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Abstract
Visual monocular 6D pose tracking methods for textureless or weakly-textured objects heavily rely on contour constraints
established by the precise 3D model. However, precise models are not always available in reality, and rough models can
potentially degrade tracking performance and impede the widespread usage of 3D object tracking. To address this new problem,
we propose a novel tracking method that handles rough models. We reshape the rough contour through the probability map,
which can avoid explicitly processing the 3D rough model itself. We further emphasize the inner region information of the
object, where the points are sampled to provide color constrains. To sufficiently satisfy the assumption of small displacement
between frames, the 2D translation of the object is pre-searched for a better initial pose. Finally, we combine constraints from
both the contour and inner region to optimize the object pose. Experimental results demonstrate that the proposed method
achieves state-of-the-art performance on both roughly and precisely modeled objects. Particularly for the highly rough model,
the accuracy is significantly improved (40.4% v.s. 16.9%).

CCS Concepts
• Computing methodologies → Augmented reality; Object tracking;

1. Introduction

Model-based 3D object tracking aims to continuously estimate
precise 6DoF (Degree of Freedom) poses of rigid objects from
monocular video frames. This fundamental problem in computer
vision is widely used in various fields, such as augmented real-
ity, robot grasping, automatic navigation, and education [LF05,
LSFK10, MUS16].

For tracking textureless or weakly-textured objects, a precise
3D CAD model is essential. Since there are typically few fea-
tures in the inner region of objects, tracking methods usually fo-
cus on the regions surrounding the object contours. Pose optimiza-
tion constraints can be established by aligning the projected con-
tour of the 3D model with the implicit segmentation contour of
the input frame, such as region-based [TSSC19, SPS∗22] or edge-
based [WZQ17, TLZQ22] methods.

Unfortunately, precise CAD models are not always available or
reconstructable. For example, when reconstructing artifacts in a
museum, reflections and obstructions from glass cases can intro-
duce inaccuracies. Similarly, in scenarios with only RGB sensors
and low computational power, reconstructing textureless objects
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Figure 1: Imprecise contour of the rough model will result in false
countour matches. We use probability maps to reshape the contour
while incorporating inner points to track the object accurately.

can be challenging. In the tracking process, rough models easily
lead to tracking drift and failure due to the lack of precise contour
constraints, limiting the wide application of 3D object tracking.

One intuitive approach for handling rough models of textureless
or weakly-textured objects is to operate directly with the imprecise
object contour, ensuring that the “incorrect” projected contour cor-
rectly matches the object contour in the frame. Correcting the rough
model’s projected contour is crucial in this process. Additionally,
the inner region information can provide additional constraints to
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weaken the negative effects of imprecise contours. However, due
to the lack of distinct features in the inner region of textureless ob-
jects, directly sampling inner points is difficult to establish a stable
correspondence between frames.

To address the issues above, we propose a novel 3D object track-
ing method that bridges the gap between rough and precise models.
The key ideas are reshaping the projected rough contour (mask) to
make it more precise and combining the color constraints of the
pixels within the object. The main process is shown in Fig. 1. By
employing the probability map to reshape the projected contour of
the rough 3D model, we can get a more precise contour to mitigate
the impact of model inaccuracies, and the inner points of the ob-
ject are also used to provide additional constraints for better pose
estimation. The contributions of this paper are listed as follows:

1. We propose a 3D object tracking method that is robust to the
modeling error of the objects. To the best of our knowledge, it
is the first 3D object tracking method that can deal with rough
models, and for precise models it also works well.

2. We introduce a method to correct the projected contours of the
rough model based on probability map. The corrected contours
then are used for establishing new contour constraints so that
the object can be tracked accurately.

3. We propose a multi-region sampling strategy in order to lever-
age the constraints of inner regions, and a 2D region pre-search
strategy is also introduced to deal with large displacements.

2. Related Works

Recent textureless 3D object tracking algorithms can be classi-
fied into three major categories: edge-based methods, region-based
methods, and direct methods. Due to space limitations, we will only
introduce the methods that are closely related to our work.

Region-based and Edge-based Methods. Region-based meth-
ods [PR12, ZWS∗14, HH16, TSS16, TSS17, TSSC19, ZZZ∗20,
SPS∗20,SPS∗22,HZQ22] have demonstrated outstanding tracking
performance in recent years. These approaches employ color sta-
tistical segmentation models to capture the implicit contour of the
object and align it with the contour projected by the 3D model
to optimize the pose. The quality of the statistical segmentation
model is crucial to tracking accuracy. Common statistical segmen-
tation models include the global models [PR12, SPS∗20], multi-
ple local circular models [TSS17, TSSC19], and fan-shaped mod-
els [ZZZ∗20]. Tracking is particularly challenging when the fore-
ground and background colors are similar.

Edge-based methods [HS90, DC02, SPP∗14, IP15, WZQ17,
CRV∗18, WZQ19, HZSQ20] generally begin by detecting the ob-
ject’s edges and then matching them with the contours projected by
the 3D model to optimize the object’s pose. However, these meth-
ods can be easily disrupted by chaotic backgrounds. Consequently,
color information is often incorporated to aid in identifying the ob-
ject’s contour in the image. To achieve more robust tracking re-
sults, some methods [LSZQ21, LZXQ21, HZQ22, TLZQ22] com-
bine both region and edge constraints.

However, neither region-based nor edge-based methods are ef-
fective in dealing with rough models. Establishing color statisti-
cal segmentation models requires precisely counting pixel colors

in the foreground and background regions. For rough 3D models,
the foreground and background segmented by the imprecise pro-
jected contour may not align with the actual object contour in the
image, negatively affecting the quality of the color statistical seg-
mentation models. Moreover, when optimizing the object’s pose,
it is necessary to project the 3D model’s contour based on the ini-
tial pose and align it with the actual object’s (implicitly) contour in
the image. The projected rough contour is likely to result in false
matches, leading to tracking failure.

Direct Methods. The direct methods optimize the pose by
matching points between two adjacent frames through point color
or local descriptors. These methods assume illumination invariance
on the inner object points and small displacement of object motion.
Many methods are dedicated to obtaining features that are more ro-
bust to illumination. For example, [CL14] calculates the gradient
descriptor at each point and [SW16] proposed using the surface
normal vector of the object to model the change of point under
the Lambertian assumption. One problem of direct methods is that
it produces cumulative errors. [ZZ19] combines region-based and
direct methods, and uses a gradient descriptor that is more robust to
illumination. However, this method does not significantly improve
tracking accuracy. In addition, these methods all assume that the
small displacement hypothesis holds, and therefore they have not
made efforts to better meet this assumption.

Category-level 3D Object Tracking. Category-level 3D object
tracking [WMX∗20, WB21, WWZ∗21] uses template models to
track the different instance objects. The template model need to
has some specific features, for example, a cup with a “handle”. The
generalization of category-level tracking methods is very limited
due to the specific feature requirement. Overall, category-level ob-
ject tracking and rough model tracking are two different problems.

Model-free Tracking. Some model-free methods [SWZ∗22,
HSW∗22] require a set of RGB images with known object pose as
priors to reconstruct a 3D point cloud of the object via Structure-
from-Motion [SF16, SZFP16]. Then pose estimation is performed
by matching the 3D point cloud with 2D images. Other meth-
ods, such as [LWP∗22], directly use these priors to estimate the
pose without reconstruction, and [YYH∗22] also uses depth data.
[WLP∗22, NHX∗22] are trained using some objects and then gen-
eralized to unseen objects, but [NHX∗22] still need a precise
3D model of the unseen object as a prior during pose estimation.
[WTB∗23] performs reconstruction and tracking simultaneously
with a RGBD sequence and an object mask as input, but it can
only run offline. Typically, most RGB-based model-free methods
rely on a series of priors, and often struggle to estimate the scale
information of the object due to lack of a 3D model. Some meth-
ods [SWZ∗22] can not handle textureless objects. In contrast, the
scale information is naturally in the pose estimated by our method
with the 3D model, and our method can handle textureless objects,
does not suffer generalization issues, and does not need to recon-
struction. In general, the model-free methods and our research are
fundamentally different and applicable in different scenarios.

3. Preliminaries

In this section, we will first introduce the fundamental mathemat-
ical concepts in 3D object tracking, followed by an introduction

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

2 of 11



Xiuqiang Song & Weijian Xie & Jiachen Li / 3D Object Tracking for Rough Models

Precise
Precise Precise

(a) (b) (c)

xxx

Figure 2: Illustration of search lines. llli ∈ L is a search line consists of center mmmi and other points xxxi j, and nnni is the normal direction of the
contour point. (a) A search line on the projected contour of an precise 3D model. (b) The search line llli wrongly centered at mmmi due to the
rough model. (c) The corrected contour generated by the corrected depth map.

of the probability map and then a brief overview of region-based
constraints and our baseline method [HZQ22].

Fundamental Concepts. The 6DoF pose of an object can be
represented by a Lie algebra ξξξ = [ω1,ω2,ω3,υ1,υ2,υ3]

⊤ ∈ R6

[Var13]. The conversion between Lie algebra ξξξ and rigid body
transformation matrix TTT ∈ SE(3) can be achieved through expo-
nential mapping exp(·) and logarithmic mapping ln(·):

TTT = exp(ξ̂ξξ) (1)

ξ̂ξξ = ln(TTT ) (2)

where ξ̂ξξ ∈ R4×4 is the anti-symmetric matrix corresponding to ξξξ,
and further description can be found in [AK08,Var13]. A 3D point
XXX = [X ,Y,Z]⊤ in the world coordinate can be projected onto a 2D
point xxx= [x,y]⊤ in the image plane through ξξξ and the pre-calibrated
camera intrinsic parameter matrix KKK ∈ R3×3:

xxx = π(KKK(((exp(ξ̂ξξ)X̃XX)3×1) (3)

where X̃XX represents the homogeneous form of XXX , and π(xxx) =
[X/Z,Y/Z]⊤. Similarly, the corresponding 3D point XXX of a 2D
point xxx can be determined with a known depth value Z:

XXX = (exp(ξ̂ξξ)−1(KKK−1(π−1(xxx,Z))4×1)3×1 (4)

where (·)4×1 represents the homogeneous form.

Probability Map. In 3D object tracking, the probability map is
used to calculate the posterior probability of a pixel xxx belonging to
the foreground Pf (xxx) or the background Pb(xxx) given the color of
yyy for that pixel xxx. The probability map is typically computed us-
ing Bayesian principles. This involves pre-computing the color dis-
tributions of both the foreground and background, which are then
used to obtain the foreground statistical model M f and the back-
ground statistical model Mb. Then Pf (xxx) and Pb(xxx) can be calcu-
lated:

Pf (xxx) = P
(
M f | yyy

)
=

P
(
yyy |M f

)
η f P

(
yyy |M f

)
+ηbP(yyy |Mb)

Pb(xxx) = P(Mb | yyy) =
P(yyy |Mb)

η f P
(
yyy |M f

)
+ηbP(yyy |Mb)

(5)

where ηi is a smoothed function. There are various types of statis-
tical segmentation models, as described in Sec. 2. We adopt local
statistical segmentation models [TSSC19] to calculate the probabil-
ity map. For further information of probability maps, please refer
to [PR12, TSSC19].

Region-based Constraints. Region-based constraints are con-
structed by pixel-wise posterior probabilities surrounding the pro-
jected contours of the 3D model. The baseline method [HZQ22]
builds search lines around the projected contours to utilize these
probabilities. A search line llli is centered at the projection contour
point of the 3D model, as shown in Fig. 2(a). The posterior prob-
ability that the j-th sample point xxxi j on the i-th search line llli be-
longing to the foreground and background are denoted by Pf (xxxi j)
and Pb(xxxi j), respectively. The objective is to find the best implicit
segmentation for the foreground and background, i.e. the precise
projected contour that aligns with the actual object contour in the
current frame. This is achieved by defining an energy function as
follows:

ER(ξξξ) =
1
2 ∑

xxxi j∈L
w
(
xxxi j

)
ψ
(
xxxi j

)
F2 (xxxi j,ξξξ

)
(6)

where L = {lll1, lll2, ..., llln} is the set of search lines. F(xxxi j,ξξξ) is
the pre-defined loss function for pixel-wise posterior probabilities,
ψ(xxxi j) is the corrected term, and w(xxxi j) is the weighted term. The
level-set function is embedded into the F(xxxi j,ξξξ) to represent the ob-
ject contour, which is a commonly used technique in region-based
methods [PR12, TSSC19]. For a detailed description, please refer
to [HZQ22]. When a precise model is available, search lines es-
tablished on the precise contour points are used to find the actual
object contour in the frame for pose optimization.

4. Method

We first analyze the impact of rough models on region-based meth-
ods and next introduce the proposed strategy of contour reshaping
and remapping. The key idea of reshaping is to utilize the probabil-
ity map to refine the projected contour of rough models, as detailed
in Sec. 4.1. Finally, we utilize the information within the object to
add the constraints of color consistency.
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Figure 3: Contour reshaping by the probability map. (a) The previous frame. (b-c) In the case of rough models, the projected rough mask
is quite different from the precise mask, so their contours differ significantly. (d) The probability map calculated from the rough model and
the previous frame contains more noise, but it can still reflect the object’s contour well. (e) The probability map is used to reshape the rough
mask, and a reshaped mask and contour are obtained, and the object pose is optimized by aligning the reshaped contour with the actual
(implicit) object contour in the current frame.

4.1. Region Constraints with Contour Reshaping

For a rough model, the projected contour may contain many wrong
parts, as shown in Fig. 3(c), which is unfavorable for tracking.
Take the baseline method [HZQ22] as an example, the center of
the search line may be wrongly positioned, resulting in failure to
find foreground contour points, as shown in Fig. 2(b). In fact, the
real center position of the search line should be in the corrected
contour, as shown in Fig. 2(c), and this can be achieved through the
proposed contour reshaping strategy.

As a result of the implicit segmentation, the probability map can
provide valuable information as an additional reference for the ob-
ject contour. The probability map is calculated based on the color
distribution of the foreground and background, and the division of
the foreground and background is based on the projected mask of
the 3D model. As shown in Fig. 3(d), when a precise model is avail-
able, the probability map has high accuracy and contains only a
small amount of noise. When the model is rough, the probability
map may contain more noise, but it can still reveal the precise ob-
ject contour to some extent, and can be used to refine the rough
contour.

The projected rough contour of the 3D model can be extracted
from the projected mask, therefore, reshaping the mask is equiv-
alent to reshaping the object contour. Assuming successful track-
ing of the previous frame I0 and obtaining the initial pose ξξξ0, we
project the 3D rough model using ξξξ0 to obtain the mask M0. Then,
the mask M0 can be reshaped using the calculated foreground prob-
ability map Pf :

M0
r ←M0∩He(Pf ) (7)

where He(·) represents the classical Heaviside function, which re-
turns 1 when the input larger than 0, else returns 0. The contour can

be reshaped effectively in this way, and then can be used to optimize
the pose with the current frame, as shown in Fig. 3. Meanwhile, the
search lines L in Eq. (6) will be re-established in the reshaped con-
tour and change to L′ =

{
lll′1, lll

′
2, .., lll

′
n
}

.

4.2. Contour Updating by Remapping

After each iteration of the 3D tracking algorithm with the initial
pose ξξξ0, an updated pose ξξξ

k is obtained, where k denotes the it-
eration number. Projecting the 3D model using the updated pose
produces a new mask Mk. However, since the previous frame I0 re-
mains unchanged, the re-projected Mk will be mismatched with the
probability map, leading to errors in contour correction. To address
this issue, we obtain an updated reshaped mask Mk

r after iteration
by remapping the initial reshaped mask M0

r in Eq. (7).

Before the pose iteration, we use the initial pose ξξξ0 to back-
project 2D points set {xxx1,xxx2, ...,xxxn} in the reshaped mask M0

r to ob-
tain the corresponding 3D points set {XXX1,XXX2, ...,XXXn} using Eq. (4).
After each iteration, the pose is updated to ξξξ

k, and {XXX1,XXX2, ...,XXXn}
is re-projected to 2D points under pose ξξξ

k to obtain a new mask
Mk

r :

Mk
r = ϒ

(
{XXX1,XXX2, ...,XXXn},ξξξk

)
(8)

where ϒ represents the projection process from 3D to 2D achieved
through Eq. (3). This strategy allows the contour to maintain a good
shape during iterations, which we call remapping. The process of
reshaping and remapping is equivalent to making an implicit ad-
justment to the 3D model geometry via the 2D mask. During this
procedure, small blank areas may appear in the mask, which we
will fill with the closest pixel value.
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4.3. Color Consistency Constraints

frame t-1 frame t3D model

Figure 4: The 3D points on the model exhibit highly similar col-
ors in the projected points between adjacent frames. Therefore, the
objects’ colors are consistent between frames and can be used to
provide constraints for pose estimation.

When the projected object contour becomes unreliable, the inter-
nal information of the object becomes more crucial. We use internal
information to apply additional constraints to pose optimization.
The key idea is that the 3D model can be used as a guide to en-
sure color consistency, as the colors of corresponding points on an
object should remain consistent across adjacent frames, as shown
in Fig. 4. Although textureless objects may lack discernible feature
points, their color still can create a distinct visual change in scenes,
and importantly, often differs from the background. Therefore, the
color consistency can provide constraints.

We sample points in the previous frame I0 and find their cor-
responding points in the current frame I by color alignment. We
eroded the rough mask by a distance of 10 pixels inwards to limit
the sampling range. Even absence of texture, the color still change
visually, so some Harris corner points [HS88] with low thresh-
old can still be calculated. Noting that the role of Harris corners
in this case is to locate the areas where the color change is most
pronounced, rather than to obtain some points with the maximum
gradient.

Then the Harris corner points along with the points within
their corresponding square neighborhoods are selected as candidate
points, as shown in Fig. 1. Since different neighborhoods may have
overlapping regions where color changes sharply, points within
such regions are sampled multiple times and will contribute more to
the constraint force. The energy function is formulated as follows:

EC(ξξξ) =
1
2

n

∑
i=1

∑
ccci j∈Ωi

(
I(ccci j(ξξξ))− I0(ccci j (ξξξ0))

)2 (9)

where n is the number of Harris corners, and Ωi is the neighbor-
hood of the i-th corner (including the corner itself). ccci j(ξξξ0) is the
j-th point in the neighborhood Ωi in frame I0, and ccci j(ξξξ) is the
corresponding point to be found in the current frame I, which loca-
tion is related to the pose ξξξ. I(ccci j(ξξξ)) and I0(ccci j(ξξξ0)) represent the
photometric values of points ccci j(ξξξ) and ccci j(ξξξ0), respectively.

5. Optimization

We first utilize a proposed pre-search strategy to perform 2D op-
timization and obtain a better initial pose, which strengthens the
constraint of color consistency. Subsequently, we optimize the pose
iteratively by incorporating both the region and color constrains.

5.1. Pre-Search Strategy

The direct method is based on the assumption of small displace-
ment between consecutive frames, and we propose a simple but ef-
fective 2D pre-search strategy to better satisfying the assumption.
The key to this strategy is to count the colors of foreground points
in the previous frame I0, and then using a sliding window search in
the current frame I to find an area with the smallest color difference.
The objective function can be formulated as follows:

∆xxx = argmin
∆xxx

∑
xxxiii∈Ω f

|(I(xxxi +∆xxx)− I0(xxxi))| (10)

where Ω f denotes the foreground region in I0, and ∆xxx = [∆x,∆y]⊤

is the 2D displacement. By mapping ∆xxx to 3D space, we can derive
the pose increment ∆ξξξx:

∆ξ̂ξξxxx = ln
([

III KKK−1
∆x̃xx

000 1

])
(11)

where ∆x̃xx = [Z∆x,Z∆y,0]⊤, and Z is the depth value of the model
center. Then the initial pose ξξξ in Eq. (9) is updated by ∆ξξξx:

ξ̂ξξ← ln(exp(∆ξ̂ξξxxx)exp(ξ̂ξξ0)) (12)

In this way, the distance between the points in previous and cur-
rent frames is narrowed, which better satisfies the assumption and
makes the optimization easier.

5.2. Pose Optimization

We combine region-based constraints (6) with color consistency
constraints (9), and the energy function is defined as follows:

E(ξξξ,L′) = λ1ER(ξξξ,L
′)+λ2EC(ξξξ) (13)

where λ1 and λ2 are balanced parameters, and due to the reshaping
strategy, the search lines L in Eq. (6) are regenerated and becomes
L′.

We first utilize the pre-search strategy described in Sec. 5.1
to acquire a better initial pose, and then perform Gauss-Newton
method to optimize the energy function iteratively:

∆ξξξ =−(HHH)−1 JJJ⊤ (14)

ξ̂ξξ← ln(exp(∆ξ̂ξξ)exp(ξ̂ξξ)) (15)

where JJJ and HHH are the Jacobian and Hessian matrix:

JJJ = λ1JJJR +λ2JJJC (16)

HHH = λ1HHHR +λ2HHHC (17)

where JJJR and HHHR are the Jacobian and Hessian matrix computed
from Eq. (6), more details please refer to [HZQ22]. JJJC and HHHC are
the Jacobian and Hessian matrix computed from Eq. (9):

JJJC =
n

∑
i=1

∑
ccci j∈Ωi

h(ccci j)(
∂I(ccci j(ξξξ))

∂∆ξξξ
)⊤ (18)

HHHC =
n

∑
i=1

∑
ccci j∈Ωi

(
∂I(ccci j(ξξξ))

∂∆ξξξ
)⊤(

∂I(ccci j(ξξξ))

∂∆ξξξ
) (19)
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Figure 5: Some precise models, deformed rough models and re-
constructed rough models used in our experiments. The value be-
low the model marks the roughness.

Parameter Value
λ1 in energy function 0.20
λ2 in energy function 1/2552×0.52
Number of points in remapping All points in the mask
Number of pixels in erosion 10
Threshold of Harris corners 0.0001
Min distance of Harris corners 8
Max number of Harris corners 8000
Side length of Ω in Eq. (9) 11

Table 1: The parameters in our experiments.

where h(ccci j) = I(ccci j(ξξξ))− I0(ccci j(ξξξ0)) is the photometric differ,
and:

∂I
(
ccci j(ξξξ)

)
∂∆∆∆ξ

=
∂I
(
ccci j(ξξξ)

)
∂ccci j

∂ccci j

∂CCCi j

∂CCCi j

∂∆∆∆ξ
(20)

where CCCi j = [X ,Y,Z]⊤ is the 3D point corresponding to ccci j in the
camera coordinate system. For detailed derivation of the formula,
please refer to our supplementary materials.

The unit of the color consistency constraints in Eq. (9) is the
photometric value, which is generally larger than the probability
value in Eq. (6). Therefore, it is necessary to assign a lower weight
to the color consistency constraints term to balance its importance.

We adopt the coarse-to-fine strategy for pose optimization, con-
sisting of first iterating 4 times on the 1/4 size frame, then iterating
2 times on the 1/2 size frame, and finally iterating 1 time on the
original frame.

6. Experiments

The proposed method can track both rough and precise models,
and experiments are conducted on each of these model types. Our
method can achieve a high frame rate of 30-40 FPS on a desk-
top computer equipped with an Intel i7-11700 CPU and a Nvidia
GTX3080 GPU.
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↑
Precise Models (Roughness = 0)

[TSSC19] 7 79.9 81.2 56.6 73.3 72.8
[HZQ22] 7 89.9 90.7 69.6 88.9 84.8
[SPS∗20] 14 90.0 90.6 71.5 85.6 84.4
[SPS∗22] 14 94.2 94.6 81.7 93.2 90.9
[TLZQ22] 30 95.2 95.4 83.2 94.9 92.2

Ours 7 95.4 94.9 86.2 93.2 92.4
Slightly Rough Models (Roughness ≈ 0.01 )

[TSSC19] 7 70.7 73.0 45.6 62.9 63.1
[HZQ22] 7 75.4 77.4 51.0 73.0 69.2
[SPS∗20] 14 79.0 78.1 59.2 71.3 71.9
[SPS∗22] 14 78.5 79.1 64.5 73.5 73.9
[TLZQ22] 30 77.2 77.5 61.8 72.4 72.2

Ours 7 86.1 84.6 72.6 81.9 81.3
Moderately Rough Models (Roughness ≈ 0.02 )

[TSSC19] 7 23.1 23.0 11.9 16.4 18.6
[HZQ22] 7 19.5 20.0 10.5 16.1 16.5
[SPS∗20] 14 33.0 32.1 23.2 26.5 28.7
[SPS∗22] 14 33.2 33.0 25.0 28.2 29.9
[TLZQ22] 30 24.7 24.9 18.5 21.2 22.3

Ours 7 52.3 51.1 41.5 49.1 48.5
Highly Rough Models (Roughness ≈ 0.03 )

[TSSC19] 7 0.3 4.7 1.9 3.8 2.7
[HZQ22] 7 9.4 9.2 10.9 8.0 9.4
[SPS∗20] 14 17.1 17.2 13.1 15.7 15.8
[SPS∗22] 14 17.7 18.1 14.8 17.0 16.9
[TLZQ22] 30 9.3 10.0 7.5 9.2 9.0

Ours 7 44.7 43.8 32.6 40.5 40.4

Table 2: Tracking results on RBOT dataset with precise and de-
formed rough models. “Regular” etc. represent different scenarios
of the dataset. The numerical value represents the tracking success
rate, and the best result is highlighted in bold. Roughness is calcu-
lated by Hausdorff distance. The baseline method is [HZQ22].

Table1 lists the parameters in our experiments. The balanced pa-
rameters λ1 and λ2 are determined empirically. The term 1/2552

in λ2 is used for regularization, as the probability range in the re-
gion constraint is 0~1.0, while the color range in the color con-
straint is 0~255, and squaring is done for dimensional consistency.
Harris corners are computed using OpenCV, and the required pa-
rameters for the implementation of OpenCV are listed, where a
low threshold of 0.0001 is used to generate a sufficient number
of points. The parameters of the search lines are the same as our
baseline [HZQ22].

6.1. Dataset, Metrics and Models

Dataset. We evaluate the proposed method on the RBOT
dataset [TSSC19], which consists of 18 objects of different sizes
and shapes moving in four different scenes (Regular, Dynamic
light, Noisy, and Occlusion). There are a total of 72 sequences, each
with 1000 frames for testing, and the frame size is 640×512.

Metrics of Tracking and Roughness. Like most 3D object
tracking algorithms [TSSC19,LZXQ21,ZZZ∗20,HZQ22,SPS∗20,
SPS∗22,TLZQ22] in recent years, we evaluated the tracking results
using the popular 5 cm/5° metric, which means tracking success if
the translation error is less than 5 cm and the rotation error is less
than 5°. If the errors exceed the thresholds, the tracking is con-
sidered a failure and reinitialized with the ground truth pose. The
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Method driller clown bakingsoda phone squirrel cat ape iron duck Avg.↑
Roughness 0.007 0.010 0.010 0.013 0.019 0.020 0.021 0.022 0.023 0.016

Regular
[TSSC19] 72.9 50.4 16.7 38.6 31.1 16.1 30.2 7.4 29.2 32.5
[HZQ22] 76.7 58.6 15.3 42.6 32.3 32.6 36.5 7.6 33.9 37.3
[SPS∗20] 75.6 53.7 28.2 44.5 37.8 30.1 42.7 26.7 30.5 41.1
[SPS∗22] 75.5 60.3 26.1 50.1 51.4 36.4 45.5 23.2 45.0 45.9
[TLZQ22] 75.8 64.3 16.7 51.1 38.2 32.9 50.0 13.8 41.9 42.7

Ours 82.1 74.2 35.9 54.1 53.5 50.2 43.6 40.9 45.8 53.4
Dynamic light

[TSSC19] 71.9 50.4 16.8 41.1 35.5 11.9 29.8 7.5 28.4 32.6
[HZQ22] 74.5 59.2 14.3 42.9 35.5 29.5 37.4 9.5 35.5 37.6
[SPS∗20] 71.9 53.7 25.9 40.4 36.2 27.7 40.1 25.1 30.2 39.0
[SPS∗22] 74.0 60.2 25.6 51.4 50.8 36.3 47.3 23.1 45.2 46.0
[TLZQ22] 74.9 61.7 16.0 49.9 37.4 32.3 48.7 14.3 38.8 41.6

Ours 79.7 74.7 27.1 53.7 53.5 50.1 42.8 38.5 46.0 51.8
Noisy

[TSSC19] 43.8 28.1 20.0 20.3 29.2 9.4 29.5 6.0 27.6 23.8
[HZQ22] 57.3 33.5 15.5 23.3 25.6 25.7 34.7 7.4 33.8 28.5
[SPS∗20] 63.9 39.4 25.4 31.6 28.9 21.4 30.7 22.9 26.2 32.3
[SPS∗22] 65.5 47.8 22.6 45.0 41.0 28.7 42.3 19.6 38.3 39.0
[TLZQ22] 66.3 46.0 15.6 42.6 33.1 25.3 44.4 13.5 32.8 35.5

Ours 65.5 61.8 27.0 40.5 47.9 44.4 44.6 31.5 45.2 45.4
Occlusion

[TSSC19] 60.3 43.2 16.4 33.6 25.1 8.7 28.9 6.8 23.7 27.4
[HZQ22] 72.0 54.0 14.7 38.8 24.4 26.5 33.6 8.6 31.2 33.8
[SPS∗20] 68.6 48.3 20.3 38.8 33.0 25.4 35.5 22.5 25.7 35.3
[SPS∗22] 69.3 53.8 20.3 47.0 41.6 32.3 43.6 22.1 37.0 40.8
[TLZQ22] 69.4 55.8 19.4 45.1 33.8 29.7 46.1 14.3 32.2 38.4

Ours 75.9 69.8 29.3 50.1 52.1 47.3 42.9 37.8 43.8 49.9

Table 3: Tracking results on RBOT dataset with reconstructed rough models with a 5 cm/5° metric in four scenarios (Regular, Dynamic
light, Noisy, Occlusion). The numbers above each model represent its roughness calculated by the Hausdorff distance. The best result is
highlighted in bold. The baseline method is [HZQ22].

ratio of the number of successful frames is calculated as the suc-
cess rate. We calculate the Hausdorff distance between the rough
and precise model, which we then normalize by dividing it by the
diagonal length of the BBX of the rough model. This normalized
value is used to quantify the roughness of the model, with higher
values indicating greater roughness.

Models. The precise models are provided by the RBOT dataset.
We deform the precise models using techniques such as fractal
displacement, random vertex displacement, smoothing, etc., to ob-
tain corresponding rough models. Additionally, we attach texture
patches to some precise objects in RBOT dataset and use the
COLMAP [SF16, SZFP16] algorithm to reconstruct them. Mesh-
lab software is employed to align the reconstructed rough models
with the precise models.

We categorize the models into four types based on their level
of roughness. The first type is the precise models, which have a
roughness of 0. The second type is the slightly rough models, with
a roughness of about 0.01, which can be considered as an approxi-
mate version of the precise models. The third type is the moderately
rough models, with a roughness of about 0.02, and the fourth type
is the highly rough models, with a roughness of about 0.03. Fig-
ure 5 shows some of the models, and all models can be found in the
supplementary materials.

6.2. Results and Discussion

The results on the precise and deformed rough models are shown
in Tab. 2 and the experimental results on the reconstructed rough
models are shown in Tab. 3. In cases where the model is moder-

ately rough or highly rough, the reshaping strategy and color con-
sistency constraints are used to optimize the pose. When the model
is precise or approximately precise (slightly rough), the projected
contour is reliable enough, so reshaping is not adopted in this case.

Precise and Deformed Rough Models As shown in Tab. 2, our
method achieves state-of-the-art results. As the roughness of the
model increases, our method exhibits a more significant improve-
ment in tracking success rate compared to other methods. The suc-
cess rate under the four roughnesses are 0.2%, 7.4%, 18.6% and
23.5% higher than previous state-of-the-art methods, respectively.
In the case of highly rough models, [SPS∗22] achieves a tracking
success rate of only 16.9%, while our method a significantly higher
success rate of 40.4%. It is worth noting that we only perform 7 it-
erations, whereas [TLZQ22] performs 30 iterations and [SPS∗22]
perform 14 iterations.

In dynamic lighting scenarios, our method exhibits almost no
decrease in tracking success rate. This is because the frames are
continuous during tracking, so lighting does not change drastically
between adjacent frames. And in Sec. 6.3, our ablation experiment
shows that the hypothesis of small displacements has a greater im-
pact compared to the assumption of light invariance. In noisy sce-
narios, the quality of the probability map may decrease, but the
accuracy of our method still far exceeds that of other methods. In
occlusion scenarios, the accuracy has a slight decrease, indicating
that the proposed method has good robustness to occlusion.

Reconstructed Rough Models For the reconstructed rough
models, the roughness ranges from 0.007 to 0.023, and the average
roughness is 0.016. As shown in Tab. 3, our method outperformed
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glue

cat

bench

ape

Model Inner points Probability mapRough mask Reshaped mask Current frame Tracked pose

Figure 6: Some intermediate results in tracking. “ape” and “cat” are obtained by reconstruction. “glue” and “bench” are obtained by
deform. The sampling regions of the inner points are marked with green squares in the previous frame (second column). A reshaped mask
can be obtained by reshaping the rough mask with a probability map. The reshaped mask is more refined and accurate (marked with a red
rectangle). The last column visualizes the rendering of the 3D model in the current frame under the tracked pose.

the previous state-of-the-art method by 7.2% accuracy in average.
And on most models, we have achieved the highest accuracy.

Intermediate Results Figure 6 displays some intermediate re-
sults during the tracking process of rough models. The proposed
reshaping strategy can effectively refine the rough mask, leading
to the generation of a more accurate and reliable contour of the
mask, thus establishing a more robust contour constraint, as indi-
cated by the red rectangle. Additionally, the color consistency of
multiple regions can provide extra constraints, which further en-
hance the tracking performance of our method. As described in
Sec. 4.3, we set the selection threshold for Harris corner points
low enough, resulting in numerous candidate points even on tex-
tureless surfaces. These candidate points, along with the points in
their neighborhoods, are marked with green squares.

In some cases, such as the “bench” shown in Fig. 6, there are
holes (indicated by green retangle) in the probability map. This
is due to the statistical segmentation models used to calculate the
probability map being locally built on the object contour points.
Therefore, when the object occupies a large area in the frame, the
object center may not be covered by the statistical segmentation
models. Region-based constraints are primarily built around con-
tours, so holes inside the probability map have only a tiny impact.
However, for the color consistency constraints, the hole parts does
not generate candidate points, reducing the constraint force. There-
fore, we sample points on the rough mask without reshaping, and
although some external points may be sampled in this case, we have

Noisy Similar color Regular & rough modelRegular

Precise Model

Rough Model

Figure 7: Compared to regular scenes, noise, similar colors, and
rough models can decrease the quality of probability maps.

found in experiments that this is a better approach. More results can
be found in our supplementary materials.

Sensitivity of the Probability Map A probability map is calcu-
lated by the color distribution of the foreground and background.
As a result, if the foreground colors are similar to the background
colors or if there is random noise in the image, the quality of the
probability maps would decrease. For rough models, the projected
mask of the 3D model may not align well with the object, resulting
in a small portion of erroneous colors sampling near the bound-
ary between foreground and background, which can also decrease
the quality of the probability maps. These cases are as shown in
Fig. 7. Unreliable probability maps may lead to a decrease in track-
ing accuracy, as shown in Tab. 2, compared to regular scenes, the
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Tracked pose

(b)
Input Probability map Projected  mask Reshaped  mask

Probability map Input
(a)

3D Model

3D Model

Figure 8: Failure cases. (a) Failures of tracking both for precise
and rough models due to unreliable probability maps. (b) Failures
of reshaping due to an unreliable probability (red rectangle) or a
model with large missing parts (green rectangle).

noise and the rough models decrease the tracking accuracy to some
extent. In some cases, unreliable probability maps may lead to fail-
ure, which we will discuss in the following sections. Failures due
to unreliable probability maps are inevitable, and all region-based
methods would face this issue.

Detection and Segmentation The probabilistic map plays a role
in implicit segmentation. Therefore, a natural thought is to use
learning-based detection or segmentation methods to obtain an ex-
plicit foreground mask. However, as a real-time AR application
that can be applied to any object, using detection or segmentation
methods may lead to real-time and generalization problems. Foun-
dation models, like SAM(Segment Anything Model) [KMR∗23],
have excellent generalization and segmentation capabilities but suf-
fer from poor real-time performance. In our equipment, the default
SAM model takes around 400ms, and the ViT-B SAM model takes
around 100ms to segment one frame, which is hard to meet real-
time needs. As a comparison, computing a probability map only
takes around 2ms. Compared to SAM, lightweight methods may
achieve faster speeds but suffer from training and generalization
problems. In contrast, our method can track various objects with-
out suffering the generalization problems and achieves 30~40FPS.

Failure Cases Generally, unreliable probability maps may lead
to tracking failures for both precise and rough models, as shown in
Fig. 8(a). Additionally, in the case of a rough model, an unreliable
probability map may undermine the effectiveness of the reshaping
strategy. Moreover, when a large part of the model is missing, it
is hard for the reshaping strategy to obtain a precise and complete
contour, as shown in Fig. 8(b).

6.3. Ablation Study

To explore the role played by the proposed strategies, we conduct
experiments on the deformed rough models with a roughness about

Baseline Reshaping Color consistency Success Rate(%)
✓ 16.5
✓ ✓ 43.8
✓ ✓ 29.4
✓ ✓ ✓ 48.5

Table 4: Ablation study on RBOT dataset with deformed rough
models (Roughness ≈ 0.02). The baseline is [HZQ22].

Baseline Pre-search CC- Success Rate(%)
✓ 84.8
✓ ✓ 87.0
✓ ✓ 84.7
✓ ✓ ✓ 92.4

Table 5: Ablation study of the pre-search strategy on RBOT dataset
with precise models. “CC-” denotes color consistency constraints
without pre-search. The baseline is [HZQ22].

0.02. The experimental results are shown in Tab. 4. The reshap-
ing strategy significantly improves tracking accuracy (16.5% v.s.
43.8%), which shows the strategy’s effectiveness and the impor-
tance of contours in tracking. The color consistency constraints
also lead to a large improvement (16.5% v.s. 29.4%), showing that
the internal information of the rough model also has great impor-
tance. The best tracking results are produced combined with the
two strategies (16.5% v.s. 48.5%), proving the effectiveness of the
proposed strategies

We strive to satisfy the assumption of small displacement be-
tween frames, and therefore propose a pre-search strategy. We also
conduct ablation experiments on the precise models to explore this
strategy. As shown in the Tab. 5, when only using the pre-search
strategy, the tracking accuracy has a small improvement; when only
using color consistency constraints without pre-search, there is lit-
tle change in tracking accuracy; when both strategies are used si-
multaneously, there is a considerable improvement in tracking ac-
curacy. This shows that the color consistency constraints yield a
considerable improvement when the assumption of small displace-
ment between frames is better satisfied.

6.4. Application

We applied the proposed tracking algorithm to a Buddha statue ar-
tifact in a museum, which was difficult to reconstruct due to its
placement against a wall and being located inside a glass case. In
addition, we have also reconstructed a “cat” model for tracking in
common AR scenes. While more accurate reconstruction can be
achieved through devices such as scanners, in cases where quick
augmented reality (AR) interaction is desired and equipment is lim-
ited, reconstruction is often rough. The scenes and reconstructed
models and tracking results are shown in Fig. 9. For more detailed
results, please refer to our supplementary materials.

6.5. Limitations

Although our method achieves good performance for both rough
and precise models, there are still some shortcomings that need
to be addressed. Firstly, tracking objects relies on the probability
maps, an unreliable probability may result in tracking failures, and
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Model Scene Tracking Results

cat

Buddha

Figure 9: Applications of our method. Buddha is an artifact in the museum, while “cat” is a model used for AR in daily life.

if the rough model has significant missing parts, the reshaping strat-
egy may also struggle to get a precise and complete contour. Sec-
ondly, the reshaping strategy is designed for the rough model to
make the projected rough contour become precise. If the model is
precise, the projected contour is relatively accurate, so the reshap-
ing is unnecessary for precise models. Therefore, we need to em-
pirically evaluate the roughness of the object before tracking and
deciding whether to enable the reshaping module. Finally, we do
not optimize the topology of the 3D model during tracking, which
is our future direction.

7. Conclusions

For rough models tracking, projected contours may no longer pro-
vide valid constraints. To address this issue, we propose using the
probability map to reshape the contour, and we combine this with a
multi-region sampling strategy to emphasize the inner features. To
utilize color consistency constraints for inner points, the assump-
tion of the small displacement between frames needs to be satis-
fied. To address this problem, we have proposed a fast 2D space
search strategy that is an independent module that can be applied to
other 3D tracking methods. Experimental results demonstrate that
the proposed method can track both rough and precise models ef-
fectively, and the rougher the model, the greater the improvement
compared to other tracking methods. In addition, our method can
be applied to any 3D model without requiring parameter adjust-
ments and real-time, which makes it highly generalizable. In future
work, our goal is to explore the use of deep learning networks, such
as SAM [KMR∗23], to predict object contours to supplement the
shortcomings of traditional probability models, and to explore how
to achieve real-time results when using such networks.
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