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Figure 1: Our post-processing pipeline and rendered evaluation views of an in-the-wild scene before and after post-processing. In (a), n
Instant-NGP models are trained on the same set of training images with varying scene scales, which yields n occupancy grids, that contain
the position of relevant densities in the scene. Rendered views distant to the training image’s camera trajectory contain cloudy artifacts
that obstruct the view and decrease visual quality. The occupancy grids are processed using our Scene Scale Consistency Scoring (SSCS)
approach in (b), which merges them into a single filtered occupancy grid, where artifacts are severed from the canonical scene geometry.
This allows our Occupancy Clustering approach to identify artifacts as separate clusters and prune their densities in (c). Reusing the initial
NeRF model, the post-processed occupancy grid is leveraged to render novel views free of floater artifacts in (d).

Abstract
Neural Radiance Fields have revolutionized Novel View Synthesis by providing impressive levels of realism. However, in most
in-the-wild scenes they suffer from floater artifacts that occur due to sparse input images or strong view-dependent effects.
We propose an approach that uses neighborhood based clustering and a consistency metric on NeRF models trained on dif-
ferent scene scales to identify regions that contain floater artifacts based on Instant-NGPs multiscale occupancy grids. These
occupancy grids contain the position of relevant optical densities in the scene. By pruning the regions that we identified as
containing floater artifacts, they are omitted during the rendering process, leading to higher quality resulting images. Our
approach has no negative runtime implications for the rendering process and does not require retraining of the underlying
Multi Layer Perceptron. We show on a qualitative base, that our approach is suited to remove floater artifacts while preserving
most of the scenes relevant geometry. Furthermore, we conduct a comparison to state-of-the-art techniques on the Nerfbusters
dataset, that was created with measuring the implications of floater artifacts in mind. This comparison shows, that our method
outperforms currently available techniques. Our approach does not require additional user input, but can be be used in an
interactive manner. In general, the presented approach is applicable to every architecture that uses an explicit representation
of a scene’s occupancy distribution to accelerate the rendering process.
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1. Introduction

Neural Radiance Fields (NeRFs) [MST*21; BMV*22] have
brought the realism of Novel View Synthesis based on multi-view
images to a new level. Their expressiveness is based on a ray-wise
optimization of a volumetric scene representation that is encoded
in a Multi-Layer Perceptron (MLP).
Later contributions [MESK22; CFHT23] have accelerated the
training of the underlying MLP to a few seconds and offer inter-
active frame rates at rendering time on end consumer hardware.
However, especially in real-world scenes, NeRF architectures are
prone to cloudy artifacts (floaters), which arise when the underlying
MLP assigns non-zero optical densities to regions without objects
or structures in the original scene. These artifacts can be caused by
several circumstances like sparse inputs or strong view-dependant
effects [PSB*21; PSH*21; PCPM21; TTG*21; MRS*21] that re-
sult in ambiguities [WWT*23; LTT23]. They are especially visi-
ble in novel views that are far away from from the training im-
age’s camera poses. Examples of these artifacts are illustrated in
the rendered images on the left side of figure 1. Recent publications
have addressed this issue by decomposing the scene into its view-
dependant and independent components [LTT23], scoring scene
regions based on the frequency of appearance in the input views
[WWT*23] or suppressing them in a retaining step after interactive
annotation of the relevant regions [JKK*23]. However, these con-
tributions require retraining of the model, adaptation of the training
process or manual annotation. Furthermore, they usually have in-
herent problems with processing transparent structures or texture
hallucination.
In contrast to that, we propose a method that omits floater arti-
facts during the rendering process without altering the underlying
MLP. Instant-NGP [MESK22] explicitly stores information about
a scene’s density distribution in an occupancy grid. During render-
ing, regions that do not contribute to the resulting image are iden-
tified using this density grid and therefore do not trigger an MLP
query, accelerating the rendering process significantly.
Our method uses heuristics to identify regions with assigned den-
sity in the occupancy grid that are likely not to contain objects in the
original scene. For this purpose we propose a neighborhood-based
global clustering approach, that is optimized for the hierarchically
arranged occupancy grid of Instant-NGP. Assuming that most of the
scene consists of one coherent region of density, we flag identified
clusters in descending order of size until they cover a predefined
portion of the scene. The remaining clusters are likely to be floater
artifact, which are then removed from the occupancy grid.
Furthermore, we leverage the inconsistent nature of artifacts under
different scene scales. During the training process, a bounding box
defines in which scene volume ray marching is performed, thereby
defining in which region densities can arise in the scene. We train
multiple models of a scene with different sizes of this bounding box
- dictated by Instant-NGP’s aabb_scale parameter - and omit re-
gions for which the occupancy is inconsistent between these differ-
ent NeRF models. This follows the intuition, that artifacts manifest
in different areas for different bounding box scales, while objects
that are present in the scene are expected to be modelled in the con-
sistent locations.
Combining both methods, we show on a qualitative and quantita-
tive basis, that our approach is suited to mitigate floater artifacts

in NeRFs. The proposed approach does not alter the underlying
MLP and therefore does not require retraining. Furthermore, it is
easily extendable to any NeRF architecture that leverages an ex-
plicit density or occupancy representation to accelerate rendering.
The overhead time of our post-processing step is negligible com-
pared to the training time of Instant-NGP. Since we only alter the
occupancy field of Instant-NGP, our approach has no influence on
the rendering performance of the underlying NeRF technology. In
summary, our main contributions are:

• a fast region-based clustering approach on multi-resolution occu-
pancy fields that is consistent through different resolution levels,

• an approach to detect artifacts by comparing occupancy of mod-
els trained with different scene scales,

• a strategy to leverage these approaches to adapt occupancy fields
in a way, that suppresses undesired NeRF artifacts during render-
ing time, without the requirement to alter the underlying MLP
and negative performance implications,

• a quantitative evaluation on a state-of-the-art dataset [WWT*23]
that is designed to address the problem of floaters.

To our knowledge, the presented approach is the first ap-
proach that mitigates floater artifacts without user input, that
does not require MLP retraining. Our code is available under
https://github.com/tristanwirth/floaty-removal.

2. Related Work

2.1. Neural Radiance Fields

NeRFs [MST*21] have brought the level of realism for novel view
synthesis to a new level. This is achieved by training a neural net-
work that models a 3D scene as a continuous color and density
map. Given a 5D input vector consisting of 3D location (x, y, z) and
a 2D viewing direction (θ, φ) this network returns a color and den-
sity estimate for a ray with the given origin and viewing direction.
A novel view is generated by marching along the camera ray for
each pixel by iterative querying this network and accumulating the
color values weighted by the corresponding densities.
Since their proposal, subsequent contribution have addressed lim-
itations of their approach and adapted it to other challenges. Re-
cent publications extend the ability of NeRFs to support dynamic
scenes [PSB*21; PSH*21; PCPM21; TTG*21; LNSW21], accel-
erating inference time [RPLG21; MESK22; YLT*21; FYT*22;
CXG*22; LSS*21; WZL*22; CFHT23], making them robust
against the challenges of in-the-wild image capture [MRS*21;
TCY*22; MHM*22; RLS*22], reducing the required image count
[YYTK21; DLZR22; NBM*22; YPW23; RMY*22] and enabling
dynamic relighting [ZSD*21; SDZ*21; MHS*22].
We base our work on Instant-NGP [MESK22], which restricts our
approach to rigid scenes under fixed lighting conditions.

2.2. Editing NeRFs

For multiple tasks, from removing undesired objects and artifacts
to the composition of objects from different sources, it is desirable
to edit scenes represented as NeRFs. Due to the implicit storage of
scene geometry and color, this task is not straightforward compared
to explicitly stored scenes like triangle meshes. A plethora of work
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addresses this issue, offering a diverse toolkit from object insertion
and deletion to color, lighting and geometry alteration or transla-
tion and rotation of existing objects.
Niemeyer et al. [NG21] decompose a scene into multiple NeRFs,
which contain one object each, allowing translation, rotation and
stretching of individual objects. NeRF-Editing [YSL*22] and
[JKK*23] establish a correspondence between an explicit mesh
representation and the implicit neural representation of the NeRF.
Object manipulations are performed by editing this mesh repre-
sentation and bending or stretching the camera rays accordingly,
while they travel through these cages during a retraining process.
NeuMesh [YBZ*22] encode NeRFs by disentangling geometry and
texture, allowing them to perform manipulations on the resulting
mesh. Chen et al. [CLW23] propose NeuralEditor that stores a
corresponding K-D tree-guided voxel representation, that produces
high quality point clouds, on which object manipulations can be
performed. Liu et al. [LZZ*21] extend the neural network architec-
ture by a shape branch, allowing shape and color editing on object
categories based on 2D user scribbles. Lazola et al. [LGO*23] pro-
pose Control-Nerf, that leverages scene-specific properties to seam-
lessly add objects into other NeRFs scenes.
Furthermore, recent work presents strategies for object manipula-
tion in dynamic scenes [KYK*22; ZLX23], object removal that
leverages 2D inpainting [YFYL23; WGM*23] and object and
scene manipulation techniques, that are based on text prompts
[HTE*23; YFYL23].

2.3. Floater Mitigation and Removal

NeRFs in general are prone to artifacts, that float around in the
scene. Barron et al. [BMV*22] introduce the term floater for these
kind of artifacts and define them as small disconnected regions of
volumetric dense space which serve to explain some aspects of a
subset of input views, but look like blurry clouds when viewed from
a different angle. In the literature, their appearance is linked to sev-
eral circumstances in rigid images with fixed lighting: sub-optimal
camera registration [WWT*23], sparse inputs [WWT*23; LTT23],
strong view-dependent visual effects [LTT23] as well as errors in
the estimated scene geometry and divergent behavior in the begin-
ning of the training process [NBM*22].
Several approaches have been published to mitigate the appearance
of floaters by optimizing the NeRF training process. [LMTL21;
WWX*21] optimize the camera pose estimation to mitigate arti-
facts in general. Mip-NeRF 360 [BMV*22] prevents the formation
of floaters during the training process by introducing a distortion
loss. Niemeyer et al. [NBM*22] reduce the number of artifacts
in sparse input scenarios by regularizing the scene geometry and
appearance of patches rendered from unobserved view points and
annealing the ray sampling space, which reduces errors in the es-
timated scene geometry and divergent behavior at the start of the
training. Nerfbusters [WWT*23] and ViP-NeRF [SS23] introduce
information about the visibility of regions in the scene, to mitigate
problems with sparse inputs. Liu et al. [LTT23] propose Clean-
NeRF, which disentangles view-dependant and view-independent
parts of the scene to gain a more robust geometry estimate. Thereby,
they reduce the view-dependent effects, that create floater artifacts.
There are existing approaches that remove floaters in post-
processing procedures. Liu et al. [LKC*23] train a coarse NeRF

model on a sparse image set, upon which they generate pseudo-
observations that are used to produce a high-quality reconstruction.
They achieve that by using a rectification latent diffusion model
that generates image conditionals based on RGB images and depth
maps from the coarse model. Nerfbusters [WWT*23] utilize a dif-
fusion model that refines densities and color on randomly allocated
local 3D cubes. To mitigate floaters, they penalize densities in re-
gions that are only seen by few training views. However, due to the
use of diffusion models, their approach suffers from texture halluci-
nation. Warburg et al. [WWT*23] present a dataset, that aspires to
incorporate the effect of floater artifacts into the quantitative analy-
sis of NeRF architectures. This is achieved by providing two cam-
era trajectories per scene. Training on one of the trajectories and
evaluating on the second one, the difference between training and
evaluation camera poses is higher, which is usually linked with a
higher probability for floater appearance. We evaluate our tech-
nique in comparison to their approach on their dataset in section
4.2.
Jambon et al. [JKK*23] present NeRFshop, which is focused on
manually editing NeRFs by manually annotating and manipulating
scene volumes. During a retraining step the rays path is bend in
these manipulated cages, to acquire a new model that incorporates
the performed edits. By manually annotating floaters and ignoring
their densities during retraining, they acquire a new NeRF model,
that is free of floaters. In comparison to our fully automatic ap-
proach, however, they require manual annotation of artifacts.
The aforementioned post-processing strategies require retraining of
the underlying MLP to remove floater artifacts. In contrast to that,
we present an approach, that automatically removes these artifacts
without altering the underlying MLP. Furthermore, our approach
has no impact on the rendering performance.

3. Methodology

In this section, we describe our proposed method to suppress floater
artifacts in a post-processing step leveraging an explicit occupancy
structure. Our contribution is based on Instant-NGP [MESK22],
which is the de facto standard for storing and rendering NeRFs,
due to its low training times and interactive frame rates during ren-
dering.
Instant-NGP uses multiscale occupancy grids, to skip empty space
during ray marching. For real-world scenes, they use K ∈ [1,5]
grids, where each grid has a resolution of 1283. Each grid spans an
iteratively growing domain around the center point (0.5,0.5,0.5)
with the dimension [−2k−1 + 0.5,2k−1 + 0.5]3. For each grid cell
they store the occupancy information in a single bit, where 1 indi-
cates, that there is relevant density in the cell and 0 indicates, that
there is no relevant density, thus ignoring the cell during rendering.
Our approach suppresses floater artifacts by identifying cells in the
density grid, that belong to a floater artifact and setting its occu-
pancy value to 0. Thereby, while the information of the floater arti-
fact is still encoded in the underlying MLP, it is ignored during ren-
dering and therefore does not appear in the resulting images. This
leads to a significant improvement in the resulting image quality.
To get a base model for our post-processing methodology, we train
off-the-shelf Instant-NGP models based on the input images. We
leverage the information from the resulting multiscale occupancy
grid to identify regions that belong to floater artifacts by applying
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two heuristics: First the occupancy grid is filtered based on a Scene
Scale Consistency Score. Then, we apply our Occupancy Cluster-
ing step on the filtered occupancy grid. These heuristics each work
exclusively with an occupancy grid without taking color informa-
tion into account. They are described in the following.
Figure 1 depicts our system architecture with exemplary interme-
diate representations after each step.

3.1. Occupancy Clustering

For most static scenes, the relevant part of the scene consists of one
coherent volume of density. This is based on the fact, that objects
that are denser than air lie on other objects on the ground - which is
consistent in itself - and objects that are less dense than air have to
be locked into position by some object, in order to not float away -
effectively leaving the scene. We consider scenes, that do not fulfill
this coherency assumption out of scope. These scene properties are
extensively discussed in section 5.
Assuming a coherent core of the scene, we leverage the mul-
tiscale occupancy grid of Instant-NGP to perform a neighbor-
hood based global clustering, that is consistent through the differ-
ent scales. The Instant-NGP multi scale occupancy grid consists
of multiple occupancy grids Gk that cover the space [−2k−1 +
0.5,2k−1 +0.5]3 respectively. Each of these grids consists of 1283

cells Ck(xI ,yI ,zI) with indices xI ,yI ,zI ∈ [0,127]. A point P with
coordinates (xP,yP,zP)

T is part of the cell Ck(xI ,yI ,zI) when †:xP
yP
zP

∈

(−2k−1 +0.5)+2k−8xI ,(−2k−1 +0.5)+2k−8(xI +1)
(−2k−1 +0.5)+2k−8yI ,(−2k−1 +0.5)+2k−8(yI +1)
(−2k−1 +0.5)+2k−8zI ,(−2k−1 +0.5)+2k−8(zI +1)


Our clustering approach first compiles a single set of cells O, which
consists of non-overlapping cells of all multi-scale grids Gk:

O = G1 ∪
⋃

{Gk \Gk−1 | k ∈ [2, ..,K]}

Any point P in the scene space [−2K−1 + 0.5,2K−1 + 0.5]3 is
covered by exactly one cell in the set and this cell is part of the
grid with the highest resolution (with the lowest level k). O is
used as starting point for our clustering approach and for updating
the lower resolution occupancy grids in a cascading, consistent
manner after the clustering process.
We perform a neighborhood based clustering approach to identify

coherent clusters of occupancy. In the following, we call cells
with an occupancy value of 1 occupied. The clustering algorithm
picks an occupied cell that is not assigned to a cluster from O at
random and assigns this cell to a new cluster. Any time a cell is
assigned to a cluster - including this first cell -, any occupied cell
that is adjacent to it - meaning they share a non-zero area border -
is assigned to the same cluster. When there are no more adjacent
cells left, we repeat the process by picking a new unprocessed cell
at random, assigning it to a new cluster and performing the same
neighborhood based flood fill algorithm to this cluster. When there
is no unassigned, occupied cell left, the clustering concludes.
For scenes that fullfil our coherence assumption, the cluster
that covers the most volume depicts the relevant coherent scene

† Note that 2k−8 is equivalent to 2k−1

128

Figure 2: A NeRF artifact that is coherent with the scene geometry.

geometry. Since the other clusters are not coherent with the
scene geometry, they are omitted as artifacts. However, in reality
Instant-NGP does not always produce perfectly coherent scene
occupancies. To mitigate that fact, we iteratively label clusters
as relevant in descending order of covered scene volume un-
til at least 85% of the occupied volume of the scene is covered.
The clusters that are left unlabeled, are then assumed to be artifacts.

We set the occupancy of the cells in the clusters that are assumed
to be artifacts to 0. That way, the content of these regions is omitted
during the rendering process. To ensure consistency between the
differently scaled occupancy grids, each cell that is not part of O is
iteratively updated. Each cell in Gk ∩Gk−1 for k > 1 was not part
of set O, and is therefore not consistent with the applied changes to
the multiscale occupancy grid. Each of these cells in Gk contains 8
cells in Gk−1. If none of those cells in Gk−1 is occupied after the
the update, the occupancy value of the parent cell in Gk is set to
0. This process is iteratively repeated for any k ∈ [1, ..,K] until the
multiscale occupancy map is consistent.
Note that there are edge cases, in which floaters are close to relevant
scene geometry. In these cases, it is possible, that while the clus-
ters are removed from the occupancy grid with higher resolutions,
they are not removed from occupancy grids with lower resolution.
Therefore, this part of the floater artifact is not suppressed, when
the lower resolution occupancy field is utilized for the rendering
process. This effect is further discussed in section 5.

3.2. Scene Scale Consistency Scoring (SSCS)

Preliminary experiments showed, that while the proposed Occu-
pancy Clustering approach is effective for the better part of the
scenes, there are more challenging cases. These cases occur when
there are floater artifacts, that are coherent with the relevant scene
geometry (see figure 2). Our clustering approach is not able to de-
tect these artifacts. We address this issue by proposing Scene Scale
Consistency Scoring (SSCS). Instant-NGP [MESK22] uses an in-
put parameter aabb_scale that controls, in which space of the scene
ray marching is performed. In this context, aabb_scale depicts the
scaling factor of the unit cube. The authors recommend to use pow-
ers of 2 in order to align its borders with an occupancy grid. The
proposed SSCS follows the intuition, that the position of objects,
that constitute the relevant scene geometries, is invariant to changes
of the aabb_scale factor. Artifacts, on the other hand, are based on
incorrect interpretation in regions with sparse input. These artifacts
manifest in slightly different regions of the scene under different
scaling factors. We utilize this property by comparing the occu-
pancy grid of Instant-NGP models trained with different scales.

© 2023 Eurographics - The European Association
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Figure 3: Illustration of the effects of SSCS. (a, b) Renderings by two models trained on different aabb_scales (8 respectively 16), showing
a consistent object in the center and differing artifacts in the surroundings, (c) after applying SSCS, (d) clustering without SSCS, showing
persisting artifacts, (e) clustering after SSCS, successfully removing the floater artifacts.

Using aabb_scales s ∈ S = [8,16,32], for each cell Ck(xI ,yI ,zI)
we compute their SSCS ∈ [0,1]:

SSCS(Ck(xI ,yI ,zI)) = ∑
s∈S

Ck,s(xI ,yI ,zI)
/

N(S,Ck,s(xI ,yI ,zI))

where Ck,s is Ck for the model with scale s and N(S,Ck,s) is the
number of scene scales s ∈ S, whose corresponding extents contain
the cell Ck,s. The score is equal to the fraction of scaled scenes in
which the occupancy of the cell is set, taking into account the num-
ber of scaled scenes in which the cell is theoretically setable, i.e. the
cell is inside of the training volume. We consider a cell as inconsis-
tently set, if its SSCS < 1, meaning that there is at least one scaled
model that does not carry density there. These cells occupancy is
then set to 0, omitting them in the rendering process.
We perform this SSCS filtering step before Occupancy Clustering.
In most cases, this step interferes with the coherence between rel-
evant scene geometry and floater artifacts. Therefore, while SSCS
filtering itself only detects parts of the occuring artifacts, it enables
our Occupancy Clustering to detect floaters more reliably.
Figure 3 illustrates the behavior and benefits of employing SSCS.
Especially on the garbage dataset the effects of SSCS become ap-
parent. The models for s = 8 and s = 16 show a consistent depic-
tion of the garbage can with a blue floater artifact in front. Our
clustering approach is not able to prune these volumes due to their
coherence with the scene geometry. However, the illustration de-
picts how most of these artifacts are inconsistent between the two
aabb_scales. Therefore, SSCS is able to remove most of these arti-
facts until only a small blue floater remains. This residual floater is
then pruned by our Occupancy Clustering step due to its incoher-
ence with the scene geometry, successfully removing the artifact at
hand.

4. Evaluation

In this section, we perform a qualitative analysis of the novel view
quality of our method in comparison to unprocessed Instant-NGP

renderings, and evaluate our method quantitatively in comparison
to the state-of-the-art on the Nerfbusters dataset [WWT*23], which
is designed to give insight into performance of NeRF models when
rendering novel viewpoints, that are distant from the training data.
In these cases, the appearance of floaters is more likely. All exper-
iments are conducted on an Nvidia RTX 3090 GPU.

4.1. Comparison to Instant-NGP

As stated in section 3.2, our Occupancy Clustering approach as-
sumes that artifacts are structurally severed from the canonical
scene geometry. This is often not the case for datasets with sparse
training views or inconsistent illumination. Therefore, to qualita-
tively assess the effectiveness of our Occupancy Clustering ap-
proach, we employ the MIP-NeRF 360 dataset [BMV*22], which
provides exhaustive views for the majority of the scene, uses fixed
camera parameters and was shot on overcast days, assuring mini-
mal illumination variances by cast shadows. While these measures
are effective on their own to suppress artifacts in the learned model,
renderings of novel views outside of the training image’s camera
trajectory still comprise floaters that negatively impact visual qual-
ity.

Implementation Details. We first train a vanilla Instant-NGP
NeRF model on several scenes of the MIP-NeRF 360 dataset for
a duration of one minute per scene. After training, we fixate both
the trained NeRF model and the corresponding occupancy grid and
render novel views from a predefined camera trajectory. The occu-
pancy grid is then post-processed using our Occupancy Clustering
approach, eliminating floater artifacts. Finally, the scenes are ren-
dered again on the same camera trajectory. Videos of the scenes are
supplied in the supplemental material.

Results. Figure 4 displays frames of the aforementioned cam-
era trajectories for the Instant-NGP model before and after post-
processing. Despite the exhaustive views provided in the dataset,
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Figure 4: MIP-NeRF 360 scenes ‘bicycle’, ‘garden’ and ‘stump’ shown before and after our post processing approach [BMV*22]. Floating
artifacts can be observed occluding the street (left), the table (middle) and the stump (right). Our clustering approach successfully removes
these artifacts without impacting the integrity of the remainder of the scenes, improving the resulting image quality.

the trained model still contains floating artifacts of varying sizes
and severity depending on the scene. In the bicycle scene, large
floaters can be observed occluding the street. The garden scene
contains fewer and smaller floaters. The background in the stump
scene consists mainly of homogeneous foliage and soil and thus
facilitates the formation of a multitude of floaters close to the ob-
ject of interest. The floaters observed in these scenes are not co-
herent with the canonical geometry of the scene, i.e., they do not
share neighboring cells in the corresponding occupancy grids. This
allows our Occupancy Clustering approach to correctly identify
them as artifacts and remove them from the occupancy grids con-
sequently. As shown in figure 4, the resulting post-processed views
do not contain the floaters, as the corresponding cells in the occu-
pancy grid were omitted in the rendering process. This improves
the overall visual quality of the rendered views.

4.2. Comparison on Specialized Dataset

The capturing constraints present in the MIP-NeRF 360 dataset are
often not given for casually captured, in-the-wild scenes. Addition-
ally, quantitative evaluation of floater removal using this or a simi-
lar dataset is futile, as there is no separate set of evaluation ground
truth images. This necessitates the evaluative usage of a subset of
the images from the training image camera trajectory, which dras-
tically reduces the amount of visible floater artifacts in the ren-
dered views. As a consequence, floater removal does not have a
significant impact on the visual quality. Warburg et al. propose the
Nerfbusters dataset [WWT*23], which attempts to mitigate both
of these issues: The training images are a set of casually captured
sparse views of various in-the-wild scenes. An additional set of
evaluation images per scene is captured on a vastly different cam-
era trajectory, providing previously unseen views of the scene. The
authors also propose a floater mitigation approach and quantitative

evaluation results comparing their post-processed renderings to a
vanilla Nerfacto model [TWN*23].

Implementation Details. In accordance to Warburg et al. we first
train a pseudo ground truth Instant-NGP model using both the
training- and evaluation image sets [WWT*23]. This model serves
as the ground truth for computing PSNR and SSIM metrics. We
then train multiple Instant-NGP NeRF models on the training im-
ages with scales aabb_scale ∈ [8,16,32], each of which yield an
unprocessed occupancy grid. The NeRF model trained with a scale
of 16 serves as the evaluation model for the before and after post-
processing renderings, as this is Instant-NGP’s default scale and
we chose to not manually tune parameters on a per-scene basis
for this evaluation study. We leverage the occupancy grids to per-
form our SSCS strategy, as was described in section 3.2. Finally,
the intermediate grid result from SSCS is processed using our Oc-
cupancy Clustering strategy to eliminate remaining floater artifacts.
The evaluation views are rendered for each entire camera trajectory.
For comparative purposes, we also render the evaluation views us-
ing the occupancy grids resulting from only applying SSCS or Oc-
cupancy Clustering, respectively. Similar to Warburg et al. we em-
ploy masked PSNR and SSIM metrics on a per-image basis, which
consider only the image areas visible in the training views, and re-
port the per-scene average.

Results. Figures 5 and 6 show rendered evaluation views of the
aforementioned NeRF model variants and the corresponding Nerf-
busters renderings side-by-side. Table 1 presents the PSNR and
SSIM and coverage scores of each approach. The latter describes
the percentage of the resulting image that is covered by pixels
with density. As each of the post-processing steps prunes unwanted
scene geometry, the coverage tends to decrease with each of them.
In the unprocessed Instant NGP renderings, a multitude of artifacts
can be observed. Some of these artifacts incoherently float in the air
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Figure 5: Evaluation views of the Nerfbusters scenes ‘car’, ‘century’, ‘garbage’, ‘pikachu’ and ‘picnic’. Renders of the Pseudo-GT Instant-
NGP model, the unprocessed Instant-NGP model using only training views, renders using post-processed grids with only Occupancy Clus-
tering and SSCS, the Nerfbusters renders by Warburg et al. [WWT*23] and our combined strategy are shown side-by-side.
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Figure 6: Evaluation views of the Nerfbusters scenes ‘flower’, ‘pipe’, ‘plant’, ‘roses’ and ‘table’. Renders of the Pseudo-GT Instant-NGP
model, the unprocessed Instant-NGP model using only training views, renders using post-processed grids with only Occupancy Clustering
and SSCS, the Nerfbusters renders by Warburg et al. [WWT*23] and our combined strategy are shown side-by-side.
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Instant-NGP Cluster SSCS Nerfbusters SSCS + Cluster

PSNR SSIM Cvg PSNR SSIM Cvg PSNR SSIM Cvg PSNR SSIM Cvg PSNR SSIM Cvg

car 16.93 0.5607 0.97 16.99 0.6116 0.92 17.68 0.6411 0.50 17.40 0.5898 0.55 17.83 0.6389 0.36
century 16.12 0.5028 0.90 15.79 0.5151 0.87 16.53 0.6324 0.73 15.01 0.5028 0.72 16.76 0.6541 0.62
flowers 12.69 0.4311 0.86 13.46 0.5032 0.72 14.72 0.5508 0.67 15.52 0.5086 0.62 15.48 0.5657 0.48
garbage 16.04 0.5503 0.87 16.49 0.6115 0.83 16.37 0.5869 0.60 15.86 0.4466 0.63 16.44 0.5809 0.56
picnic 15.81 0.4375 0.72 15.70 0.4636 0.69 16.06 0.5443 0.54 15.72 0.4560 0.58 16.22 0.5485 0.39
pikachu 21.15 0.7865 0.84 25.18 0.9144 0.46 25.77 0.9369 0.48 25.71 0.9048 0.28 28.40 0.9420 0.25
pipe 18.84 0.6248 0.99 18.95 0.6502 0.97 19.14 0.7021 0.81 19.23 0.6165 0.82 19.03 0.7039 0.77
plant 18.08 0.6801 0.94 17.78 0.7183 0.90 20.40 0.7549 0.48 20.20 0.7535 0.25 20.82 0.7889 0.19
roses 16.25 0.6099 0.92 16.65 0.6725 0.91 17.54 0.6456 0.68 19.14 0.7149 0.87 18.44 0.6085 0.34
table 16.40 0.6618 0.85 16.31 0.7451 0.83 15.29 0.7347 0.62 18.23 0.7060 0.69 12.77 0.6562 0.42

Average 16.83 0.5846 0.89 17.33 0.6406 0.81 17.95 0.6730 0.61 18.20 0.6200 0.60 18.22 0.6688 0.44

Table 1: Evaluation scores of the Nerfbusters dataset on renderings of the base Instant-NGP model, on the post-processed variants using
our clustering, scene scale consistency scoring, and combined approaches and on the state-of-the-art Nerfbusters approach. On average,
our combined approach outperforms Nerfbusters in visual quality measured by the PSNR and SSIM metrics. We achieve less coverage in the
rendered images as we only render coherent clusters, while Nerfbusters tends to generate floating, incoherent chunks. The scenes ‘aloe’ and
‘art’ are omitted, since Instant-NGP was not able to train a coherent model with the provided camera poses.
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Figure 7: Comparison of scene coherency between Nerfbusters and
our approach [WWT*23]. Nerfbusters tends to remove scene geom-
etry that is sparsely visible in the training data. This can result in
floating objects (left) or textures with holes (right). Our Occupancy
Coherency assumption avoids this behavior by clustering coherent
regions.

(picnic), some obstruct the entire view (century, table) and some
are attached to the canonical scene geometry (garbage). The visual
quality of the rendered images suffers from all of these artifacts.
This manifests in the PSNR and SSIM scores, which are the lowest
of all approaches for the vast majority of scenes.
Using only our Occupancy Clustering approach - analogous to Sec-
tion 4.1 - a reduction of floating artifacts can be observed (most
prominently in car and picnic). However, artifacts coherent with
the scene geometry are not removed and remain having a negative
impact on the visual quality. This also shows in the quantitative re-
sults, where Occupancy Clustering only moderately improves the
results of the unprocessed renderings.
Our Scene Scale Consistency Scoring severs the structural connec-
tion between artifacts and the remainder of the scene geometry.
This may leave many noisy artifacts behind (see car, pikachu and
picnic). The subsequent Occupancy Clustering step prunes these
artifacts and leaves behind a coherent scene geometry. This im-
proves the image quality over Nerfbusters, as there are fewer holes
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Figure 8: Thin structures such as flower stalks can result in the un-
derlying model assuming low densities in these areas. This results
in our SSCS approach severing the structural connection between
the stalks and the flowers in the ‘flowers’ and ‘roses’ Nerfbuster
scenes. The subsequent cluster approach then removes the severed
cluster(s), which may be important geometry of the scene.

in the scene’s texture (century, garbage) and no additional incoher-
ent floating geometry is introduced (flowers, plant). In the presence
of thin structures such as flower stalks, our approach may remove
densities that were part of the canonical scene geometry (flowers,
roses). This is discussed in section 5. These qualitative observa-
tions manifest in the PSNR and SSIM scores, where our combined
approach outperforms Nerfbusters for the majority of scenes, with
notable exceptions being flowers and roses. Nerfbusters achieves a
higher coverage for all scenes, which for the most part is due to
the additional incoherent geometry floating around in most of the
post-processed scenes. In contrast to that, our technique results in
coherent scene geometry. A direct comparison of the flower and
plant scene is illustrated in figure 7. On average, our combined ap-
proach is the only one with higher scores than Nerfbusters in both
PSNR and SSIM.
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5. Limitation and Future Work

Coherency Assumption. As Instant-NGP does not consider de-
formations between samples of the training data, a rigid scene is
assumed. This premise is crucial for our coherency assumption: As
floating or flying objects tend to move around and not stay in-place,
they can be considered out-of-scope for this work. However, in par-
ticular capturing circumstances the coherency assumption may not
be satisfied, although a coherent scene is captured. A practical ex-
ample is a scene comprising two hill tips, where the terrain con-
necting the two hills is not captured. This would result in incoherent
canonical geometry, violating our coherency assumption.

Transparent and Thin Structures. Another possible limitation
leading to incoherent canonical scene geometry are transparent and
thin structures, which constitute an inherently challenging task in a
multitude of computer vision problems. Since our proposed post-
processing approach is based on a binary representation of density,
it is in itself not necessarily limited by the occurrence of transpar-
ent or thin structures, as long as they are recognized as a non-zero
density by the underlying NeRF architecture.
However, transparent objects tend to have a low optical density,
which often leads to scenarios in which Instant-NGP [MESK22]
and other NeRF models adhering to the original NeRF architecture
[MST*21] assign some regions that contain transparent objects no
optical density at all. Due to this effect, these regions are not part
of the occupancy grid, interfering with the coherency of the scene
geometry, that our algorithms assume. Especially due to the applied
SSCS, transparent regions that are only assigned an optical density
in some cases, are omitted from the scene geometry. As is evident
from the roses scene in figure 8, this can lead to the omission of
major parts of the scene, due to the introduced incoherence.
Thin structures can lead to similar effect. With thin structures such
as flower stalks, the corresponding occupancy grid cells may be
sparsely connected or not share an immediate neighbor cell at all.
This effect may be amplified by our SSCS approach, effectively in-
troducing structural gaps in the canonical scene geometry. This is
depicted in the flowers scene in figure 8, where the top part of the
flowers, that consists of thin structures is ignored in the rendering
process.
Future work could mitigate this effect by enhancing the SSCS tech-
nique in a way that takes general scene geometry into account by
using additional scene information, e.g. depth priors that are capa-
ble of working with transparent structures. Alternatively, extending
the neighborhood-based clustering algorithm into a density-based
clustering approach with higher search radius, could mitigate the
separation of the scene geometry. Furthermore, increasing the re-
construction robustness of Instant-NGP regarding transparent and
thin structures could prevent this violation of our scene coherency
assumption, resulting in better reconstructions.

Consistency between Occupancy Grids. Depending on the cam-
era pose of the rendered novel view, Instant-NGP [MESK22] uses a
different Occupancy Grid Gk to acquire density information. Since
our approach does not alter the underlying MLP, the different reso-
lutions of these Occupancy Grids can lead to inconsistencies when
zooming in and out of the scene.
The content of an occupancy grid cell is rendered in full, if it con-

s = 4 s = 8

Figure 9: Inter-scale-inconsistency due to Floater vicinity to
Canonical Scene Geometry. While the floater artifact is pruned

in grid scale s = 4, it shares an occupancy grid cell with the scene
geometry in the occupancy grid with scale s = 8. As a consequence,
the artifact will be rendered when s = 8 is queried in the rendering
process, as for instance with sufficient camera distance.

tains any density information of the coherent relevant scene geom-
etry. When the scene rendering utilizes a low-resolution occupancy
grid, parts of some floater artifacts may reappear in the scene, if
they are close to the relevant scene geometry. Figure 9 illustrates
such a case, in which the purple floater artifact is not rendered, on
scale s = 4, but is visible on a lower resolution occupancy grid.
While we did not observe this behavior in our experiments, it is
reasonable to point out, that it is a theoretical scenario that might
occur. Since these floaters only reappear when the camera has a
considerable distance from the core region of the scene, future work
should examine, if this effect influences the perceived novel view
image quality.

Compatibility. Our proposed technique that suppresses floater ar-
tifacts without retraining of the underlying MLP is generally suited
as an extension for all NeRF architectures, that use an explicit den-
sity distribution as acceleration structure during rendering. There
are multiple NeRF strategies, that leverage the occupancy grid in-
troduced in Instant-NGP, e.g. Nerfacto that is used in Nerfstudio
[TWN*23].
Furthermore, our SSCS and Occupancy Clustering approach could
be applied in a more manually guided manner. This could be
achieved by manually adapting the thresholds of the both tech-
niques for a particular scene at hand. Increasing the threshold for
the represented scene volume in the Occupancy Clustering tech-
nique could mitigate the effects of a violated coherency assumption
for transparent or thin structures. Since this increases the probabil-
ity of incorporating a big floater artifact, a manual annotation of
remaining artifacts comparable to the concurrent work NeRFshop
[JKK*23]. This could easily be achieved by intersecting a man-
ually annotated pixel with the occupancy grid and annotating the
corresponding cluster as a floater.

6. Conclusion

In this work, we presented a multi-step post-processing technique,
that removes floaters from NeRFs with explicit occupancy repre-
sentation as acceleration structure. We employ Scene Scale Con-
sistency Scoring (SSCS) that detects artifacts by comparing mod-
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els trained with different scene scale parameters and employ a
neighborhood-based clustering approach to detect the coherent
scene geometry. Our post-processing strategy does not require re-
training of the underlying MLP and has no implications regard-
ing the rendering performance. The proposed technique runs auto-
matically, but can be enhanced by user input if required. We have
shown, that our approach efficiently removes floater artifacts on the
MIP-NeRF 360 [BMV*22] and Nerfbusters [WWT*23] dataset,
outperforming the state-of-the-art technique in floater removal dur-
ing post-processing.
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