
weights for the volumetric rendering process.

Ck = Dr(
∫ t1

t0
Ttet(λt) B(λt)︸ ︷︷ ︸

boolean

Dσ(Ep(λt))︸ ︷︷ ︸
density

· Ep(λt)︸ ︷︷ ︸
pos feature

dt

︸ ︷︷ ︸
accumlated feature

⊕ Ed(d⃗)︸ ︷︷ ︸
dir feature

)

(15)
As shown in Figure 7, through implicit boolean operations, we

can add constructive pattern details to a pre-trained Neural Impos-
tor model. Please note that the boolean field determines the pres-
ence of the density field, but the color of the model is interpreted
based on the selection of the radiance field. By the way, boolean
operations can be accelerated by first checking the boolean state
of tetrahedron and then performing implicit boolean operations on
the selected tetrahedron. By default, boolean operations are binary
selective operations on implicit fields. As a natural extension, se-
lective blending can be achieved using the similar strategy. Instead
of keep or drop a radiance field, we can blend or perform any mu-
tual operations on two radiance fields. For example, as shown in
Figure 7 (c), within the region defined by the pattern, we multiply
the color given by the pattern with the density field representing

fur in the original Neural Impostor resulting in a fur model with
color. For such cases, local retraining is accomplished by using the
second-stage blending perspective-related appearance as the target
after determining the tetrahedron covered by the pattern:

Ck =Di
r(
∫ t1

t0
T i

tet(λ
i
t)B⟩(λi

t)D
i
σ(E

i
p(λ

i
t)) ·Ei

p(λ
i
t)dt⊕Ei

d(d⃗i))

+D
j
r(
∫ t1

t0
T j

tet(λ
j
t )B

|(λ j
t )D

j
σ(E

j
p(λ

j
t )) ·E

j
p(λ

j
t )dt⊕E

j
d(d⃗

j))

(3-16)

5. Experiments

In this chapter, we first present the data acquisition method and im-
plementation details of Neural Impostors. Then, we perform quali-
tative and quantitative analyses on the modeling capability and ren-
dering efficiency of Neural Impostor, using nerfstudio [TWN∗23]
as a benchmark for comparison. To demonstrate this, we create a
dataset specifically for plush toys through rendering and real cap-
tures and merge it with the nerf-synthetic dataset for quantitative
analysis.

5.1. Implementation Details

Data Acquisition The input for Neural Impostor consists of a set
of images with corresponding camera parameters and a tetrahedral
mesh of the input scene. The input images are similar to those
used in traditional 3D reconstruction tasks and serve as input for
the Neural Impostors. Since the modeling approach of Neural Im-
postor does not require fine geometric details, we have robust sup-
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(a) Pattern Brushes

(b) Existing Neural Impostor

(c) Boolean Operations

(d) Boolean-based Appearance Editing

Figure 7: Boolean operations on Neural Impostor with given patterns. (b) Geometric difference and union based on the density of the given
pattern. (c) Implicit union operation for color editing.

port for generating tetrahedral meshes from both generated models
in modeling software and reconstructed meshes from scene cap-
tures. Specifically, if the 3D scene is rendered from a virtual model,
we can generate a coarse triangular mesh envelope of the original
scene by simplifying and decimating the original 3D model. If the
3D scene is captured from real cameras, we run structure-from-
motion algorithms to obtain camera poses and leverage efficient
reconstruction methods from "NSR" [ZJY∗22] to create a rough
surface mesh of the scene for the NeRF model. Then, we compute
the triangular mesh envelope based on the surface mesh by using
shape modifiers in geometry processing libraries or modeling soft-
wares, such as Libigl and Blender, etc. This process enables us to
generate a concise representation of the surface geometry that en-
capsulates the volumetric characteristics of the object. Finally, we
use the TetWild [HSW∗20] algorithm to generate the tetrahedral
mesh from the triangular mesh envelope.

Model Structure As described in Section 3.3, the trainable com-
ponents in Neural Impostor include the multi-tetrahedron hash en-
coder Ep and the density decoder Dσ and radiance decoder Dr
based on multi-layer perceptrons. In most scenarios, we fix the
overall size of the hash encoding table to 219, and the hash table
size per tetrahedron varies between 28 and 211, depending on the
number of tetrahedra. More specifically, inspired by the approach
in "Instant-NGP" [MESK22] for handling different resolution lev-
els, we optimize the hash encoding tables of all tetrahedra in each
Neural Impostor by packing them together based on tetrahedron
indices. During querying, we locate the fixed region of the packed
hash table using the tetrahedron index. Our density decoder and

appearance decoder both adopt a multi-layer perceptron structure.
The density decoder includes a hidden layer with a width of 16,
while the appearance decoder includes two hidden layers each with
a width of 64.

Table 1: Comparison of Rendering Efficiency (conducted on the
mic scene in the nerf-synthetic dataset, consisting of 294 tetra-
hedrons and 797 triangles). While NeRF-Editing [YSL∗22] takes
approximately 7 seconds to render an image with a resolution of
800× 800, Neural Impostor can achieve real-time rendering at
39.42FPS with Optix acceleration. Furthermore, it satisfies real-
time gaming requirements after baking features onto the surfaces
of tetrahedrons and rendering with a rasterizer.

Method NeRF-Editing Optix Accelerated Baking+Rasterization
FPS ↑ 0.147 39.42 157.83

5.2. Reconstruction Quality Evaluation

As mentioned earlier, we analyze the modeling capability of Neu-
ral Impostor from the perspectives of modeling, rendering effi-
ciency, and continuity in the deformation process. In this section,
we focus on evaluating the reconstruction quality. Specifically, us-
ing the implementation of Instant-NGP in nerfstudio [TWN∗23]
(method "NGP-Bounded" in Table 2) as a baseline, we first replace
the Cartesian coordinate-based encoding part in the original model
with barycentric coordinate encoding while retaining the sampling
method based on occupancy fields (method "BaryEnc" in Table 2).
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Figure 8: Visual comparison on the plush toy dataset. The spot instance above is synthetic data, while the lamb instance below is captured
from the real-world with a camera. Neural Impostor accurately reconstructs the hair details. On the instance of the lamb, barycentric
encoding achieves better quality on recovering the highly saturated parts (the red part) of the scene than regular space encoding. At the
same time, on the instance of the spot, tetrahedral meshes help restrict the sampling space and thus better recover the spatial density field,
eliminating the black edge phenomenon.

Table 2: Integrated testing result based on nerfstudio

Method
Nerf-Synthetic (Avg. Impostor Size = 545.57) Plush Toy (Average Impostor Size = 1754.4)

BatchSize Steps Training Time Rendering FPS PSNR ↑ SSIM ↑ Training Time Rendering FPS PSNR ↑ SSIM ↑
NGP-Bounded 8192 30k 40.09m 33.272 36.545 0.981 44.65m 22.28 32.708 0.9474

BaryEnc 8192 30k 36.72m 33.134 36.473 0.9809 32.51m 26.95 32.843 0.947
BarySpl 8192 30k 30.63m 33.566 36.423 0.9813 29.91m 27.51 32.915 0.9477
FeatInt 8192 30k 29.17m 39.42 34.53 0.9764 28.74m 33.11 32.797 0.9393

Baking + Rast / / / 157.83 33.796 0.9695 / 129.32 32.249 0.937

Then, we replace the sampling method based on occupancy fields
with barycentric coordinate-based sampling (method "BarySpl" in
Table 2). Finally, we integrate the "early integration" rendering ap-
proach from Section 3.4 into the model based on the barycentric co-
ordinate sampling method (method "FeatInt" in Table 2). We also

provide the results of rendering after baking onto the tetrahedral
surface and using rasterization for rendering (method Baking+Rast
in Table 2). Among them, we compare the PSNR (Peak Signal-to-
Noise Ratio) and SSIM (Structural Similarity) under various ren-
dering methods for 7 instances in the nerf-synthetic dataset and 5
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Figure 9: Visual comparison on the nerf-synthetic dataset. Neural Impostor provide comparable or even better quality. More specifically,
Neural Impostor performs better on disentangling the density field and the radiance field. For example, in the mic instance, with the help of
barycentric sampling, we recover not only the details of the metal case but also the capsule of the microphone.

instances in the Plush Toy dataset (including 3 real-captured in-
stances and 2 rendered instances). PSNR measures the quality of
an image by computing the mean squared error between the origi-
nal image and the processed (compressed or reconstructed) image.
The higher the PSNR value, the smaller the difference between the
processed image and the original image, indicating better quality.
SSIM measures the similarity between two images by considering
their luminance, contrast, and structural information. It is a more
accurate reflection of image quality compared to traditional met-
rics like PSNR, as it aligns better with human visual perception.

We provide visual comparisons of the reconstruction results on the
nerf-synthetic and plush toy datasets in Figure 9 and Figure 8, as
well as their quantitative results in Table 2. The quantitative anal-
ysis on the nerf-synthetic dataset shows that, without introducing
the early integration rendering approach (Section 3.4), using the
barycentric coordinate encoding in the modeling process (method
"BaryEnc") achieves comparable quality to the original Instant-
NGP [MESK22], with a PSNR value of 33.134 for barycentric co-
ordinate encoding compared to 33.272 for the original Instant-NGP
encoding. Furthermore, since barycentric coordinate encoding is
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not limited by resolution, it can achieve good reconstruction qual-
ity (PSNR = 32.915) in complex scenes such as plush toys when
combined with barycentric coordinate-based sampling, surpassing
the quality of the original Instant-NGP (PSNR = 32.708). When
the early integration (Section 3.4) approach is introduced, although
rendering efficiency improves, there is a slight decrease in model-
ing quality due to the texture features of each tetrahedron being
baked onto the tetrahedral surface. However, after baking, we can
use rasterization for rendering, resulting in a significant improve-
ment in rendering efficiency (from 30+ FPS before baking to 100+
FPS after baking). Therefore, in scenarios with high interactivity
demands, we can choose to use the early integration (Section 3.4)
rendering approach to improve interactive performance.

The proposed hybrid representation relies on an explicit tetrahe-
dron mesh as a proxy of the neural implicit field. The quality and
density of tetrahedron mesh do impact the encoding of the neural
radiance field. However, these factors only have subtle effects on
the reconstruction quality. Figure 10 examines the impact of dif-
ferent tetrahedral mesh quality and density on the reconstruction
quality of neural impostors in static scene reconstruction. We tests
7 different tetrahedron proxies with similar implicit field sizes (i.e.
sum of hash table size of all tetrahedrons) on the fluffy ball example
by varying the tetrahedron density and envelope shape. The similar
PSNR of all tests indicates that the selection of tetrahedron proxies
has an insignificant influence on the quality of the implicit field.

5.3. Editing Quality Evaluation

Different from evaluating the reconstruction quality, there is no
well-defined metric or reference ground truth for the edited radi-
ance field. Therefore, we use the rendering of the edited Neural
Impostor as a qualitative evaluation(please check Section 6.1) and
calculate the LPIPS (Learned Perceptual Image Patch Similarity)
between the edited Neural Impostor to the reference rendering as
the quantitative evaluation. Here, we analyzed the rendering qual-
ity during simulation. Specifically, we use the Houdini simulation
engine to create dynamic meshes for fracture and deformation ef-
fects for the testing scenes. We then perform animation simulations
using the ray bending algorithm in NeRF-Editing [YSL∗22] with
two-stage sampling (Ray Bending in Table 3), the algorithm based
on occupancy field sampling combined with barycentric coordinate
encoding (Occupancy Field in Table 3), and the barycentric-based
sampling algorithm in Section 3.2 (Barycentric Sampling in Ta-
ble 3). Since we cannot obtain real multi-view data as a reference
during the simulation process, and the deformations generated dur-
ing the simulation can be negligible with a sufficiently high frame
rate, we calculate the LPIPS between each pair of frames as a
measure of animation simulation quality. From the comparison of
LPIPS between each pair of frames in Table 3, it can be observed
that our barycentric sampling method better maintains the appear-
ance stability during the deformation process.

6. Application

6.1. Physical Simulation

Soft body deformation algorithms are used in computer graphics to
simulate the motion and deformation of soft, flexible materials such

Table 3: Animation quality comparison. We calculate the LPIPS
value between adjancent sampled frames during deformation, and
observed that

Method Deform
LPIPS

Reference
Frame
PSNR

Reference
Frame
SSIM

Ray Bending 0.0999 27.87 0.7572
Occupancy Field 0.0876 37.01 0.9233

Barycentric Sampling (Ours) 0.0669 36.97 0.9175

as cloth, rubber, and muscles. These algorithms combine physics
simulation with numerical methods to calculate the motion and de-
formation of soft bodies under external forces. The basic idea of
soft body deformation is to discretize the object into many small
elements, and solve for the displacement for each node in the ele-
ments. The motion and deformation of each element are calculated
based on the forces acting on it, such as gravity, collision forces,
tension, and compression forces. One common method of soft body
deformation is using finite element analysis (FEA), which divides
the body into small triangles or tetrahedral elements. Each element
is assigned a set of physical properties, such as stiffness and density,
which are used to calculate the motion and deformation of the ele-
ment under external forces. Other soft body deformation algorithms
include particle-spring systems, which model the body as an inter-
connected network of springs, and position-based dynamics, which
use simplified equations to simulate the motion and deformation
of the body. By using the same discretized tetrahedron mesh, we
can achieve physical simulation directly on Neural Impostors. Fig-
ure 11 shows an example of soft body simulation based on Neural
Impostor. In this example, we use a furball with a complex ap-
pearance but relatively simple geometry (consisting of 204 vertices
and 600 tetrahedra) as the object of simulation. Three significantly
different viewpoints and five dynamic frames are extracted and dis-
played. From the figure, it can be observed that the Neural Impostor
can achieve continuous simulation with large deformations while
maintaining the quality of the volumetric appearance. Furthermore,
in Figure 12, we demonstrate continuous soft body transformations
based on rendered data and real-shot data. Plush Spot represents the
rendered data, while Plush Bear represents the real-shot data. For
more examples, please refer to the supplementary video material.

In addition to soft body simulation, plastic fracture simulation
is a technique used in computer graphics to simulate the destruc-
tion of buildings, vehicles, and other structures. In plastic frac-
ture, each part of the object is treated as a separate plastic ele-
ment that can be influenced by external forces such as explosions
or collisions. These plastic elements are simulated using physics-
based algorithms to calculate their motion and deformation over
time. One common method for simulating plastic fracture is to use
Voronoi splitting to break the object into smaller fragments. These
fragments are then simulated using a physics engine to calculate
their motion in the scene and collisions with other objects. Other
techniques used for plastic fracture include finite element analysis
(FEA) and dynamic fracture modeling, which can produce more
detailed and realistic simulations of object destruction. Figure 13
illustrates two examples of plastic fracture simulation on Neural
Impostors. Similar to soft body simulation, we utilize the Houdini
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Figure 10: The impact of tetrahedron proxy quality. The fluffy sphere is reconstructed with different tetrahedron proxies. The visual quality
and PSNR both have subtle differences, indicating the insignificant impact of the proxy quality.
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View 1

View 2

Frame 0 Frame 1 Frame 2 Frame 3

Figure 11: Real-time Soft Body Deformation Utilizing Neural Impostor: The Neural Impostor representation enables us to sustain consistent,
high-quality rendering amidst deformation. This is applicable even for objects exhibiting intricate volumetric appearances.

engine with the original tetrahedral mesh as a proxy for the plastic
fracture simulation.

6.2. Content Authoring with Neural Impostors

In addition to its robust support for vertex-based animation, as
shown in Figure 7, the Neural Impostor algorithm further enables
Boolean appearance editing (e.g., baking pattern colors onto an ex-
isting Neural Impostor model as shown in Figure 7(d)) and geom-
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Spot Plush

Bear Plush

(Synthetic data)

(Captured data)

Figure 12: Neural Impostor in Action - Real-Time Deformation of Plush Toys: Our Neural Impostor technique excels at performing seamless
deformation for plush toys, which are notoriously difficult to model using traditional triangle mesh representation due to their fluffy appear-
ances. This advancement enables high-quality, consistent rendering regardless of the object’s complexity..

etry editing (e.g., sculpting the original Neural Impostor as shown
in Figure 7(c)) through local retraining operations described in Sec-
tion 4. By using explicit tetrahedral meshes as proxies, we can ef-
fortlessly combine multiple Neural Impostor models to create new
scenes, offering the possibility of using Neural Impostor as a novel
modeling primitive. Figure 14 illustrates the process of creating a
new Neural Impostor asset from material spheres and three existing
Neural Impostor models as shown in Figure 14(a) through appear-
ance mapping (snowman body), composition (hat, nose, eyes, and
other decorations), and geometry editing (snowman arms). Specifi-
cally, starting from material spheres representing the appearance of
a snowball and wooden arms, we transfer the appearance informa-
tion represented by their materials to the snowman body and arms,
represented by a simple spherical geometry, through local retrain-
ing. Additionally, we elongate the arm vertices along the axis to
assemble the snowman body. By combining the constructed body
parts with Neural Impostor representing the hat and nose, we create
a complete snowman model as shown in Figure 14(b). It is worth
noting that, apart from the retraining step involved in appearance
mapping, this modeling process aligns completely with traditional
3D modeling software workflows. After modeling, the snowman
remains a new Neural Impostor model, allowing seamless integra-
tion with subsequent animation simulations. Figure 14(c) illustrates
the process of soft body simulation applied to the snowman model.

The above example is just one of many possibilities. In practi-
cal applications, the Neural Impostor technology can be used to
create various 3D models, including animals, buildings, vehicles,
and more. Additionally, inspired by the construction of neural ra-
diation fields from multi-view images, artists can start appearance
modeling directly from real captured images, simplifying the mate-
rial design process in traditional modeling. In a nutshell, the Neural
Impostor technology provides a brand new workflow for authoring
complex models with high quality volumetric appearance.

7. Conclusion

In this article, we have presented Neural Impostor, a hybrid neu-
ral representation. Neural Impostor addresses the challenges of ed-
itability in neural radiance fields, providing a novel approach to
modeling and editing of NeRF. Unlike previous methods, Neural
Impostor employing an explicit tetrahedral mesh and locally en-
coded radiance fields to achieve high-quality modeling and ren-
dering. The barycentric-based sampling method ensures rendering
quality and efficiency, while the proposed local retraining method
allows for fine-grained simulations and editing. We also demon-
strated its applications in various content authoring processes, in-
cluding physical simulation, geometric editing and model compo-
sition. Meanwhile, there are some aspects that can be improved.
Currently, Neural Impostor only supports geometric editing opera-
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Figure 13: Plastic fracture with Neural Impostor.
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(a) Pre-trained neural impostors

(b) Composed Snowman (c) Animating Snowman

Figure 14: Authoring and simulation based on Neural Impostors. (a) Pre-trained Neural Impostors as building blocks of a (b)snowman. (c)
Animated frames of the snowman model by rendering the composed Neural Impostor.

tions. Extending the range of compatible operations, including re-
lighting and material properties, would be some challenging open
problems. Overall, Neural Impostor introduces new possibilities in
neural representation, enhancing the modeling, rendering, and edit-
ing capabilities of neural primitives in various applications.

References

[CB17] CALDERON S., BOUBEKEUR T.: Bounding proxies for shape ap-
proximation. ACM Transactions on Graphics (Proc. SIGGRAPH 2017)
36, 5 (july 2017). 3

[CFHT22] CHEN Z., FUNKHOUSER T. A., HEDMAN P., TAGLIASAC-
CHI A.: Mobilenerf: Exploiting the polygon rasterization pipeline
for efficient neural field rendering on mobile architectures. ArXiv
abs/2208.00277 (2022). 2, 3

[CJH∗22] CHONG BAO AND BANGBANG YANG, JUNYI Z., HUJUN B.,
YINDA Z., ZHAOPENG C., GUOFENG Z.: Neumesh: Learning disentan-
gled neural mesh-based implicit field for geometry and texture editing.
In European Conference on Computer Vision (ECCV) (2022). 2, 3

[CLC∗21] CHAN E. R., LIN C. Z., CHAN M. A., NAGANO K., PAN
B., MELLO S. D., GALLO O., GUIBAS L., TREMBLAY J., KHAMIS S.,
KARRAS T., WETZSTEIN G.: Efficient geometry-aware 3D generative
adversarial networks. In arXiv (2021). 3

[CLW23] CHEN J., LYU J., WANG Y.-X.: Neuraleditor: Editing neural
radiance fields via manipulating point clouds. ArXiv abs/2305.03049
(2023). 2, 3

[CXG∗22] CHEN A., XU Z., GEIGER A., YU J., SU H.: Tensorf: Tenso-
rial radiance fields. In European Conference on Computer Vision (2022).
3

[GCX∗20] GAO J., CHEN W., XIANG T., TSANG C. F., JACOBSON A.,
MCGUIRE M., FIDLER S.: Learning deformable tetrahedral meshes

for 3d reconstruction. In Advances In Neural Information Processing
Systems (2020). 3

[GKE∗22] GARBIN S. J., KOWALSKI M., ESTELLERS V., SZYMANOW-
ICZ S., REZAEIFAR S., SHEN J., JOHNSON M., VALENTIN J.: Volte-
morph: Realtime, controllable and generalisable animation of volumetric
representations, 2022. URL: https://arxiv.org/abs/2208.
00949, doi:10.48550/ARXIV.2208.00949. 2, 3, 8

[GLM96] GOTTSCHALK S., LIN M. C., MANOCHA D.: Obbtree: A
hierarchical structure for rapid interference detection. In Proceedings
of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques (New York, NY, USA, 1996), SIGGRAPH ’96, Association
for Computing Machinery, p. 171–180. URL: https://doi.org/
10.1145/237170.237244, doi:10.1145/237170.237244.
3

[HSM∗21] HEDMAN P., SRINIVASAN P. P., MILDENHALL B., BAR-
RON J. T., DEBEVEC P. E.: Baking neural radiance fields for real-time
view synthesis. 2021 IEEE/CVF International Conference on Computer
Vision (ICCV) (2021), 5855–5864. 3

[HSW∗20] HU Y., SCHNEIDER T., WANG B., ZORIN D., PANOZZO D.:
Fast tetrahedral meshing in the wild. ACM Transactions on Graphics
(TOG) 39, 4 (2020), 117–1. 11

[HTE∗23] HAQUE A., TANCIK M., EFROS A. A., HOLYNSKI A.,
KANAZAWA A.: Instruct-nerf2nerf: Editing 3d scenes with instructions.
ArXiv abs/2303.12789 (2023). 4

[Jes05] JESCHKE S.: Accelerating the Rendering Process Using Impos-
tors. PhD thesis, Institute of Computer Graphics and Algorithms, Vi-
enna University of Technology, Favoritenstrasse 9-11/E193-02, A-1040
Vienna, Austria, Mar. 2005. URL: https://www.cg.tuwien.ac.
at/research/publications/2005/jeschke-05-ARI/. 3

[JKK∗23] JAMBON C., KERBL B., KOPANAS G., DIOLATZIS S.,
LEIMKÜHLER T., DRETTAKIS G.: Nerfshop. Proceedings of the ACM
on Computer Graphics and Interactive Techniques 6 (2023), 1 – 21. 2, 3

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://arxiv.org/abs/2208.00949
https://arxiv.org/abs/2208.00949
https://doi.org/10.48550/ARXIV.2208.00949
https://doi.org/10.1145/237170.237244
https://doi.org/10.1145/237170.237244
https://doi.org/10.1145/237170.237244
https://www.cg.tuwien.ac.at/research/publications/2005/jeschke-05-ARI/
https://www.cg.tuwien.ac.at/research/publications/2005/jeschke-05-ARI/


R. Liu, J. Xiang, B. Zhao, R. Zhang, J. Yu & C. Zheng / Neural Impostor: Editing Neural Radiance Fields with Explicit Shape Manipulation 19 of 19

[JMD∗07] JOSHI P., MEYER M., DEROSE T., GREEN B., SANOCKI T.:
Harmonic coordinates for character articulation. ACM Transactions on
Graphics (TOG) 26, 3 (2007), 71–es. 4

[JSW05] JU T., SCHAEFER S., WARREN J.: Mean value coordinates for
closed triangular meshes. In ACM Siggraph 2005 Papers. ACM New
York, NY, USA, 2005, pp. 561–566. 4

[JW02] JESCHKE S., WIMMER M.: Textured depth meshes for real-time
rendering of arbitrary scenes. In Rendering Techniques (2002), pp. 181–
190. 3

[KHM∗98] KLOSOWSKI J., HELD M., MITCHELL J., SOWIZRAL H.,
ZIKAN K.: Efficient collision detection using bounding volume hier-
archies of k-dops. IEEE Transactions on Visualization and Computer
Graphics 4, 1 (1998), 21–36. doi:10.1109/2945.675649. 3

[KLB∗22] KUANG Z., LUAN F., BI S., SHU Z., WETZSTEIN G.,
SUNKAVALLI K.: Palettenerf: Palette-based appearance editing of neural
radiance fields. ArXiv abs/2212.10699 (2022). 3

[KYK∗21] KANIA K., YI K. M., KOWALSKI M., TRZCI’NSKI T.,
TAGLIASACCHI A.: Conerf: Controllable neural radiance fields. 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2021), 18602–18611. 3

[LGL∗20] LIU L., GU J., LIN K. Z., CHUA T.-S., THEOBALT C.: Neu-
ral sparse voxel fields. NeurIPS (2020). 3

[LZZ∗21] LIU S., ZHANG X., ZHANG Z., ZHANG R., ZHU J.-Y., RUS-
SELL B. C.: Editing conditional radiance fields. 2021 IEEE/CVF Inter-
national Conference on Computer Vision (ICCV) (2021), 5753–5763. 3

[Max95] MAX N. L.: Optical models for direct volume rendering. IEEE
Trans. Vis. Comput. Graph. 1 (1995), 99–108. 2

[MESK22] MÜLLER T., EVANS A., SCHIED C., KELLER A.: Instant
neural graphics primitives with a multiresolution hash encoding. ACM
Transactions on Graphics (TOG) 41 (2022), 1 – 15. 3, 5, 6, 11, 13

[MOB∗21] MEISTER D., OGAKI S., BENTHIN C., DOYLE M. J.,
GUTHE M., BITTNER J.: A survey on bounding volume hierarchies for
ray tracing. In Computer Graphics Forum (2021), vol. 40, Wiley Online
Library, pp. 683–712. 3

[MPE∗23] MENDIRATTA M., PAN X., ELGHARIB M. A., TEOTIA K.,
MALLIKARJUNB. R., TEWARI A. K., GOLYANIK V., KORTYLEWSKI
A., THEOBALT C.: Avatarstudio: Text-driven editing of 3d dynamic
human head avatars. 4

[MST∗20] MILDENHALL B., SRINIVASAN P. P., TANCIK M., BARRON
J. T., RAMAMOORTHI R., NG R.: Nerf: Representing scenes as neural
radiance fields for view synthesis. In European Conference on Computer
Vision (2020). 2, 3, 4, 5, 7

[PYL∗22] PENG Y., YAN Y., LIU S., CHENG Y., GUAN S., PAN B.,
ZHAI G., YANG X.: Cagenerf: Cage-based neural radiance field for
generalized 3d deformation and animation. In Advances in Neural
Information Processing Systems (2022), Koyejo S., Mohamed S.,
Agarwal A., Belgrave D., Cho K., Oh A., (Eds.), vol. 35, Curran
Associates, Inc., pp. 31402–31415. URL: https://proceedings.
neurips.cc/paper_files/paper/2022/file/
cb78e6b5246b03e0b82b4acc8b11cc21-Paper-Conference.
pdf. 2, 3, 8

[TET∗22] TAKIKAWA T., EVANS A., TREMBLAY J., MÜLLER T.,
MCGUIRE M., JACOBSON A., FIDLER S.: Variable bitrate neural
fields. In ACM SIGGRAPH 2022 Conference Proceedings (New York,
NY, USA, 2022), SIGGRAPH ’22, Association for Computing Machin-
ery. URL: https://doi.org/10.1145/3528233.3530727,
doi:10.1145/3528233.3530727. 3

[TTM∗22] TEWARI A., THIES J., MILDENHALL B., SRINIVASAN P.,
TRETSCHK E., YIFAN W., LASSNER C., SITZMANN V., MARTIN-
BRUALLA R., LOMBARDI S., SIMON T., THEOBALT C., NIESSNER
M., BARRON J. T., WETZSTEIN G., ZOLLHÖFER M., GOLYANIK
V.: Advances in neural rendering. Computer Graphics Forum
41, 2 (2022), 703–735. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1111/cgf.14507, arXiv:https:

//onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.
14507, doi:https://doi.org/10.1111/cgf.14507. 3

[TWN∗23] TANCIK M., WEBER E., NG E., LI R., YI B., KERR J.,
WANG T., KRISTOFFERSEN A., AUSTIN J., SALAHI K., AHUJA A.,
MCALLISTER D., KANAZAWA A.: Nerfstudio: A modular framework
for neural radiance field development. arXiv preprint arXiv:2302.04264
(2023). 10, 11

[WRB∗23] WAN Z., RICHARDT C., BOŽIČ A., LI C., RENGARAJAN
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