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Abstract
Artistic authoring of 3D environments is a laborious enterprise that also requires skilled content creators. There have been
impressive improvements in using machine learning to address different aspects of generating 3D content, such as generating
meshes, arranging geometry, synthesizing textures, etc. In this paper we develop a model to generate Bidirectional Reflectance
Distribution Functions (BRDFs) from descriptive textual prompts. BRDFs are four dimensional probability distributions that
characterize the interaction of light with surface materials. They are either represented parametrically, or by tabulating the
probability density associated with every pair of incident and outgoing angles. The former lends itself to artistic editing while
the latter is used when measuring the appearance of real materials. Numerous works have focused on hypothesizing BRDF
models from images of materials. We learn a mapping from textual descriptions of materials to parametric BRDFs. Our model is
first trained using a semi-supervised approach before being tuned via an unsupervised scheme. Although our model is general,
in this paper we specifically generate parameters for MDL materials, conditioned on natural language descriptions, within
NVIDIA’s Omniverse platform. This enables use cases such as real-time text prompts to change materials of objects in 3D
environments such as “dull plastic” or “shiny iron”. Since the output of our model is a parametric BRDF, rather than an image
of the material, it may be used to render materials using any shape under arbitrarily specified viewing and lighting conditions.

CCS Concepts
• Computing methodologies → Machine learning; Natural language processing; Computer graphics;

1. Introduction

Crafting realistic materials for use in physically based rendering
(PBR) is a difficult creative process. A highly specialised material
designer is often needed for workflows that require accurate ren-
dering of real world objects, e.g. VFX, video games, and visual
learning simulations. However, there is a rising trend of user-led
design through natural language, i.e. prompting. A user without
technical design expertise may wish to simply describe their en-
visioned material to obtain a BRDF model that matches their de-
scription. Although tremendous progress has been made in implicit
neural representation of scenes, explicit representation of materi-
als by modeling BRDFs allows tuning and artistic control. In addi-
tion, the synthesized material can then be applied to general settings
across a variety of geometries, viewing conditions and lighting dis-
tributions. In this paper, we address the problem of generation of
traditional BRDF material shaders, specifically NVIDIA’s Omni-
verse.

There are two typical representations for PBR materials. Highly
accurate measured data can be found from real world objects, tab-
ulating the proportion of light reflected along a set of reflected di-
rections for each discretized incident direction. This format can be
highly accurate but has many drawbacks, such as a large memory
cost and being difficult to design and interpret. For usage in real-

time applications, the BRDF can be estimated using parametric
functions known as shaders. In NVIDIA’s Omniverse, a recent 3D
software platform, the Material Definition Language (MDL) for-
mat is used to write shader code specific to representing materials
in real-time rendering. Within Omniverse there are multiple preset
material definitions that are parametric functions defined by a series
of values representing different physical properties.

Often, for a 3D scene to be created by a designer, a prototype
scene is made with fewer time and resources required. Databases
of pre-made materials are utilised to speed up development. Our
goal is to build a tool to aid in this task by allowing designers, or
non-technical users, to describe a scene in text and receive suitable
materials. We do this by utilising CLIP [Radford et al.(2021)], a
multi-modal image and text embedding model. CLIP was trained
to encourage embeddings of texts and images to lie close to one
another in latent space. In doing so, CLIP provides a correlation
rating between text and image pairs, the cosine similarity between
the two embeddings, allowing it to be used as a semantic loss dur-
ing training. With this, we train an autoencoder model to learn a
latent space that matches BRDF parameters, conditioned on text
embeddings. This architecture can be trained to predict parameters
for any target BRDF function in common renderers. Although we
demonstrate this with NVIDIA’s MDL format, and within a game
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Figure 1: BRDF Generation from Material Prompts: Our model allows users to assign materials to objects in real-time scenes by simply
describing their desired appearance. This image shows the Kitchen Set USD scene by Pixar, running in Unreal Engine, with materials
assigned by typing a description into the text box in the lower left of the screen.

engine (Unreal Engine), it can equally be applied within the context
of other material formats and PBR renderers.

2. Related Work

2.1. BRDF Representation

As outlined in the survey paper "BRDF Representation and Acqui-
sition" [Guarnera et al.(2016)], there are many ways to represent the
BRDF. This is due to the many use cases of the function, and the
varying complexity of the representations. Fundamentally, a BRDF
is a function that takes as input an incoming light direction vi and
an outgoing direction vr, and produces the ratio of incoming irra-
diance to outgoing radiance. The equation is,

fr(vi,vr) =
dLr(vr)

dEi(vi)
=

dLr(vr)

Li(vi)cosθidvi
(1)

where Ei is the incident irradiance, Li is incident radiance and
Lr is the reflected radiance. For an incident ray colliding with a
surface with normal n, θi is the measure of the angle between vi
and n. In practice however, much of the complexity of the function
can be removed as light is simulated simply by measured RGB val-
ues, as done in the MERL dataset [Matusik et al.(2003)]. MERL
stores BRDF values in a tabulated grid of ratios of incoming irra-
diance to outgoing radiance, used as a multiplier to incoming RGB
values. In real-time applications, a more memory-efficient repre-
sentation is needed, so the BRDF is approximated analytically by
shader functions. This is code written in a shader language, such
as GLSL [Khronos(2023)], to be run in parallel on the GPU. In
NVIDIA Omniverse, there are many shader functions that can be
used to simulate different material types, all represented in the Ma-
terial Definition Language (MDL). OmniPBR is the default mate-
rial, it can describe dielectric and non-dielectric materials, but lacks
features such as sub-surface scattering. OmniSurface is a more in-

tricate BRDF implementation that can represent a wider range of
materials.

Neural representations of measured BRDFs have become more
popular in recent years for many of the same reasons analytical
BRDFs are popular [Sztrajman et al.(2021)] [Rainer et al.(2019)].
Dimensionality reduction of measured BRDFs [Tongbuasirilai
et al.(2022)] [Chen et al.(2020)] [Zheng et al.(2022)] is particu-
larly useful as it brings many desirable attributes such as lower
memory usage, faster parsing, and more human readable values.
Similarly, learning a latent space of dimensionality reduced repre-
sentations is useful for design and material interpolation [Benamira
et al.(2022)] [Hu et al.(2020)].

Another longstanding challenge in graphics programming has
been BRDF estimation from other modalities. The most common
form of this is to estimate BRDF values from images of real world
materials. These images often consists of single photographs, pos-
sibly captured with flash. To achieve a successful estimation, it is
necessary to render a visually similar image by generating normal,
roughness, and metallic maps. Methods face numerous obstacles,
including complications arising from camera flash and the accu-
rate representation of fine details [Rhee and Lee(2022)] [Boss and
Lensch(2019)] [Otani and Komuro(2021)]. [Zhou et al.(2023)] in-
troduces a material generator learned from single images of sur-
faces.

2.2. Generation from Text

With the coming of more effective language modelling methods,
there has been an explosion of work on generating 3D content from
text. Many of this has been directly inspired from other modali-
ties, such as diffusion methods as used in 2D image generation, ap-
plied to 3D models [Huang et al.(2023)]. Other work has focused
on general scene generation, either unconditioned [Anciukevičius
et al.(2022)] or conditioned on user data, such as object positioning
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for example [Po and Wetzstein(2023)]. The majority of these meth-
ods focus on implicit object generation, that is predicting objects
whose shape and appearance are contained in the neural model that
generates them. This is best shown by the popularity of Neural Ra-
diance Fields [Mildenhall et al.(2020)] [Lin et al.(2023)]. NeRFs
are neural representations of scenes that are entirely contained in
the network, with no explicit graphics resources required. There
has been a small amount of work done on explicit generation from
text, where the generated content is separate from the model that
created it [Khalid et al.(2022)] [Chen et al.(2023a)]. In particular
there is Point-E [Nichol et al.(2022)], a 3D point cloud generation
technique that is conditioned on text prompts. It utilises text to 2D
image generation and image to point cloud diffusion, while being
guided by text prompts. There is a focus on efficiency over accu-
racy in this work, showing promise for an eventual real-time appli-
cation. There is also Fantasia3D [Chen et al.(2023b)], a recent work
that learns to predict geometry and appearance from text prompts,
that can generate multiple texture maps of a small set of micro-
facet BRDF parameters. The results are a highly detailed Spatially-
Varying BRDF (SVBRDF) that is trained for each material prompt.

Recent years have seen a rise in work relating text and visu-
als, mirroring the rise in popularity of generative text models. [Wu
et al.(2020)] present an early work in generating descriptions and
gives a thorough study of the available methods. There has also
been multiple concurrent works that generate materials conditioned
on text prompts. [Hu et al.(2023)] utilise an extensive material
dataset to generate high quality material node graphs using an au-
toregressive model conditioned on a CLIP text or image embed-
ding. [Deschaintre et al.(2023)] use a large dataset of fabric mate-
rials and descriptions to fine-tune CLIP for material retrieval. Both
works make use of CLIP, showing a growing trend within data-
driven material generation.

2.3. Stylising from Text

A popular use of natural language conditioning on 3D content is
stylisation. This is the editing of 3D content to match a given style,
as described in a text. A popular recent method for this is the use
of CLIP embeddings as a semantic loss during training. [Michel
et al.(2022)] propose Text2Mesh, a model for estimating vertex
colour and displacement values in a given mesh, so as to fit a style
described in text. While this is effective at the chosen task, the
edited meshes still lack many modern graphics components. [Chen
et al.(2022)] improve on the visualisation of Text2Mesh by estimat-
ing a wider range of material properties, to achieve a more realistic
rendering of the given mesh. Both of these works however represent
their graphics content implicitly within their models, making their
methods difficult to integrate into traditional workflows. TANGO
proposes disentangling their neural representation and exporting it
as explicit graphics resources, which is effective but not efficient
enough to be feasible for large amounts of data.

3. Method

To develop a real-time material generation system, several compo-
nents are required. First is an efficient physically based renderer
that can provide accurate images of generated materials, this is

NVIDIA Omniverse. Second is a method of evaluating the gen-
erated images against the input text, this is the semantic loss from
CLIP. Third is a source of training data, in this case text and mate-
rial pairs. Lastly is a machine learning model that can make mate-
rial parameter predictions from the CLIP text embedding inputs. In
our system, this is a simple fully connected autoencoder model.

3.1. Data

Training the model requires many samples of text that materials
can be generated from. There were two sources of this data, the
first is from several popular websites of collections of materials
[FreePBR(2023)] [Textures(2023)]. We simply found the 100 most
common nouns and 25 most common adjectives from the material
names across each website, with table 1 displaying the 10 most
common of each. We combined these these to create a dataset of
material prompts with either 0 or 1 adjectives followed by a noun.

The second source of material prompts is from several publicly
available novels, all nouns and associated adjectives are parsed
using part of speech tagging with the NLTK library [Bird and
Loper(2004)]. The parsed descriptions are then screened using con-
creteness ratings available online [Brysbaert et al.(2013)], where
descriptions are only saved if their noun is found to have a partic-
ularly high concreteness rating (at least 4.5 from a maximum of
5). This method can provide realistic material prompts with multi-
ple adjectives, rather than using random combinations of adjectives
from source one, which may contradict each other e.g. "wet, dry
rock".

Nouns Adjectives
wood metallic
metal shiny
brick smooth

concrete polished
stone rough
glass matte

marble reflective
gold glossy

plastic dull
leather dark

Table 1: 10 most common material nouns and adjectives.

3.2. Training

There are two methods for training the autoencoder model, based
on the two sources of material prompts, semi-supervised and un-
supervised. The semi-supervised training procedure requires pairs
of material and material descriptions. To get these, we utilise CLIP
once more to annotate rendered images of randomly generated ma-
terials. To do this we generate a random vector of material parame-
ters m, and render an image I of a sphere with this material applied
to it. A CLIP image embedding zI is found from the material ren-
der, and a vector database of CLIP text embeddings is queried. This
vector database is made from the material prompts created from
common nouns and adjectives, described in 3.1. With this method
we can find the material prompt embedding zT that best fits the ma-
terial render. These values make up a single semi-supervised input
for the model.
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Figure 2: Overview of our training process, both semi-supervised and unsupervised learning.

The material prompt embedding zT is given as input to the au-
toencoder model. A vector of material parameters m̂ is found as the
model’s latent representation of the input embedding. The output of
the model is the reconstructed text embedding ẑT . During training,
the predicted vector of material parameters m̂ is rendered in the
same environment as the target material to get the reconstructed
material image Î, which is then given to CLIP to calculate the final
image embedding ẑI . Finally, all values have been calculated for the
semi-supervised loss function:

L = ||m̂,m||1 + ||ẑT ,zT ||1 + ||ẑI ,zI ||1 +CLIPsim(zT , ẑI ,zI) (2)

Where the CLIPsim function is one minus the difference between
the cosine similarities of the prediction and target embeddings:

CLIPsim(zT , ẑI ,zI) = 1− (sim(zT , ẑI)− sim(zT ,zI)) (3)

The model is then further trained in an unsupervised manner.
Using the text from novels and concreteness screening, a material
prompt is chosen randomly. This prompt is embedded by CLIP, as
zT , and given to the model as input. Identical to the semi-supervised
training, a vector of material parameters m̂ and a reconstructed text
embedding ẑT are outputted by the model. The CLIP image em-
bedding of the rendered material, ẑI , is also generated as in the
semi-supervised training. These are the values used to calculate the
unsupervised loss:

L = ||ẑT ,zT ||1 + sim(zT , ẑI) (4)

3.3. Material Post-Processing

Along with the material parameters found within the latent repre-
sentation, there are also others which were chosen to be predicted in
another way, due to nature of the visual learning task. For example,
though it may seem natural to predict the diffuse colour of the ma-
terial along with the other material parameters, we found that this
caused the model to ignore other visual features and only attempt
to predict colour. This is likely due to the larger influence colour
has than other material parameters on the final rendered image.
As a simple solution to this, we predict colour, along with trans-
parency and refractive index, by querying a vector database of text
and value pairs, to find the most similar text to the material prompt
and assign the paired value. A vector database is a collection of text
embeddings, each with saved values, that allows querying based on

a nearest neighbour search i.e. the nearest embeddings to a search
embedding are found and their saved values retrieved. We use the
open source library Chroma [Chroma(2023)] for this project.

To collect the text-value pairs, we used multiple text-colour
sources [Wikipedia contributors(2023)] [XKCD(2010)], refractive
index tables [Wikipedia contributors(2022)], and transparency val-
ues from material examples [Nvidia(2023)]. Importantly, only a rel-
atively small amount of data is needed for this task as a weighted
sum of values can be calculated using the text embedding distances
found during querying. This allows diversity within the queries
without needing extensive databases of values.

3.4. Implementation

In our implementation, the autoencoder model has 5 encoder layers
and 5 decoder layers. The first layer has a size of 512, matching the
dimension of the CLIP text embedding. Each subsequent layer is
half the size of the previous, until the fifth layer with a size of 32.
The decoder layers mirror those in the encoder. The latent space is
the size of the chosen BRDF parameters, in this case 8 for the pa-
rameters of the OmniSurface function in NVIDIA’s MDL format.
Every layer is fed into a ReLU connection and the final decoder
layer feeds into a sigmoid function. The model was trained with
the Adam optimizer and a learning rate of 1e-4, for several thou-
sand training steps. Our implementation was trained using an RTX
4090 with 24GBs of VRAM, enabling the training of the model
and the rendering of images to be done simultaneously. We ren-
dered images using NVIDIA Omniverse’s Python API which was
called within a Pytorch training loop. Renders used in training were
of a simple scene of a sphere with the current material applied and
a bright environment map. The images were cropped to remove all
visuals but the sphere, to allow CLIP to focus on the material.

4. Evaluation

4.1. Survey

We evaluated our model via a survey of 125 users on Amazon Me-
chanical Turk who indicate pairwise preference for a given prompt.
As a comparison to images rendered with predictions made by our
model, we used the Base Materials pack available on NVIDIA Om-
niverse. This is a database of common materials such as "Beige
Carpet", "Concrete Rough", "Brick", etc. They are created using the
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"OmniPBR" MDL function to estimate the BRDF, this is a default
function of Omniverse and capable of realistically representing di-
verse materials. Our survey was presented as a series of pairs of
images with a single text input which we call the material prompt.
We constructed a fixed set of 250 possible prompts by combining
the 25 most common nouns and 10 most common adjectives in our
text corpus. The target material from the Base Materials pack was
chosen as the material whose name is found to be closest to the
prompt, such as "Concrete Rough" for the prompt "Concrete". This
is in the spirit of what a designer might choose given a material
description. The second image in the pair is a render of an identical
scene, but with a material generated from our model with the mate-
rial prompt as input. The survey-taker either chooses their preferred
image for each prompt or may click "Unsure" if they are unable to
decide. Pairs were shown in random order and sometimes repeated,
after flipping, within a survey.

Figure 3 summarises the results of our survey. It shows that on
average, users were unable to distinguish BRDFs generated by our
model from BRDFs in the database. However, the model seemed
to perform better for some materials (such as chrome) than others
(such as gold). Figure 4 shows the histogram of response times by
users when they chose images rendered with our materials (green)
vs those rendered with images from the Base material database. The
summary of these results is that materials automatically generated
by our model were indistinguishable from those from the manually-
crafted database associated with a specific prompt.

4.2. Example Applications

To demonstrate practical use of the model, we developed appli-
cations for two possible use cases. The first is an Unreal Engine
integration allowing a player to type a material prompt and simply
click to select an object in the world to apply a predicted material
onto. Screenshots of this are shown in figure 5, with multiple ex-
ample prompts. It’s important to note that due to the size of the
model, inference can be extremely fast. Encoding a text embedding
to a material vector takes just 5ms in our tests, allowing our Unreal
Engine demo to set materials in real-time.

Our second demo is a system for initialising a scene conditioned
on a paragraph description. Our application parses the paragraph of
text and extracts the nouns and their associated adjectives. These
are then screened for concreteness using publicly available con-
creteness ratings of words [Brysbaert et al.(2013)]. The final mate-
rial prompts are then inputted to the model and a collection of ma-
terial vectors are generated. These vectors of parameters are then
used to edit a default MDL file, with the target BRDF function, to
export the materials as files. These material files can then be used
within software such as NVIDIA Omniverse to initialise a scene.
Figure 6 shows a visualisation of the process.

4.3. Word2Vec Comparison

To evaluate the material latent space learned by our model, we com-
pare the distribution of samples with two metrics: LPIPS [Zhang
et al.(2018)] distance metric, and Word2Vec [Mikolov et al.(2013)]
distance. LPIPS is a similarity metric between images that utilises

the final layers of deep neural networks, we use it to find the simi-
larity between predicted material samples and the Word2Vec neigh-
bours of their material prompts. To study these distributions, we get
the 10 most common adjectives from our semi-supervised dataset
and find the 10 nearest neighbours of their Word2Vec representa-
tions. Note that we remove the antonyms from the set of neighbours
as Word2Vec is known to group words with inverse meanings. We
use these neighbours, along with the 25 most common nouns from
our dataset, to create material prompts for our model and get the
LPIPS distance between rendered images of the neighbour prompt
materials and starting prompts.

In figure 7, we plot the Word2Vec distance of each material
prompt to its starting prompt compared to its LPIPS distance to the
starting prompt. This plot compares distances of fully coloured ma-
terials, as described in section 3.3, which is likely over represented
in the LPIPS similarity metric. To study the effects of only the ma-
terial parameters on the correlation of distances, figure 8 shows the
same experiment but all predicted materials use the same grey base
colour. This forces LPIPS to only vary based on the material pa-
rameters and not colour.

4.4. Interpolation

Figures 9 and 10 show our study of the interpolation of our model’s
BRDF latent space. Both plots are generated from 1000 samples.

In figure 9, two pairs of ground truth material and text are se-
lected, then two predicted materials are generated using the ground
truth texts. The vectors of material parameters are then interpolated,
between the first ground truth material and the second, and between
the first predicted material and the second. Finally, the LPIPS dis-
tance between rendered images of the two interpolated materials
are plotted.

In figure 10, two ground truth material and text pairs are also
selected, with predicted materials generated similarly. In this case,
only the predicted materials are interpolated, between the first pre-
diction and the second. The LPIPS distance between the interpo-
lated material and the first ground truth material is plotted in blue,
and the distance to the second ground truth material is plotted in
orange.

5. Discussion

5.1. Word2Vec Comparison

Figures 7 and 8 show the results of our study of the latent space
of our model. The correlation in the first figure is near zero, with a
high p-value, implying there is no relation between Word2Vec dis-
tance and LPIPS distance, however this is only for the full colour
renders of materials. Figure 8 compares the two metrics on renders
of materials with a grey base colour, and shows a positive correla-
tion coefficient of 0.354 with a low p-value of 0.027. This suggests
that an increase in the Word2Vec distance between two prompts
relates to an increase in the LPIPS distance between the rendered
images of the prompts predicted materials. As we remove antonyms
from the neighbour set, this result implies that the predictions made
by our model become visually dissimilar as the material prompts’
meanings become more dissimilar. As this correlation is present
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Figure 3: Results from our survey. The plots show the number of times users chose an image rendered with our (green) BRDF against
an image rendered using a BRDF from NVIDIA’s Omniverse database, for a given text prompt. The plots show users’ preferences across
adjectives (a) and nouns (b).
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Figure 4: Histograms of user response times in the survey when
selecting our BRDF (green) vs a material from the database (red).
The histograms are virtually indistinguishable. The slightly larger
mode for our histogram suggests a subtle trend showing that users
who took longer could have had a preference for our BRDFs.

only when materials lack post-processing (i.e. base colour), it sug-
gests that our model follows a similar distribution to Word2Vec, but
that LPIPS is highly sensitive to material colour.

5.2. Interpolation

Our two interpolation results have two different conclusions. Figure
9 shows the interpolation of predicted and ground truth materials.
We see a significant decrease in the distance between the two as
interpolation occurs, before returning to the initial distance. This
is to be expected within a smooth space as for both interpolations
the beginning and end states are "near" each other, as our model
is trained to make nearby predictions. Therefore, on average, the
interpolated materials will approach each other as interpolation in-
creases, before diverging again as interpolation finishes.

The second plot, figure 10, has a very clear interpretation. Pre-
dictions begin near their ground truth targets (the blue line begins
low) before finishing far from their targets after being interpolated
to another material (the blue line ends high). The inverse of this
is shown in the orange line which lowers as the interpolation ap-
proaches the orange line’s ground truth material.

Both of these results imply a smooth material representation that
acts predictably under interpolation.

6. Limitations

6.1. Textual Prompt Space

Although the text prompts (adjective(s) + noun) used to gener-
ate materials are relatively simple, they are actually not trivial to
work with. In fact, having multiple adjectives within the same text
prompt can lead to incongruent results due to contradictory or even
vague adjectives. Furthermore, CLIP model struggles to annotate
randomly generated materials with text prompts possessing multi-
ple adjectives. To overcome these problems, a two-phase approach
was implemented, starting with a semi-supervised training with sin-
gle adjectives followed by an unsupervised training on text prompts
with multiple adjectives. Richer textual prompts were out of the
scope of this paper due to the small amount of labelled data (mate-
rial/prompt) available and the difficulty to obtain high quality ma-
terials.

6.2. Learning BRDF via Abstract Material Descriptions

Since the focus of the encoder is not to learn a neural representation
of a BRDF but to learn the parameters of various materials instead,
using an abstract material description such as MDL for describing
properties (surface, physically based, glass-with-volume, etc.) was
a straightforward choice. Moreover, MDL is a shading language
that does not produce programs for a particular renderer but rather
it defines the behaviour of light at a higher level, which makes it
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(a) Material Prompt: Gold (b) Material Prompt: Steel, Plastic, Brick (c) Material Prompt: Bronze

Figure 5: Examples from the Unreal Engine demo of our model.

(a) Scene description. (b) Parsed material prompts. (c) Collection of generated materials.

Figure 6: An example scene initialisation utilising our model.

a suitable material description for working with different renderers
and under different settings (end-user applications or within more
complex workflows). However, it is important to take into account
the practical implications of the chosen material description, e.g.
rendering time, complexity and portability, as they can easily hin-
der training and applications of the generated materials. As an anec-
dote, we tried to use our method with PBRT material descriptions,
but the high rendering time became a bottleneck while training and
ultimately had to be abandoned.

6.3. Material Post-Processing

Material generation involves learning complex, orthogonal con-
cepts/spaces such as material properties, colour, texture map, nor-
mal map, displacement maps, etc. Whether we should frame this
problem as a group of independent learning tasks or rather as a
combined single task is unclear, the literature has adopted differ-
ent approaches based on the scope, resources and limitations of the
project. Besides, since the project is aimed to end-users, it is im-
portant to take into account how many different interpretations of a
prompt are possible and therefore, it is quite likely that properties
such as colour, transparency and refractive index of the generated
materials will be further tuned to fit user needs.

7. Conclusion

In this paper, we presented a method for training an autoencoder
model to learn a latent space of BRDF parameters. The model can
be implemented to predict parameters for any parametric BRDF
implementation, with our work utilising the MDL functions avail-
able in NVIDIA Omniverse for training data and evaluation. Our
demos show the practical use of such a model, and the capabil-
ity of real-time generation in Unreal Engine. We studied how the
latent space of our model represents BRDF parameters through in-
terpolation experiments and comparisons with the word distribu-
tion in Word2Vec. We believe the results of our evaluations show
an effectiveness in our training method, that a semantic loss for text
and rendered images is capable of learning subtle parameters such
as material values. However, our survey shows the extent of this
method, as it was found to be indistinguishable but not surpassing
database retrieval.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.
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Figure 7: Correlation of LPIPS distance and Word2Vec distance,
for full colour images.
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Figure 8: Correlation of LPIPS distance and Word2Vec distance,
for grey images.
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Figure 9: LPIPS distance between the interpolations of predicted
and ground truth materials.
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Figure 10: Interpolation of predicted materials and LPIPS dis-
tance to fixed ground truths.
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