
Pacific Graphics 2023
R. Chaine, Z. Deng, and M. H. Kim
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 42 (2023), Number 7

Balancing Rotation Minimizing Frames with Additional Objectives

C. Mossman1 , R. H. Bartels2, and F. F. Samavati1

1Department of Computer Science, University of Calgary, Canada
2Department of Computer Science, University of Waterloo, Canada

Abstract
When moving along 3D curves, one may require local coordinate frames for visited points, such as for animating virtual
cameras, controlling robotic motion, or constructing sweep surfaces. Often, consecutive coordinate frames should be similar,
avoiding sharp twists. Previous work achieved this goal by using various methods to approximate rotation minimizing frames
(RMFs) with respect to a curve’s tangent. In this work, we use Householder transformations to construct preliminary tangent-
aligned coordinate frames and then optimize these initial frames under the constraint that they remain tangent-aligned. This
optimization minimizes the weighted sum of squared distances between selected vectors within the new frames and fixed vectors
outside them (such as the axes of previous frames). By selecting different vectors for this objective function, we reproduce
existing RMF approximation methods and modify them to consider additional objectives beyond rotation minimization. We also
provide some example computer graphics use cases for this new frame tracking.

CCS Concepts
• Computing methodologies → Shape modeling; Procedural animation; • Mathematics of computing → Mathematical
optimization;

1. Introduction

In stepping along a curve, we are interested in the transition of the
orthonormal frame at some point to the orthonormal frame at a
neighboring point. Specifically, for a differentiable curve P(u), we
are interested in using the orthonormal frame at Pk = P(uk) to con-
struct another at Pk+1. For our purposes, the orthonormal frame at
each point that we visit has the following three orthonormal vec-
tors: a distinguished vector t, of some particular interest to us (usu-
ally the curve tangent), and two subsidiary vectors, r and s, that
span the plane perpendicular to t.

Though t is fixed, unlimited orthonormal choices for r and s exist
within their plane. In many applications, we would like to choose
these vectors so that neighbouring frames are as similar as possible.
For example, in sweep surfaces, a 2D cross section is swept along
P(u) and its orientation at each uk is defined by the respective lo-
cal frame. If we generate frames in a manner that can create sharp
disparities between consecutive ones, as with Frenet-Serret frames,
then unappealing surfaces with sharp twists result, as in Figure 1.

One way to increase neighbouring frames’ similarity is minimiz-
ing the rotation between them. A rotation minimizing frame (RMF)
with respect to t, also called a Bishop frame or parallel transport
frame, was first proposed by Bishop [Bis75]. In RMFs, every value
of u has an associated orthonormal frame [t(u),r(u),s(u)] where
the derivative of the vector field r(u) is parallel to t(u), and likewise
for s(u). Finding r(u) and s(u) exactly requires solving a system of
first-order differential equations and, thus, may not always be possi-

ble or practical. In this work, we primarily reference a set of works
that calculate discrete approximations of RMFs instead. We refer to
these as the projection method [CW96], rotation method [Blo90],
and double reflection method [WJZL08], to be consistent with the
naming used in [WJZL08].

However, some of these approximations, such as the rotation
method, become unstable when points are sampled too densely. Ad-
ditionally, one may sometimes have additional objectives beyond
the similarity of neighbouring frames; for example, if one wishes
to generate a roller coaster animation for a curve, it may be desir-
able to not only have the cart’s orientation change gradually along
the curve but to also have the acceleration felt by passengers point
in the direction of its floor as much as possible. These RMF approx-
imation works do not explore how to balance rotation minimization
with other constraints or objectives. Finally, approximating RMFs
is not the only way to consider “similarity” between neighbour-
ing frames; we propose to minimize some distance metric between
neighbouring r and s vectors instead. By also minimizing distances
between other pairs of vectors, this technique enables us to include
the additional objectives beyond neighbour similarity.

A high-level visual overview of our work can be found in Fig-
ure 2. Our work starts (in Section 4) by exploring the minimiza-
tion of such a distance metric. The process begins with a frame
[tk,rk,sk] at point P(uk) = Pk, having unit tangent tk at Pk. We con-
struct a following, trial frame

[
t̃k+1, r̃k+1, s̃k+1

]
, at point P(uk+1) =

Pk+1 where t̃k+1 is aligned with the unit tangent tk+1; that is,

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14979

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-6167-8697
https://orcid.org/0000-0001-9440-7562
https://doi.org/10.1111/cgf.14979

2 of 12 C. Mossman, R. Bartels, & F. Samavati / Balancing RMFs with Additional Objectives

(a) Acceleration (b) Frenet-Serret (c) RMF (d) Ours

Figure 1: A comparison of our generalized system compared to other curve tracking options. For a roller coaster track example, frames
based on only acceleration (a) and Frenet-Serret frames (b) have sharp twists. Meanwhile, with RMFs (c), passengers’ acceleration relative
to the cart has no effect on the shape. Our generalized frame tracking (d) allows us to create a “compromise” track between (a) and (c).

Figure 2: An overview of our technique. When calculating the frame at P(uk+1), we may assume that we know its tangent tk+1 and that we
know the previous frame [tk,rk,sk] at P(uk). Using reference frame [ck,ak,bk] and Householder transformation Hk (justified in Section 3), we
construct a trial frame

[
t̃k+1, r̃k+1, s̃k+1

]
aligned with tk+1, as discussed in Section 4.1. Then, in an optimization step described in Section 4.2,

we find appropriate α, β, γ, and δ and set rk+1 = α r̃k+1 +β s̃k+1 and sk+1 = γ r̃k+1 +δ s̃k+1. The effects of [ck,ak,bk], Hk, α, β, γ, and δ on
the handedness of [tk+1,rk+1,sk+1] are discussed in Section 4.3.

t̃k+1 = ±tk+1. We embody the sign chosen for t̃k+1 by the factor
σ = +1 or σ = −1, so that t̃k+1 = σtk+1. As described in Sec-
tion 4.3, σ determines the handedness of the trial frame, and as
described in Section 4.1, changing the sign of σ can quickly pro-
duce a more numerically stable trial frame in certain situations. One
way to obtain trial frames entails choosing any orthonormal frame
[ck,ak,bk] to serve as reference and constructing the Householder
matrix Hk that maps ck onto t̃k+1 and taking Hkak as r̃k+1 and
Hkbk as s̃k+1. Properties of Householder transformations relevant
to the construction of these trial frames are discussed in Section 3.
It has been shown that, compared to other techniques, Householder
transformations produce these orthonormal frames more efficiently
without sacrificing numerical robustness or accuracy [LSA13].

From the trial frame, we produce a preferred frame
[tk+1,rk+1,sk+1] at Pk+1. The preferred frame’s subsidiary
vectors are chosen to be orthonormal linear combinations of the
r̃k+1 and s̃k+1 that they replace. If we wish to minimize the shift
from rk to rk+1 and sk to sk+1, we can minimize, for example,
∥rk+1 − rk∥2

2 + ∥sk+1 − sk∥2
2. More generally, we can include

other objectives and minimize the weighted squared distance sum
∑

n
i=1 wi∥gi,k − fR

i,k+1∥
2, where each fR

i,k+1 is a vector within the
uk+1 frame (such as rk+1), each gi,k is a fixed vector outside of it
(such as rk or something else like acceleration), and wi ∈ R is the

weight. Worded another way, we solve a modified form of Wahba’s
problem [Wah65] where the axis of rotation is predetermined. An
example fR

i,k+1 and gi,k pair is shown in Figure 3. After solving
this subproblem, we finish up by setting the correct sign to
tk+1 = σt̃k+1 so that we have the frame [tk+1,rk+1,sk+1].

The above process enables the following productions, which
compose the main contributions of our work:

• New derivations of existing discrete RMF approximation meth-
ods (Section 5).

• A more efficient and stable calculation of the rotation method
(Section 5.1).

• Optimization of frames along a curve that balances RMF approx-
imation with additional objectives (when considering Section 4
and Section 5 together).

Lastly, we produce sweep surfaces and animations that utilize such
optimization, demonstrating this contribution’s possibilities when
applied to computer graphics (Section 6).

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

C. Mossman, R. Bartels, & F. Samavati / Balancing RMFs with Additional Objectives 3 of 12

Figure 3: Our work involves multiple pairs of fR
i,k+1 and gi,k vec-

tors that we want to minimize the squared distance between. The
fR
i,k+1 vectors are part of the current frame we wish to calculate;

if the frame were to rotate about the tangent, fR
i,k+1 would as well.

Meanwhile, the gi,k vectors are fixed in world space and would not.

2. Related works

2.1. RMF approximation

Frequently, smooth tracking of frames along curves utilizes RMFs.
Since RMFs are defined in terms of an ordinary differential equa-
tion (ODE) [Bis75], such frame tracking may rely on an RMF ap-
proximation for cases where it cannot be assumed that the differ-
ential equation is solvable, or at least not in the time required. One
may approximate the RMF by numerically solving the ODE using
the Runge-Kutta method, but as Wang et al. describe [WJZL08],
this is inefficient and requires a curve’s second derivatives as in-
put. This last point is a disadvantage because the RMF can still
be defined for curves that are only C1 rather than C2 and because
other approximation methods require fewer inputs (for example,
just the tangents). Another approach is to approximate P(u) using
simpler curves whose RMFs can be computed exactly, such as cir-
cular arcs [WJ97] or Pythagorean-Hodograph (PH) curves [JM99].

Discrete RMF approximation methods assign a frame to each of
a finite set of points sampled along the curve. Multiple discrete ap-
proximation methods exist. In what we refer to as the projection
method, Chung and Wang [CW96] minimize the angle between rk
and rk+1 by projecting rk into the plane normal to tk+1; the nor-
malization of the projection becomes rk+1. Meanwhile, the rotation
method minimizes the magnitude of the single rotation that trans-
forms the frame at uk into the frame at uk+1 [Blo90]. The axis of the
resulting rotation is tk×tk+1, meaning the rotation method is unsta-
ble when tk ≈ tk+1, such as if points are sampled densely or curva-
ture is low. The double reflection method by Wang et al. [WJZL08]
transforms frames at uk into the ones at uk+1 using two reflections
such that, if the curve were a spherical curve, the RMF computa-
tion would be exact. The double reflection method has fourth order
global approximation error, improving upon the second order error
of the projection and rotation methods, and the authors provide a
workaround for handling dense sampling. Other discrete approxi-
mation methods also exist, such as the discrete distance minimiz-
ing frame by Chung and Wang [CW96], a technique by Klok that
projects sweep surface cross sections along the line segments of
a curve’s polyline approximation [Klo86], and a method by Krajnc

and Vitrih utilizing quintic PH curves for interpolation [KV12]. For
the most part, none of these discrete approximation methods pro-
vide means to balance RMF approximation with other objectives,
though a modification for closed curves to ensure the frames at the
endpoints line up is provided in [WJZL08].

There can be multiple ways to derive or calculate the same ap-
proximation method. For example, Bischof et al. [BGK17] ap-
ply the constant step-size backward Euler method [HW10] to the
ODE definition of RMFs and derive the projection method as the
least-squares solution. Meanwhile, Chung and Wang [CW96] de-
rive the projection method by looking for the method that produces
an rk+1 whose angle with rk is minimized. Yoon et al. [YNS12]
reframe the double reflection method to use quaternions instead
of reflections. Sometimes, different ways of deriving the approx-
imation methods can reveal relationships between them, such as
how Chung and Wang [CW96] derive the rotation method by try-
ing to minimize the smallest angle one can produce when compar-
ing cos(θ)rk+1 + sin(θ)sk+1 and cos(θ)rk + sin(θ)sk for all θ ∈ R,
which is similar to how they derive the projection method by only
considering the angles between r vectors. Other times, there may
be performance benefits; it can be shown that the double reflection
method by Wang et al. is an alternative way of representing, and
more efficient way of calculating, the global minimum distance in-
tersecting frame by Chung and Wang [CW96]. Likewise, Poston
et al. [PFL95] demonstrate how to compute the rotation method
using fewer operations than in previous works. In a similar vein,
our generalized method provides alternative derivations for mul-
tiple discrete approximation methods, relating them together, and
allows the rotation method to be computed with greater efficiency
and stability than before.

2.2. Non-RMF frame tracking

Other works have also explored ways to track frames along curves
without using or approximating RMFs, taking considerations be-
yond just rotation minimization about the tangent into account.
Carroll et al. [CKS13] define what they call the Beta frame, whose
normal is always parallel to the Frenet-Serret normal (when it ex-
ists) but may face the opposite direction to maintain smoothness.
Meanwhile, Yılmaz and Turgut [YT10] introduce a frame similar
to RMFs but that shares the Frenet-Serret binormal, rather than its
tangent, and is rotation-minimizing with respect to the binormal in-
stead of the tangent. Similarly, Farouki and Giannelli [FG09] use
frames that are rotation-minimizing with respect to P(u)/∥P(u)∥ to
define smoothly varying camera orientations. Meanwhile, Huang
and Ju [HJ16] produce extrinsically smooth direction fields to pro-
duce frames for curves and surfaces that balance the goals of
smoothness and shape conformity. While these works all offer al-
ternatives or modifications to RMFs, they only take the original
curve as input and, beyond that, do not offer any fine-tuned control
or customization of the output frames.

2.3. Householder transformations and frame tracking

Previous works have also discussed the role Householder transfor-
mations could play in curve tracking. Lopes et al. discuss ways to
apply Householder transformations to multiple problems in com-
puter graphics and suggest that frame tracking would be another

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

4 of 12 C. Mossman, R. Bartels, & F. Samavati / Balancing RMFs with Additional Objectives

possible use, though they do not demonstrate how this could be
done [LSA13]. Wang et al. apply Householder transformations di-
rectly to tk to get tk+1, and these Householder transformations
are determined uniquely from the inputs [WJZL08]. Meanwhile,
we use Householder transformations to get trial frames and then
project onto them; because we are only using the Householder
transformations to create a preliminary coordinate frame at each
point, we have the freedom to choose between different reference
frames, and thus different Householder transformations, when cre-
ating them. Details will follow in Sections 3 and 4.

3. Householder transformation preliminaries

As seen in Figure 2, we need to construct orthogonal trial frames
aligned with the curve tangents. We can create these frames us-
ing Householder transformations (an approach justified by works
such as [LSA13]). In this section, we will quickly cover some key
properties of Householder transformations that our work relies on
in preparation for Section 4.1, where our technique is described in
depth.

3.1. Definition and basic properties

A Householder transformation can be expressed in matrix format
as:

H≡ I− 2
hT h

hhT (1)

for identity matrix I and some vector h ̸= 0.

It is immediate from (1) that

1. H is symmetric; that is, HT = H.
2. H is impervious to the scaling of h; that is, h and αh yield the

same H for any scalar α ̸= 0.
3. H is orthogonal; that is HT = H−1, since HT H = HH = I
4. Item 3. guarantees that H preserves norms and angles.

∥v∥=
√

vT v =
√

vT HT Hv = ∥Hv∥

cos(θ) =
vT

1 v2
∥v1∥∥v2∥

=
vT

1 HT Hv2
∥Hv1∥∥Hv2∥

Importantly for us, if [v1,v2,v3] is an orthonormal frame, then
the frame [Hv1,Hv2,Hv3] will also be orthonormal.

5. Every Householder matrix has a determinant equal to −1.
6. Items 1. 3. and 5. imply that the Householder transformation

acts on a cross product of any two vectors v and w as follows:

(Hv×Hw) = det(H)
(

HT
)−1

(v×w) =−H(v×w) (2)

It can also be seen that Householder transformations act as re-
flections across the hyperplane that passes through the origin and is
orthogonal to h. The double reflection method [WJZL08] utilizes
Householder transformations to perform its reflections.

3.2. Formats and computational analysis

Instead of explicitly forming and storing the matrix H, it is more
efficient in storage space and computation time if we merely need

to apply H to one or more vectors, w, in the following way:

Hw≡ w− (ηhT w)h (3)

Here we simply form η← 2
hT h and retain it and h as the essential

part of H.

Both (1) and (3) are computationally stable and accurate under
standard floating-point arithmetic. This fact has been given in nu-
merous papers in computational linear algebra as a strong recom-
mendation for employing Householder transformations wherever
they can be used. Higham provides a comprehensive analysis of
the stability and roundoff properties of Householder transforma-
tions [Hig02]. Numerous computational uses of Householder trans-
formations can be found in [GL13].

3.3. Mapping

The vector h can be constructed to map a multiple of any given
vector p onto some multiple of any other vector q. In this work, we
are primarily interested in the case where p and q are unit vectors,
since we are working exclusively with frames that are triples of
mutually orthogonal unit vectors. With unit vectors, the choice of
multiples for both p and q simplifies to either +1 or −1 alone. In
this case:

h = p−σq =⇒ Hp = σq (4)

where σ is either plus or minus 1 and represents the p and q multi-
ples divided together onto the right.

4. Tracking

A visual overview of our method appears in Figure 2. Given the
frame [tk,rk,sk] at the point Pk = P(uk) of a curve, and having gen-
erated the unit tangent tk+1 at Pk+1 = P(uk+1), we first establish an
orthonormal trial frame

[
t̃k+1, r̃k+1, s̃k+1

]
at Pk+1. Vector t̃k+1 is

aligned with tk+1: t̃k+1 = σktk+1 = ±tk+1 and the remaining two
vectors, [r̃k+1, s̃k+1] are basis vectors for the plane perpendicular to
tk+1, hence also to t̃k+1. The details of constructing a trial frame
using a Householder transformation, Hk employing σk = ±1, are
discussed in subsection 4.1.

We next wish to replace [r̃k+1, s̃k+1] by

rk+1 = αk+1r̃k+1 +βk+1s̃k+1
sk+1 = γk+1r̃k+1 +δk+1s̃k+1

(5)

with the coefficients αk+1, βk+1, γk+1 and δk+1 chosen so that
[rk+1,sk+1] are closest in some chosen measure to [rk,sk], they are
constrained to have unit norms, and rT

k+1sk+1 = 0. From now on,
we may drop the subscripts on these coefficients when they can be
inferred. We discuss the optimization and finding formulas for the
coefficients in subsection 4.2.

Another potentially useful condition is to require the frame at
uk+1 to have the same handedness as that at uk. When r× s = +t,
we call the frame right-handed, and with a negative sign on t, we
call the frame left-handed. Subsection 4.3 shows how our choice of
reference frame handedness and σk, as well as αk+1, βk+1, γk+1 and
δk+1, determine the handedness of [tk+1,rk+1,sk+1], and we also
show how the tracking process can be formulated a priori so that

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

C. Mossman, R. Bartels, & F. Samavati / Balancing RMFs with Additional Objectives 5 of 12

the handedness is enforced, automatically and beforehand, to that
which is desired. The handedness discussion is also summarized in
Figure 5.

4.1. Trial frame

To determine a trial frame where one axis is parallel to tk+1,
we first choose any Reference Frame [ck,ak,bk] and then ap-
ply a Householder transformation to create our trial frame. Com-
pared to other techniques for creating orthonormal frames, using
Householder transformations is efficient without sacrificing nu-
merical robustness or accuracy [LSA13]. To produce the House-
holder transformation, we set hk = ck−σk+1tk+1, where σk+1 =
±1, and construct Hk as in (3). The frame

[
t̃k+1, r̃k+1, s̃k+1

]
=

[Hkck,Hkak,Hkbk] is aligned with tk+1 in the sense that t̃k+1 =
σktk+1 and [r̃k+1, s̃k+1] are two orthonormal vectors that de-
fine/span the plane perpendicular to tk+1.

While the Reference Frame has subscript k, this does not require
that one change the Reference Frame with every tracking step. In-
deed, to parallelize the computation of trial frames, one could use
[ck,ak,bk] ≡ [e1,e2,e3], where ei is the ith column of the identity
matrix, that is, the ith unit vector, for all k.

Two possible uses of σ or [ck,ak,bk] might be mentioned here.
There is always a concern that the vectors ck and t̃k+1 which com-
prise the vector hk that defines the Householder matrix Hk might
be nearly equal, causing a problem with hk ≈ 0 and the division
by hT

k hk. In a typical curve tracking use case, where one would not
expect tk ≈−tk+1, this could likely be avoided by always choosing
σ =−1 and [ck,ak,bk] = [tk,rk,sk]. However, if this choice cannot
be used (for example, if computing the different frames in parallel,
rk and sk would be unavailable), then one can instead fix the hk ≈ 0
problem by reversing the sign of σ or calling forth an alternative
Reference Frame. Neither action changes the final outcome of the
tracking step, since the rk+1 and sk+1 vectors of the Final Frame
are always found through our formulas defining αk+1, βk+1, γk+1
and δk+1 as the optimal vectors for the k to k+1 step. Additionally,
two different reference frames with the same handedness produce
trial frames of the same handedness; such frames can be generated,
for example, by reversing the sign of ck and interchanging ak and
bk. However, reversing the sign of σ results in the reversal of trial
frame handedness that needs to be corrected subsequently. A more
detailed explanation is given in subsection 4.3.

4.2. Optimization

Our next step is to determine coefficients αk+1, βk+1, γk+1 and δk+1
as in (5). To ensure rk+1 and sk+1 are indeed orthonormal, we re-
quire that α

2 +β
2 = 1, γ

2 + δ
2 = 1, and αγ+βδ = 0. With these

constraints, if we are given the values of α and β, we only have two
possibilities for γ and δ: we may choose γ =−β and δ =+α, or we
may choose γ = +β and δ = −α. We encode which of these two
possibilities for γ and δ we use via the variable ρ =±1, so that we
may say γ =−ρβ and δ = ρα. The choice of ρ influences how the
handedness of the trial frame and final frame compare, as discussed
in Section 4.3.

We then find the α and β that best minimize the distances be-
tween pairs of vectors of interest. Let n≥ 1 be the number of vector

pairs to consider and let Rk+1 = [tk+1,rk+1,sk+1] represent a ma-
trix that takes a vector expressed in our coordinate frame at uk+1
into world space. For 1≤ i≤ n, let fi,k+1 = [f t

i,k+1, f r
i,k+1, f s

i,k+1]
T ∈

R3 be vectors of interest in our coordinate frame at uk+1, mak-
ing them fixed relative to said coordinate frame. Meanwhile, let
gi,k ∈ R3 be the corresponding target vectors in world space and
wi ∈ R the weighting for the corresponding objective. We want to
pick the α and β that determine this final frame such that the dis-
tances between Rk+1fi,k+1 and corresponding vectors gi,k ∈R3 are
as small as possible. That is, we wish to find the Rk+1 (determined
by α and β) that minimizes:

n

∑
i=1

wi∥gi,k−Rk+1fi,k+1∥2 (6)

We may note the similarity to Wahba’s problem [Wah65]. The
only differences are that Wahba’s problem states n≥ 2, whereas we
allow n = 1, and that Rk+1 can be any rotation matrix in Wahba’s
problem, whereas in ours the tk+1 axis is fixed.

For convenience, we can define fR
i,k+1 := Rk+1fi,k+1, which

turns (6) into:
n

∑
i=1

wi∥gi,k− fR
i,k+1∥

2 (7)

To solve this minimization problem, we observe the following:

Error =
n

∑
i=1

wi∥gi,k− fR
i,k+1∥

2

=
n

∑
i=1

wi

(
∥gi,k∥2− (2fR

i,k+1)
T gi,k +∥fR

i,k+1∥
2
)

=
n

∑
i=1

wi

∥gi,k∥2 +∥fR
i,k+1∥

2−2

 f t
i,k+1

f r
i,k+1

f s
i,k+1

T tT
k+1

rT
k+1

sT
k+1

gi,k


=

n

∑
i=1

wi

(
∥gi,k∥2 +∥fR

i,k+1∥
2−2 f t

i,k+1tT
k+1gi,k

)
−2

n

∑
i=1

wi

([
f r
i,k+1

f s
i,k+1

]T [
α β

−ρβ ρα

][
r̃T

k+1
s̃T

k+1

]
gi,k

)

= . . . −2
n

∑
i=1

wi

([
α

β

]T [f r
i,k+1 ρ f s

i,k+1
−ρ f s

i,k+1 f r
i,k+1

][
r̃T

k+1
s̃T
k+1

]
gi,k

)

= . . . −2
[

α

β

]T n

∑
i=1

wi

[
f r
i,k+1 ρ f s

i,k+1
−ρ f s

i,k+1 f r
i,k+1

][
r̃T

k+1
s̃T

k+1

]
gi,k

The value of ∑
n
i=1 wi

(
∥gi,k∥2 +∥fR

i,k+1∥
2−2 f t

i,k+1tT
k+1gi,k

)
is

constant with respect to the choice of α and β. Therefore, to mini-
mize the error, we want to maximize:[

α

β

]T n

∑
i=1

wi

[
f r
i,k+1 ρ f s

i,k+1
−ρ f s

i,k+1 f r
i,k+1

][
r̃T

k+1
s̃T

k+1

]
gi,k (8)

This is the dot product of two 2D vectors. Since [α,β]T is of unit
length, this dot product is maximized if [α,β]T points in the same
direction as the sum on the right. This means that the solution to

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

6 of 12 C. Mossman, R. Bartels, & F. Samavati / Balancing RMFs with Additional Objectives

(b)

avg

(c)(a) (d)

Figure 4: A visualization of the optimization step. In (a), we see how frame choice affects distances between fR
i,k+1 and gi,k vectors; we want

to minimize the squared sum of these distances. In (b), we consider a specific example; on the right are values whose global positions are
already known and on the left are vectors whose positions will depend on the final calculated frame. Because the distance between gi,k and
fR
i,k+1 along tk+1 cannot change, we can project these vectors into the plane spanned by r̃k+1 and s̃k+1 and work with corresponding 2D

vectors gi,k and fR
i,k+1. For simplicity, in this example, we choose fR

i,k+1 such that fR
i,k+1 is of unit length and we assume that our final and trial

frames have the same handedness. In (c), since jointly rotating a pair of vectors preserves the distance between them, we can rotate fR
i,k+1

by Ri,k+1 such that Ri,k+1fR
i,k+1 is aligned with the rk+1 axis and rotate gi,k by the same Ri,k+1. The minimization problem then becomes

the problem of finding rk+1 in the coordinate frame with axes r̃k+1 and s̃k+1 closest to these Ri,k+1gi,k. The solution is the unit length
normalization of the weighted average of the Ri,k+1gi,k, as shown in (d).

the generalized form is the normalized weighted average of the un-
normalized individual solutions for each i.

To better visualize how this method works, as in Figure 4, we can
observe the following. Let us denote [r̃T

k+1, s̃T
k+1]

T gi,k by gi,k ∈R2,

[r̃k+1, s̃k+1]
T fR

i,k+1 by fR
i,k+1 ∈ R2. and [r̃k+1, s̃k+1]

T rk+1 = [α,β]T

by rk+1 ∈ R2. These represent the projections of gi,k, fR
i,k+1, and

rk+1, respectively, into the plane spanned by r̃k+1 and s̃k+1 using a
2D coordinate system with axes r̃k+1 and s̃k+1. Because distances
along tk+1 are fixed, we can minimize ∑wi∥gi,k− fR

i,k+1∥2 instead
of (7). Now, we may observe that:[

f r
i,k+1 ρ f s

i,k+1
−ρ f s

i,k+1 f r
i,k+1

]
= Ri,k+1

∥∥∥fR
i,k+1

∥∥∥ (9)

for some 2D rotation matrix Ri,k+1. Then we can rewrite (8) as:

rk+1
T

n

∑
i=1

Ri,k+1∥f
R
i,k+1∥gi,k (10)

Using steps similar to the ones we used to find (8), one can show
that maximizing (10) is the same as minimizing

∑wi

∥∥∥(Ri,k+1

∥∥∥fR
i,k+1

∥∥∥gi,k

)
− rk+1

∥∥∥2
(11)

That is, we want to find rk+1 that, in terms of r̃k+1 and
s̃k+1, is as close as possible to our various rotated and scaled

Ri,k+1

∥∥∥fR
i,k+1

∥∥∥gi,k vectors. This observation allows us to produce
the visualization shown in Figure 4. In the figure, for the sake of

simplicity, we only selected fR
i,k+1 such that we have

∥∥∥fR
i,k+1

∥∥∥2
= 1

and we also label rk+1 as just rk+1. This figure also ignores the
ρ =−1 case and how one in general would ensure consistent frame
handedness, which is the focus of subsection 4.3 and Figure 5.

4.3. Handedness

In this subsection, we discuss how to determine and control the
handedness of final frames. First, we can show that the handedness
of the trial frame

[
t̃k+1, r̃k+1, s̃k+1

]
= [Hkck,Hkak,Hkbk] is the op-

posite of the the handedness of the reference frame [ck,ak,bk]. This
comes from (2), which shows that r̃k+1× s̃k+1 = Hkak×Hkbk =
−Hk(ak×bk). If, similar to our use of ρ and σ, we use the variable
ω =±1 to encode the reference frame’s handedness, then:

ak×bk = ωck =⇒ r̃k+1× s̃k+1 =−ω t̃k+1 (12)

Next comes the impact of ρ. To save space, the below omits the

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

C. Mossman, R. Bartels, & F. Samavati / Balancing RMFs with Additional Objectives 7 of 12

Left

Right

Left Right

Left Right LeftRight

 (i.e.,) (i.e.,)

Trial

Pre-Final

Final

Reference Right

Left

Right Left

Right Left RightLeft

 (i.e.,) (i.e.,)

Figure 5: Handedness influence of various tracking options, as discussed in Section 4.3.

subscripts from rk+1, sk+1, r̃k+1 and s̃k+1. Using properties of the
cross product, we may observe that:

r× s = (αr̃+βs̃)× (−ρβ r̃+ρα s̃) = · · ·= ρ(r̃× s̃) (13)

Thus, the handedness of the pre-final frame
[
t̃k+1,rk+1,sk+1

]
is the

same as that of the trial frame
[
t̃k+1, r̃k+1, s̃k+1

]
if ρ =+1 (that is,

γ =−β) and the opposite if ρ =−1 (that is, γ = β).

Finally comes the impact of σ. Since t̃k+1 = σtk+1, it is clear that
the handedness of the final frame [tk+1,rk+1,sk+1] is the same as
the handedness of the pre-final frame

[
t̃k+1,rk+1,sk+1

]
if σ = +1

and the opposite if σ =−1.

The above is summarized visually in Figure 5. Using our vari-
ables σ, ρ, and ω, we can also produce the following summary:

rk+1× sk+1 = ρ(r̃k+1× s̃k+1) = ρ(−ω)t̃k+1 =−ρωσ tk+1 (14)

4.4. Pseudocode implementation

We have compiled the details of our frame tracking approach as
pseudocode in Algorithm 1. It is important to note two things about
this pseudocode. First, as mentioned before and as we will demon-
strate explicitly in Section 5, for some values of i, the gi,k may
be functions of rk and sk rather than constants; this enables RMF
approximation. Secondly, the pseudocode covers the most general
case; more efficient code is possible in specific cases, such as our
rotation method calculation in Section 5.1.

Supplementary material contains an operation cost breakdown.

5. Deriving and calculating discrete RMF approximation
methods

With our generalized technique, we can derive multiple preexisting
discrete RMF approximation methods. This reveals relationships
between them. Additionally, the proof that we can derive the rota-
tion method also showcases a new method of computing it that is
more efficient and stable than previous ones.

5.1. Deriving and calculating the rotation method

Let us minimize (7) with n = 2, fR
1,k+1 = rk+1, fR

2,k+1 = sk+1, g1,k =
rk, g2,k = sk, and w1 = w2 = 1.

That is, we wish to minimize:

∥rk+1− rk∥2
2 +∥sk+1− sk∥2

2 (15)

From (8), we can see that[
α

β

]
=

1∥∥∥∥[rT
k r̃k+1 +ρsT

k s̃k+1
rT

k s̃k+1−ρsT
k r̃k+1

]∥∥∥∥
2

[
rT

k r̃k+1 +ρsT
k s̃k+1

rT
k s̃k+1−ρsT

k r̃k+1

]
(16)

We can show that (16) generates the same frames as the rota-
tion method [Blo90], and we can also show how these frames can
be calculated in fewer steps and with more stability than in previ-
ous works. For this proof, we assume right-handed [t,r,s] frames;
the proof for left-handed frames would be nearly identical. Since
both methods are coordinate invariant, we can choose to work in
a coordinate system where tk and tk+1 lie in the xy-plane and
tk = [1,0,0]T . Then

rk =

 0
cos(θ)
sin(θ)

 , sk =

 0
−sin(θ)
cos(θ)

 , tk+1 =

cos(φ)
sin(φ)

0


for some angles θ,φ ∈ R.

The rotation method rotates frame k to frame k+1 by the small-
est angle possible. If tk = tk+1 (which, in our setup, happens if
φ = 0), then the matrix representing such a rotation is just I. Oth-
erwise, the method calculates an axis of rotation tk×tk+1

∥tk×tk+1∥ and an
angle of rotation arccos(tk · tk+1) and then performs this rotation on
rk and sk. In our setup, the axis of rotation is clearly [0,0,1]T and
the angle of rotation is arccos(tk · tk+1) = φ+2πm for some m ∈ Z.
Therefore, regardless of the value of φ used to construct tk+1, we
can represent the rotation method with the matrixcos(φ) −sin(φ) 0

sin(φ) cos(φ) 0
0 0 1

 (17)

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

8 of 12 C. Mossman, R. Bartels, & F. Samavati / Balancing RMFs with Additional Objectives

Algorithm 1 Frame Tracking
Input: Unit tangent vectors tk, vectors fi,k+1 and gi,k, and weights wi for k = 1,2, . . . ,m+1 and i = 1,2, . . . ,n. Additionally, a choice of final

frame handedness. Finally, gi,1 may rely on an initial frame unit vectors r1 and s1, making them inputs as well.
Output: Frames [tk,rk,sk], k = 1,2, . . . ,m+1

1: for k from 1 to m do
2: ck, ak, bk = getReferenceFrame(...) ▷ Choice of reference frame is flexible (see Section 4.1).
3: ω = 1 if ak×bk = ck, else -1 ▷ Stores [ck, ak, bk] handedness.
4: σ = chooseSigma(...) ▷ Either -1 or +1; also flexible (see Section 4.1).
5: h = ck−σ tk+1 ▷ Determines Householder transformation (i.e., reflection) plane.
6: r̃k+1 = rk− (2/hT h)(hT rk)h ▷ Set trial frame vectors via Householder transformation.
7: s̃k+1 = sk− (2/hT h)(hT sk)h
8: ρ =−ωσ if final frames should be right-handed, else ωσ ▷ Logic for choice of ρ comes from Section 4.3.
9: sum = [0,0]T

10: for i from 1 to n do ▷ Performs summation described in Section 4.2.

11: sum += wi

[
f r
i,k+1 ρ f s

i,k+1
−ρ f s

i,k+1 f r
i,k+1

][
r̃T

k+1
s̃T

k+1

]
gi,k ▷ Components of fi,k+1 are denoted f t

i,k+1, f r
i,k+1, and f s

i,k+1.

12: end for
13: [α,β]T = sum/∥sum∥ ▷ Normalize the weighted sum variable.
14: rk+1 = α r̃k+1 +β s̃k+1 ▷ We now calculate the final frame vectors using the trial frame ones.
15: sk+1 =−ρβ r̃k+1 +ρα s̃k+1 ▷ Could also calculate sk+1 via cross-product from tk+1 and rk+1.
16: end for

Then it is clear that the rotation method generates vectors

rk+1 =

−cos(θ)sin(φ)
cos(θ)cos(φ)

sin(θ)

 , sk+1 =

 sin(θ)sin(φ)
−sin(θ)cos(φ)

cos(θ)

 (18)

For our approach, we must first choose a reference frame and
σ to produce r̃k+1 and s̃k+1. Any choice produces the same result
(so long as we choose the correct ρ, based on the other choices’
impact on handedness). For this discussion, we choose σ =−1 and
a reference frame of [tk,rk,sk] and we will show that these choices
result in r̃k+1 = rk+1 and s̃k+1 = sk+1, a fact one can use to save
computation steps when calculating the rotation method compared
to previous works. These choices do not work if tk = −tk+1, as
then we would have h = 0, but the steps below could in that case be
replicated with a different reference frame so that all cases for tk+1
are covered. Our choice of reference frame means that h = tk −
σtk+1 = tk + tk+1 = [1+ cos(φ),sin(φ),0]T . Therefore, using (3)
and simplifying, we have:

r̃k+1 =

 0
cos(θ)
sin(θ)

−(2cos(θ)sin(φ)
2+2cos(φ)

)1+ cos(φ)
sin(φ)

0


=

 0
cos(θ)
sin(θ)

−
 cos(θ)sin(φ)

cos(θ) (1+cos(φ))(1−cos(φ))
1+cos(φ)
0


=

−cos(θ)sin(φ)
cos(θ)cos(φ)

sin(θ)



We can see that r̃k+1 then matches the rk+1 given in (18). A similar
set of steps shows that the s̃k+1 for this reference frame and σ also
matches the sk+1 in (18).

Because our reference frame is right-handed and σ = −1, we
know, from Section 4.3 (or the diagram in Figure 5), that we need
to use the γ = −β (that is, the ρ = +1) coefficients. By plug-
ging the necessary values into (16) and performing some simple
trigonometric simplification, we see that α = 1,β = 0,γ = 0,δ = 1,
meaning rk+1 = r̃k+1 and sk+1 = s̃k+1 for this case. Therefore,
when using [ck,ak,bk] = [tk,rk,sk] and σ =−1, we could omit the
last, redundant “projection” step and just use [tk+1,rk+1,sk+1] =
[tk+1, r̃k+1, s̃k+1] as our final frame. Let us call this the negation-
and-reflection method.

While our approach and the typical way of computing the ro-
tation method generate the same results in theory, when working
with floating-point representations of the inputs, our approach can
be more robust when densely sampling a curve. Behaviour under
dense sampling is important to consider because, in theory, increas-
ing the number of samples along a continuous curve improves dis-
crete approximation of its RMFs. Specifically, let u = 0 to u = L
represent the parameter range of a curve and suppose the curve
is evenly sampled so that uk = (k− 1)ℓ for k = 1,2, . . . ,m + 1
and ℓ = L/m. Then prior work shows that the double reflection
method’s error is O(ℓ4) [WJZL08] and the rotation method’s er-
ror is O(ℓ2) [PFL95]. The idea that error would decrease as sam-
pling increases is not surprising. For example, consider using only
two samples: the start and end of the curve. This would be highly
inaccurate, because many different curves have identical endpoint
locations and tangents, but discrete RMF approximation would as-
sign them all one common pair of frames unless more samples are
taken.

However, because of finite floating-point precision, the rotation
method lacks robustness when tk and tk+1 are too similar, such as
when sampling a curve densely enough (especially in low curvature
areas). If tk ≈ tk+1, then tk× tk+1 ≈ 0, making the axis of rotation
ambiguous. Meanwhile, if tk ≈ tk+1, then our method just involves

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

C. Mossman, R. Bartels, & F. Samavati / Balancing RMFs with Additional Objectives 9 of 12

a reflection across span{h}⊥, where h = tk + tk+1 ≈ 2tk, which is
well-defined.

To observe this, we can construct an example using a
Pythagorean-hodograph (PH) curve, for which exact RMFs may be
computed via the process in [Far02]. We create a cubic Bézier PH
curve from desired endpoints P0 = [0,0,0]T and P3 = [23,266,1]T

and respective unit tangents [0,1,0] and [23/265,264/265,0]T ,
chosen so that the curve has low, but still nonzero, curvature for
most of its length. We can use [JM99] to find the correct mid-
dle control points P1 = [0,2,0]T and P2 = [0,2,1]T . To rewrite
the curve in the form required by [Far02], we follow [FGS15].
Figure 6 shows how, compared to those generated by the rotation
method, frames generated by the negate-and-reflect method for this
PH curve are closer to the exact frames found using [Far02] at high
resolutions.

26 27 28 29 210 211 212 213

10−7

10−6

10−5

number of segments

m
ax

er
ro

r(
ra

di
an

s)

Rotation
Ours

Rotation*
Ours*

Figure 6: Results of comparing the negate-and-reflect method
(ours) and rotation method for our sample curve. Error represents
the max angle (in radians) between exact rk generated by [Far02]
and approximate rk across all 1≤ k ≤ m+1, where m is the num-
ber of curve segments in our discrete approximation. We used 32-
bit floats for our computations. The plot uses “Rotation*” and
“Ours*” to show what happens if we take the extra step of normal-
izing coordinate frame vectors before calculating the next frame.
With or without this extra correction, the negate-and-reflect method
produces lower error as the number of segments n increases.

Another benefit of our calculation over previous ones is the
number of steps required. An efficient implementation of the ro-
tation method, which we used to generate Figure 6, can be found
in [PFL95], and an analysis of this implementation in [WJZL07]
shows that, when written as efficiently as possible, it uses 26
additions, 36 multiplications, and one division to compute rk+1
and sk+1. In comparison, if one uses our negation-and-reflection
method with σ =−1 and [ck,ak,bk] = [tk,rk,sk], then our method
only requires only 13 additions, 16 multiplications, and one divi-
sion (one first calculates rk+1 = r̃k+1 as described in (3) and then
computes sk+1 via cross product; this paper’s supplementary mate-
rial has a detailed breakdown). This is summarized in Table 1.

Table 1: Step counts for the efficient rotation method implementa-
tion in [PFL95] versus our negation-and-reflection method.

Additions Multiplications Divisions
Rotation 26 36 1

Ours 13 16 1

5.2. Deriving the projection method

We have shown that minimizing ∥rk+1− rk∥2
2 +∥sk+1− sk∥2

2 pro-
duces the rotation method. If we simply minimize ∥rk+1−rk∥2

2 (or,
equivalently, minimize ∥rk+1− rk∥2), then we produce the projec-
tion method. To show this, substitute n = 1, w1 = 1, fR

1,k+1 = rk+1,
and g1,k = rk into (8).

Note that, in general, there is nothing special about minimizing
the distance between r vectors compared to minimizing the dis-
tance between s vectors. One could choose to instead project sk into
the plane orthogonal to tk+1 and normalize to obtain sk+1 and then
obtain rk+1 via cross product. One could even alternate between
the two: for example, one could calculate ř as the normalized pro-
jection of rk onto span{tk+1}⊥, calculate š as the normalized pro-
jection of sk onto span{tk+1}⊥, and then choose to set rk+1 = ř or
sk+1 = š based on how ∥rk− ř∥ and ∥sk− š∥ compare.

Chung and Wang [CW96] extend this last idea to derive the
rotation method. Rather than just considering the difference be-
tween r and s vectors, however, they aimed to find the rk+1 and
sk+1 that would minimize the smallest possible angle (directly re-
lated with distance for angles less than π radians) between any
cos(θ)rk + sin(θ)sk and cos(θ)rk+1 + sin(θ)sk+1 in the consecu-
tive frames. The smallest possible angle between such two vectors
is the angle between the two planes they would lie in, which is also
the angle between tk and tk+1, and so the rotation method provides
the solution. Our version of the rotation method in (16) can also
be seen as extending the projection method to derive the rotation
method; there, the final α and β can be interpreted as the normal-
ized weighted average of the α and β we would receive by using
the projection method on r and the projection method on s, with
the weights being the lengths of the respective projections.

5.3. Approximation methods that utilize frame origins

All of the RMF approximation methods we have re-derived so
far only consider the distances between vectors, but consecutive
frames along a curve do not share the same origin; thus, consider-
ing the positional offset of the frames in the approximation is also
worth considering. Chung and Wang, for example, consider mini-
mizing the distance between P(uk)+ rk and P(uk+1) in what they
call their discrete distance minimizing frame [CW96]. Using La-
grange multipliers, their solution is the normalized projection of
the vector rk−P(uk+1)+P(uk) into the span{tk+1}⊥ plane. While
we omit the steps to show this, as they are straightforward, one can
see that our generalized setup provides the same solution when set-
ting n = 1, wi = 1, fR

1,k+1 = rk+1, and g1,k = rk−P(uk+1)+P(uk),

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

10 of 12 C. Mossman, R. Bartels, & F. Samavati / Balancing RMFs with Additional Objectives

which, as required, minimizes

∥rk+1− (rk−P(uk+1)+P(uk))∥2

=∥(P(uk+1)+ rk+1)− (P(uk)+ rk)∥2

Of course, depending on the application, one may want to min-
imize multiple such distances. One case that gives an interesting
result is minimizing the total squared distance between P(uk)+ vk
and P(uk+1)+vk+1 for the n = 4 cases v =±r and v =±s. In other
words, for a sweep surface with cross section vertices P(uk)± rk
and P(uk)± sk (four vertices arranged in a square), this would be
the sum of the squared lengths of the edges between the cross sec-
tions. By plugging the values into Equation (7) and simplifying,
one can see that the given error is minimized if and only if the er-
ror in Equation (15) is minimized, meaning the same solution as
in (16), and thus the rotation method, applies. In fact, the result
holds for any polygonal cross-section with rotational symmetry of
order four.

Lastly, to a more limited degree, we can relate our method
to the double reflection method [WJZL08]. In that method, one
computes two Householder transformations, namely H0, with h =
P(uk+1)−P(uk), and H1, which maps H0tk to tk+1. Then one sets
rk+1 = H1H0rk and sk+1 = H1H0sk. Our negation-and-reflection
method from Section 5.1 is identical except for replacing H0 with
a different reflection, one taking tk to t̃k+1 = σtk = −tk without
changing rk or sk, as they lie in the hyperplane that is reflected
about. Alternatively, one can say that the double reflection method
is the same as the rotation method if P(uk+1)−P(uk) is estimated
by tk.

As for actually calculating the double reflection method, con-
sider an orthonormal frame [tL

k ,r
L
k ,s

L
k] = [−H0tk,H0rk,H0sk],

which we know has the same handedness as [tk,rk,sk] because
of (2). Now suppose one minimizes the following:

∥rk+1−H0rk∥2 +∥sk+1−H0sk∥2 (19)

We know from Section 5.1 that we can minimize this by find-
ing the Householder transformation H′ that maps −tL

k to tk+1 and
setting rk+1 = H′rL

k and sk+1 = H′sL
k . But since −tL

k = H0tk,
we can conclude that minimizing (19) yields the same result as
the double reflection method. This adjustment of Section 5.1 per-
forms the exact same computations as the original double reflection
method, meaning it offers no additional computational stability or
efficiency. However, this reframing of double reflection, in addition
to the above insight into how it compares to the rotation method,
allows augmentation with additional objectives (similar to how we
augment the rotation method in Section 6).

6. Example applications to computer graphics

In this section, we demonstrate some sample applications of the
generalized frame tracking from Section 4.2 to computer graphics.
Because of the ability to balance multiple objectives, and because
objectives are provided in a way that would be easy for artists to
understand and visualize (vector fields along the curve), we imag-
ine there could be many applications beyond what we showcase

here. In all figures referenced in this section, the RMF approxima-
tion method that we augment with additional objectives is the rota-
tion method, meaning that frame origins do not impact the calcu-
lation as they do with methods like double reflection; we only rely
on curve tangents. Therefore, like in (15) for the rotation method,
fR
1,k+1 = rk+1, fR

2,k+1 = sk+1, g1,k = rk, g2,k = sk, and w1 = w2.
Then we include g3,k as our additional objective, use w3 as its
weight, and set fR

3,k+1 = sk+1 as the in-frame vector to align the
additional objective with. More visuals, including animated video,
can be found in this paper’s supplementary materials.

When simulating a roller coaster, one generally wants to have
the cart’s floor aligned so that its normal force opposes the gravity
and provides the acceleration of the passengers. This way, passen-
gers are pulled down into their seats. However, in artistic situations
where exact realism is not required, one might want to smooth out
the sharp twists that can result from this choice of normal vector,
such as the twist seen in Figure 1a. At the same time, a pure RMF
might capture none of the acceleration information, as seen in Fig-
ure 1c. Our version in Figure 1d offers a compromise between the
two, with the contribution of each factor weighted by the user. Here,
fR
3,k+1 = sk+1 and g3,k is aligned with the direction of passengers’

acceleration minus gravity. Acceleration can be calculated numeri-
cally by assigning the cart a fixed speed at the highest point of the
coaster, using conservation of energy to compute the speed at each
point, using the tangent vectors to compute velocities, and then us-
ing the velocities to approximate acceleration. A figure showing
the effect of different values for the w1 = w2 influence of the RMF-
approximating component can be found in this paper’s supplemen-
tary material.

In Figure 7 we model a snake as a sweep surface. In this case, we
set fR

3,k+1 = sk+1 and g3,k to point directly upwards in world-space.
This allows us to enforce that all parts should generally be ground-
level (i.e., that rk+1 should be parallel to the ground plane), which
prevents the head from turning upside-down as it would with a pure
RMF approximation. We use the same configuration to animate a
drone’s flight, as seen in Figure 8.

One thing should be noted about closed curves. Currently, our
work does not ensure that the first and last frames generated are
equivalent. The solution by Wang et al. [WJZL08] for pure RMFs
– to add the angle difference between the two, in an accumulating
fashion, to all frames along the curve so that the last two line up – is
not ideal for our proposed applications. For example, along lengthy
straight sections of a roller coaster, the track would keep twisting
as this difference is distributed gradually along it, whereas the carts
could be pointing straight upwards to both align with acceleration
and reduce the differences between frames. A workaround for now
could be to apply this technique over a segment of the curve where
such effect is not noticeable.

7. Future work

Currently, our work offers a solution to a modified version of
Wahba’s problem where rotation is constrained about a single axis
and thus has only one degree of freedom. Meanwhile, in the orig-
inal Wahba’s problem, the rotation being optimized has three de-
grees of freedom. It would be interesting to consider the case where

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

C. Mossman, R. Bartels, & F. Samavati / Balancing RMFs with Additional Objectives 11 of 12

(a) RMF (b) Ground-aligned (c) Ours

Figure 7: A snake sweep surface example demonstrating three frame tracking options. For each, the top row contains a side view and a
birds-eye view of the render, while the bottom row contains a larger view of the twisting region highlighted in the side view. Using only RMF
approximation (a), if one chooses the starting frame so that the belly lies on the ground, then the head is upside-down. Meanwhile, if we
simply choose the coordinate frames so that one of the axes is parallel to the ground (b), then sharp twists can appear. Our version (c) allows
one to balance smoothness with ground alignment.

(a) RMF (b) Ground-aligned (c) Ours

Figure 8: A drone example. Using only RMF approximation (a), the drone flies upside-down for a substantial period. Meanwhile, if we
simply choose the coordinate frames so that one of the axes is parallel to the ground (b), the drone’s orientation rapidly flips during its climb.
Our version (c) smooths out the transition.

there is exactly two degrees of freedom. Part of the motivation here
would be for the sake of completeness, though it could still be rel-
evant to considering different ways that RMF approximations can
be derived and calculated, as Chung and Wang derive the rotation
and double reflection method by minimizing the distance between
a single pair of vectors where each vector has the freedom to rotate
about its respective tangent, creating a problem with two degrees of

freedom. In comparison, the future work we are proposing would
be figuring out whether one can accommodate arbitrary pairs of
vectors in these two frames.

In this work, we have focused on optimizing distances only be-
tween consecutive frames. However, one may instead be interested
in minimizing the general error in (7) globally, as we imagine there

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

12 of 12 C. Mossman, R. Bartels, & F. Samavati / Balancing RMFs with Additional Objectives

may be situations in graphics, robotics, and more where it is this
global error, rather than local error, that one wants to minimize.
This may also offer us a better approach to handle closed curves in
our generalized optimization.

Finally, another possibility for future work is to use the freedom
offered by our generalized technique to track coordinate frames
across entire surfaces rather than just along curves. As with the
issue our current method faces for closed curves, one primary chal-
lenge here would be closed surfaces.

8. Conclusion

In this work, we have shown how one can track frames along curves
by considering the distances between vectors in consecutive coor-
dinate frames as well as vectors representing other objectives. We
also demonstrated how to represent some existing RMF approxima-
tion techniques using this method. The benefits of this are relating
the techniques together in new ways, deriving a new efficient and
stable way to compute the rotation method, and allowing existing
RMF approximation methods to be balanced with other objectives
by adding other distances to minimize into the objective function.
Finally, we have discussed some examples of how the last benefit
can be applied to create 3D models and animations.

Acknowledgement

We acknowledge the support of the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC), Alberta Innovates, and
Alberta Advanced Education. We wish to thank George Labahn,
Director of the Symbolic Computation Group and Professor at the
David R. Cheriton School of Computer Science of the University
of Waterloo for providing us a copy of Maple 2018. We also
wish to thank Professor Przemyslaw Prusinkiewicz, Department
of Computer Science, University of Calgary, for asking how our
work compared to the rotation method, inspiring us to perform the
work in Section 5.1. We thank the referees for their helpful sugges-
tions in the review phase. Finally, we thank Lakin Wecker, Moham-
mad Hameed, Jeffrey Layton, and Andrew Owens (students in the
Department of Computer Science, University of Calgary); Camilo
Talero (student in the Department of Computer Science, University
of British Columbia); and Professor Adam Runions (Department of
Computer Science, University of Calgary) for insightful discussion
informing the examples in Section 6.

References

[BGK17] BISCHOF B., GLÜCK T., KUGI A.: Combined path follow-
ing and compliance control for fully actuated rigid body systems in 3-d
space. IEEE Transactions on Control Systems Technology 25, 5 (2017),
1750–1760. 3

[Bis75] BISHOP R. L.: There is more than one way to frame a curve. The
American Mathematical Monthly 82, 3 (1975), 246–251. 1, 3

[Blo90] BLOOMENTHAL J.: Calculation of Reference Frames along
a Space Curve. Academic Press Professional, Inc., USA, 1990,
p. 567–571. 1, 3, 7

[CKS13] CARROLL D., KÖSE E., STERLING I.: Improving frenet’s
frame using bishop’s frame. Journal of Mathematics Research 5 (11
2013). 3

[CW96] CHUNG K., WANG W.: Discrete moving frames for sweep
surface modeling. In Proceedings of pacific graphics (1996), vol. 96,
pp. 159–173. 1, 3, 9

[Far02] FAROUKI R. T.: Exact rotation-minimizing frames for spatial
pythagorean-hodograph curves. Graphical Models 64, 6 (2002), 382–
395. 9

[FG09] FAROUKI R. T., GIANNELLI C.: Spatial camera orientation con-
trol by rotation-minimizing directed frames. Computer Animation and
Virtual Worlds 20, 4 (2009), 457–472. 3

[FGS15] FAROUKI R. T., GIANNELLI C., SESTINI A.: Identification
and “reverse engineering” of pythagorean-hodograph curves. Computer
Aided Geometric Design 34 (2015), 21–36. 9

[GL13] GOLUB G. H., LOAN C. F. V.: Matrix Computations, fourth ed.
Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins
University Press, 2013. 4

[Hig02] HIGHAM N. J.: Accuracy and Stability of Numerical Algorithms,
second ed. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2002. 4

[HJ16] HUANG Z., JU T.: Extrinsically smooth direction fields. Com-
puters & Graphics 58 (2016), 109–117. Shape Modeling International
2016. 3

[HW10] HAIRER E., WANNER G.: Stiff and differential-algebraic prob-
lems. Solving ordinary differential equations II. Springer, Berlin, 2010.
3

[JM99] JÜTTLER B., MÄURER C.: Cubic pythagorean hodograph spline
curves and applications to sweep surface modeling. Computer-Aided
Design 31, 1 (1999), 73–83. 3, 9

[Klo86] KLOK F.: Two moving coordinate frames for sweeping along a
3d trajectory. Computer Aided Geometric Design 3, 3 (1986), 217–229.
3

[KV12] KRAJNC M., VITRIH V.: Motion design with euler–rodrigues
frames of quintic pythagorean-hodograph curves. Mathematics and
Computers in Simulation 82, 9 (2012), 1696–1711. 3

[LSA13] LOPES D. S., SILVA M. T., AMBRÓSIO J. A.: Tangent vec-
tors to a 3-d surface normal: A geometric tool to find orthogonal vectors
based on the householder transformation. Computer-Aided Design 45
(2013), 683–694. 2, 4, 5

[PFL95] POSTON T., FANG S., LAWTON W.: Computing and approx-
imating sweeping surfaces based on rotation minimizing frames. In
Proceedings of the 4th International Conference on CAD/CG (Wuhan,
China, 1995). 3, 8, 9

[Wah65] WAHBA G.: A least squares estimate of satellite attitude. SIAM
Review 7, 3 (July 1965), 409–409. 2, 5

[WJ97] WANG W., JOE B.: Robust computation of the rotation minimiz-
ing frame for sweep surface modeling. Computer-Aided Design 29, 5
(1997), 379–391. 3

[WJZL07] WANG W., JÜTTLER B., ZHENG D., LIU Y.: Computation of
Rotation Minimizing Frame in Computer Graphics. Tech. rep., Depart-
ment of Computer Science, University of Hong Kong, 07 2007. 9

[WJZL08] WANG W., JÜTTLER B., ZHENG D., LIU Y.: Computation
of rotation minimizing frames. ACM Trans. Graph. 27, 1 (Mar. 2008),
1–18. 1, 3, 4, 8, 10

[YNS12] YOON D., NARDUZZI M., SHEN J.: Computing rotation mini-
mizing frames using quaternions. Computer-Aided Design and Applica-
tions 9, 5 (2012), 679–690. 3

[YT10] YILMAZ S., TURGUT M.: A new version of bishop frame and an
application to spherical images. Journal of Mathematical Analysis and
Applications 371, 2 (2010), 764–776. 3

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

