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Figure 1: Human surface reconstruction by different methods for single RGB-D images. The frontal and back surfaces from each method are
shown on the left and right of its corresponding subfigure respectively, with the red and blue circles showing example areas. Our method (d)
apparently recovers richer surface details than the other two methods, where the back surface is fine without the wrong details of the frontal
one (see the red circle on (b)).

Abstract
Current single RGB-D image based human surface reconstruction methods generally take both the RGB images and the cap-
tured frontal depth maps together so that the 3D cues from the frontal surfaces can help infer the full surface geometries.
However, we observe that the back surfaces can often be quite different from the frontal surfaces and, therefore, current meth-
ods can mess the recovery process by adopting such 3D cues, especially for the unseen back surfaces. We need to do the back
surface inference without the frontal depth map. Consequently, a novel human reconstruction framework is proposed, so that
human models with fine geometric details, especially for the back surfaces, can be obtained. In this approach, a progressive
estimation method is introduced to effectively recover the unseen back depth maps. The coarse back depth maps are recov-
ered by the parametric models of the subjects, with the fine ones further obtained by the normal-maps conditioned GAN. This
framework also includes a cross-attention based denoising method for the frontal depth maps. This method adopts the cross
attention between the features of the last two layers encoded from the frontal depth maps and thus suppresses the noise for fine
depth maps by the attentions of features from the low-noise and globally-structured highest layer. Experimental results show
the efficacies of the proposed ideas.

CCS Concepts
• Computing methodologies → Parametric curve and surface models; Virtual reality; Reconstruction;

1. Introduction

Accurate reconstruction of 3D human surfaces can be applied to
various areas, such as metaverse and robotics and so on. These
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days we have witnessed booming studies on it [rlc]. Perhaps the
easiest way to do it is just by only one capture of the subject, where
the widely adopted methods are based on single RGB or RGB-D
images. Single RGB image based methods often have to addition-
ally include depth estimation for better performances [GFM∗19,
SLSC23, XYC∗23]. However, estimated depths can be very unsta-
ble. On the contrary, single RGB-D image based methods can be
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more robust, thanks to the directly captured depth maps as strong
3D priors. Therefore, we study the single RGB-D image based ap-
proach for the human surface estimation.

As far as we know, only very few studies deal with single RGB-
D images [WZY∗20, ZHRS23] and their performances are limited
(Figure 1): The surface details can be lost (see the areas inside the
circles on Figure 1), while the frontal details can even appear on the
back (see the area inside the red circle of Figure 1 (b)). Checking
the principles of those studies, we can see that they take the RGB
image and its associated frontal depth map together for surface in-
ference, either as a whole (e.g., OPlanes shown in Figure 1 (c)) or
as the fusion of the separately estimated frontal and back surfaces
(e.g., NormalGAN shown in Figure 1 (b)).

However, the frontal and back surfaces of humans can often be
quite different and, therefore, simply putting the RGB image and
the frontal depth map together for direct surface inference can eas-
ily mess the results: The frontal geometries may unnecessarily ap-
pear on the back due to the 3D cues of the frontal surfaces. This
is especially true for RGB-D images: Their frontal depth maps are
directly captured, while the back ones are completely unseen. Con-
sequently, the back surfaces can be easily biased towards the known
frontal ones. Therefore, we argue that the better way for 3D human
surface recovery with RGB-D images can be to infer the unseen
back surfaces without the interference from the frontal depth maps.

Effective priors are important for the inference of the unseen
back surfaces, while the normal maps adopted in NormalGAN are
too general to be strong enough for the human subjects. As for hu-
man surface reconstruction, the particular distribution of human
geometry should be considered. Especially, the parametric body
models, such as SMPL [LMR∗15] or SMPL-X [PCG∗19], can be
effective choices, considering their statistical natures for human
shapes [XYC∗23, CHW23a, FYR∗19, MCL22].

Accordingly, the depth maps of the unseen backs can be accu-
rately estimated by the parametric body models and normal maps
of human surfaces. The parametric model can supply a rough ini-
tialization on the general shape of the surface, while the normal
map can provide surface geometrical details to help refine the ini-
tial shape as accurate surface.

In addition, the frontal depth maps are often noisy and should
also be effectively denoised before doing the 3D frontal construc-
tion. The encoded features of the noisy frontal depth maps contain
information of low-noise global structures in high level and high-
noise geometrical details in the low level. Therefore, the global
structures embedded in the high-level features can guide the de-
noising of the noisy low-level features for fine frontal feature maps.

Consequently, this article proposes a novel human reconstruction
framework to model human surfaces with rich geometrical details,
which is especially good at fine back surfaces. For the unseen back
surface estimation, it adopts a progressive reconstruction strategy,
where the coarse depth map of the back surface is first inferred by
the parametric body model and further refined by the normal-maps
conditioned Generative Adversarial Networks (GAN) [GPAM∗14]
for accurate 3D back recovery. For the frontal surface estimation, it
introduces a cross attention based denoising method to denoise the
frontal depth map, where the cross attentions between the low-noise

high-level features and the high-noise low-level features are used to
suppress the noise and thus help infer the fine map. The complete
3D human surface is finally obtained by the two 3D surface clouds
with their nearest neighbors. Figure 1(d) shows the reconstruction
result with geometrical details by our method. It is much better than
the other two methods (Figure 1 (b) and (c)) and there are no frontal
details on the back by our method (see the area inside the red circle
of Figure 1(d)).

Note that the parametric model has already adopted for
effective prior cues in various studies, such as those with
single images [XYTB22] [XYC∗23, ZYW∗19], image se-
quences or videos [CLHG22, CHW23b], and even RGB-D se-
quences [SXZ∗22, YZG∗18]. However, there is no study applying
it to the reconstruction for the single RGB-D images. The depth
image denoising methods have also studied by many researchers
as an independent target [JL18,SSC∗19,ZW16,GLGT19] or a part
of a bigger work [SZB∗23,WZY∗20,DXD∗22]. However, none of
them considers the cross-attention based idea on features from the
highest two layers.

In summary, our contributions can be summarized as follows.

• A fine back surfaces oriented human reconstruction method for
single RGB-D images, which separates the reconstruction into
front and back estimations with the fine back surfaces estimated
without the guidance of the frontal depth maps.

• A progressive estimation method for the unseen back depth
maps, which first takes the parametric models as prior to get the
rough depth maps and then refine those maps by the normal-
maps conditioned GAN.

• A cross-attention based denoising method for the captured
frontal depth maps, which takes the high-level features to attend
the low-level features and thus suppress the noise for fine frontal
depths.

2. Related Work

This section mainly reviews the development of human surface
reconstruction with RGB-D images. Single RGB images and the
depth map denoising methods are also briefly reviewed. For more
details on the general development of human surface reconstruc-
tion, you may refer to [TKB∗23, CPZ21].

2.1. RGB-D image based human surface reconstruction

Reconstruction of human surfaces by RGB-D images has been
studied for a long time [KLL∗13, DF14]. The most popular way
is to take multiple views or videos. For example, Dou and Fuchs
et al. [DF14] assumed a pre-scanned version of the static envi-
ronment as a prior and gradually reconstructed the dynamic hu-
mans by non-rigid registration. Another famous example is Dy-
namicFusion [NFS15], aiming at real-time non-rigid volumetric fu-
sion. Various follow-ups [IZN∗16,SBI18,GXY∗17] have proposed
to improve the performances with various constraints and priors.
Among them, SMPL [LMR∗15] is adopted as the parametric body
prior [YZG∗18]. However, those studies [ZSG∗18] often take the
traditional optimization based methods such as the non-rigid ICP,
where multiple steps with manually defined energy functions are
adopted to do the fusion.
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Along with the booming of deep learning, new meth-
ods [YZG∗21, DXD∗22, CFF∗22, BNT21] for RGB-D sequences
appeared. For example, Function4D [YZG∗21] combines tempo-
ral volumetric fusion and deep implicit functions, where dynamic
sliding fusion is applied to do effective neighbor depth fusion and
detail-preserving deep implicit functions are further used to infer
geometrical details and generate textures; Dong et al. [DXD∗22]
proposed a novel geometry-aware PIFu method which exploits the
complementary properties of depth denoising and 3D reconstruc-
tion and learns a two-scale PIFu representation for face and body
separated reconstruction; Cai et al. [CFF∗22] proposed a template-
free method to recover high-fidelity dynamic humans based on
the neural SDF and neural radiance fields (NeRF) [MST∗21]. Re-
cently, Zheng et al. [ZLWY23] incorporated the occupancy field
and albedo field with an additional visibility field and reconstructed
the model by a novel TransferLoss to implicitly enforce the align-
ment between the visibility field and occupancy field.

There are few studies [WZY∗20, ZHRS23] on single RGB-D
images. NormalGAN [WZY∗20] takes a fast adversarial learning
based approach, where the back-view depth is inferred from the
frontal-view depth under the help of the normal-maps conditioned
GAN. However, this frontal surface based back inference may in-
troduce unnecessary frontal details. Zhao et al. [ZHRS23] formu-
lated single-view RGB-D human reconstruction as an occupancy-
plane-prediction task, where the occupancy planes indicate the oc-
cupancy at every pixel location for the corresponding 3D point and
are more flexible than those of classical voxel-grid representations.
However, this method cannot robustly recover the surface details
without prior constraints. In addition, the parametric model has not
been considered by these single RGB-D based methods.

2.2. Single RGB image based human surface reconstruction

The parametric models are often adopted by single RGB im-
ages [JZH∗20, LIPM19, SLSC23, XYTB22, XYC∗23]. For exam-
ple, ICON [XYTB22] first estimates detailed clothed-human nor-
mals (front/back) and then regresses the implicit surface with the
guidance of SMPL estimation. ECON [XYC∗23] further extends
ICON by estimating the depth maps of both the frontal and back
surfaces. We, however, adopt this type of ideas into the RGB-D
image based work.

Depths [GFM∗19, SLSC23, XYC∗23] and 3D displace-
ments [JZH∗20], normal maps [XYTB22, XYC∗23], albe-
dos [AZS22], silhouettes [NSH∗19], implicit functions [SHN∗19,
SSSJ20, XYTB22, XYC∗23, LZX∗23], GAN [JJW∗23] and
NeRF [HHP∗23] are the popular ideas except parametric mod-
els adopted in the existing methods. Recently, SHERF [HHP∗23]
adopts a hierarchical feature bank to supply enough information
for high fidelity NeRF reconstruction; Liao et al. [LZX∗23] com-
bined deep learning and traditional optimization to obtain the gen-
eral shape and refined surface details respectively.

2.3. Depth image denoising

Traditional methods often take filters to denoise the depth im-
age [CBTT08,DBPT10,RSD∗12] and use the RGB images as sup-
port [YYDN07,LKH07,PKT∗11]. Kwon et al. [KTL15] proposed a

dictionary-learning based data-driven method. However, traditional
methods rely heavily on the manually designed noise features.

Deep learning based methods are now popular [ZW16,FLJW22,
YWW∗18,JL18,SSC∗19,GLGT19,LHAY19]. For example, DDR-
Net [YWW∗18] adopts a cascaded CNN structure to denoise and
further refines the depth maps for high qualities of both low and
high frequencies. Sterzentsenko et al. [SSC∗19] proposed a fully
convolutional deep auto-encoder that learns to denoise depth maps.
However, it requires multiple views. SGN [GLGT19] adopts a top-
down self-guidance architecture to effectively incorporate multi-
scale information from the shuffling operation. Recently, Yan et
al. [YLZ∗20] adopted a group based nuclear norm and learning
graph model for depth image denoising.

Recent studies often take the denoisng as a part of big-
ger work [SZB∗23, WZY∗20, DXD∗22]. For example, Normal-
GAN [WZY∗20] takes normal map constrained GAN to denoise
the frontal depths for the full surface reconstruction. Dong et
al. [DXD∗22] included the denoising process in the geometry-
aware PIFu-Body module, which the global topological informa-
tion of the 3D occupancy field guides the denoising process. Sim-
ilarly, we consider the depth map denoising as a component of the
bigger human estimation work but take the cross-attention based
idea.

3. Our Proposed Method

Existing single RGB-D image based human reconstruction meth-
ods take the RGB images and their frontal depth maps together to
estimate the 3D human surfaces. It highly depends on the frontal
depth map for 3D cues of the whole surface. However, there are
often wide differences between the frontal and back surfaces of hu-
mans. Therefore, current methods may mess the recovery process
with low quality estimation and even the frontal details on the final
back surfaces.

Let’s first discuss our observation on the depth differences.

3.1. Differences between frontal and back surfaces

We observe that the front and back of humans are different and
sometimes this difference is very significant. Figure 2 shows
such an experiment with two typical RGB-D images from THu-
man2.0 [YZG∗21], where one subject in two different poses is
captured by two images (Figure 2a and Figure 2b). The imaged
surfaces of the subject in these two images are geometrically dif-
ferent.

Statistically local and global comparisons are applied to explore
the depth differences between the frontal and back surfaces for
these two images. Here, for fairness, the depth of each point on
a surface is updated first by its relative depth on that surface, i.e.,
it is subtracted by the max depth of its surface. The relative depths
equally capture the local shape of the object and thus are adopted
here for our purpose of frontal and back comparison.

Locally, the statistical depth differences between the 3D frontal
and back surfaces according to each example line specified from al-
most the same positions are compared (Figure 2c). The histogram
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Figure 2: Statistical comparison in histogram on the depth differences between the frontal and back surfaces of RGB-D images. (a) and
(b) represent two typical RGB-D images with the rows under the blue and orange lines specified for local comparison; (c) shows the local
comparison by two histograms for depth differences under the two lines in (a) and (b); (d) shows the global comparison by two histograms
for the two images shown in (a) and (b). Note: 1) The depth of each point is first subtracted by the max depth of its surface as relative depth
before doing the comparisons; 2) each number labeling the difference, dep, on the two horizontal axes, except ’0’ and ’>100’ means the
range (dep−10,dep].

along the orange line on the image of Figure 2b have nearly three-
thirds of depth differences bigger than 100mm (79.52%), while
there is even no depth difference bigger than 40mm for that along
the blue line of Figure 2a. Most depth variations along the blue line
approximately range from 20mm to 40mm (95.09%). The biggest
depth differences along the orange line is 162.0mm, while the
biggest one on the blue line is only 40mm. It can be seen from
these two histograms that the depth variations between the frontal
and back surfaces along these lines for the two images are quite
different.

Globally, we compare the depth differences between the full
frontal and back surfaces for these two poses (Figure 2d). Again
sharp contrast can be found for the depth differences for the two
images on the whole image space. More than one-fourth of depth
differences for (b) is bigger than 100mm (25.56%), while there is
completely no depth differences bigger than 90mm for (a) whose
depth differences are mostly between 0mm and 40mm (88.61%).

The above experiment shows that the front and back of a hu-
man can be quite different, which often appears along with pose
changes. Therefore, direct inference of the back surfaces with only
the RGB images and their frontal depth maps, such as the method
adopted in NormalGAN [WZY∗20], does not have enough knowl-
edge on the back distributions and makes frontal details easily ap-
pear on the back surfaces (Figure 1b and 1c). This type of work
messes the front and back without considering their differences
and, therefore, failures with smooth frontal and back surfaces are
often unavoidable.

This investigation leads us to think of a novel method to obtain
detail-rich human models for single RGB-D images, where the fine
back surfaces can be inferred without the guidance of the frontal
depth maps. We will briefly introduce this method in the following.

3.2. Outline of our method

In this method, for the main target of fine back surfaces, the para-
metric body model is considered as the additional prior to help es-
timate the unseen back besides the detail-rich normal maps. Cer-
tainly, effectively denoising the frontal maps is also important for

accurate front reconstruction. Consequently, a framework with two
branches for the front and back estimation can be structured (Fig-
ure 3).

Assume the input RGB-D image S consisting of one RGB image
I and one frontal depth map DF , S = {I,DF}. In the frontal esti-
mation, DF is noisy and thus should be denoised before construct-
ing the 3D frontal surface. Here, a cross-attention based method is
used for this purpose, where the low-noise high-level features and
the high-noise low-level features are cross attended for denoised
frontal depth map D′

F . For the back estimation, a progressive idea
is used for the unseen back. The parametric model P acts as the
strong prior to get the rough back depth map D(R)

B and the fine re-
fined depth map D′

B is finally obtained with GAN constrained by
detail-rich normal priors. The frontal and back depth maps are re-
projected back as 3D frontal and back point clouds CF and CB re-
spectively which are finally fused together as the whole 3D human
model MS. Note, the expressive SMPL-X model [PCG∗19] is the
parametric body model used.

Orthogonal projection is assumed as the way of capturing the
input images for the framework, which is easier to apply and can
better match the front and back than perspective projection. In prac-
tice, the depth maps by a consumer depth camera like Microsoft
Kinect capture close subjects and, therefore, the appearance dif-
ferences got by perspective and orthogonal projections are small
and can be omitted. Therefore, our method directly takes the depth
map as input without considering the orthogonalization pre-process
adopted by NormalGAN [WZY∗20].

Now, let’s discuss the details of the frontal and back estimation
processes in the two separate branches.

3.3. Cross-attended frontal surface construction

The frontal depth map directly captures the geometry of the frontal
surface with significant noise due to the camera sensors. Therefore,
it must be denoised for accurate 3D construction of the surface.
Generally, the high-level features containing global structure infor-
mation are less noisy than the low-level features which is rich with
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Figure 3: The pipeline of the proposed method. There are two branches for estimating the frontal surface cloud CF and back surface cloud
CB respectively from the input RGB-D image consisting of one RGB image I and its depth map DF . A cross attention based method is adopted
in the front estimation to denoise the frontal depth map DF to be D′

F . A progressive back depth estimation method is applied in the back
estimation to obtain the back depth map D′

B by the parametric model P and normal-maps conditioned GAN. The final surface MS is obtained
by the fusion of CF and CB.

geometrical details. Therefore, we can use the low-noise global
structures of the high-level features to attend the high-noise low-
level features to recover the details while suppressing the noise.
Therefore, a cross-attention based method is proposed.

It adopts a U-Net style of design (see the front estimation part in
Figure 3), consisting of four layers for the encoder and the decoder
respectively. The concatenation of the RGB image I and depth map
DF is the input while the denoised frontal depth map D′

F is the out-
put. A cross-attention module CA is applied on the refined high-
est bottleneck features with the lower-level features. The low-noise
high-level features with rich structural information attend the high-
noise low-level features and thus help obtain noise-free features
with fine details for D′

F .

Let’s discuss the structure of the cross-attention module CA
(Figure 4). The higher level features are the bottleneck features
fb while the lower level ones are those from the previous level
f3. Even lower features are not considered in this module because
bigger dimension differences will make the information lost signif-
icantly when doing upsampling based fusion.

In particular, fb are self-attended to obtain the attention maps
fm for fusion with the lower features. The self-attention is defined
with the transformations from two parallel MLP M1 and M2, so
that the output features, query and key, are refined into lower di-
mensions. The attention maps fm are computed as

fm = σ(M1(fb)×M2(fb)
T ), (1)

where σ represents the sigmoid function and × denotes matrix mul-
tiplication.

fm are then applied to the lower features f3 for doing the
weighted summation of fb and f3 as the output features,

f ′
b = (fm ×M3(f3))||fb, (2)

m

m
m

C

Key

X

X

C ConcatenationC ConcatenationSigmoidSigmoidX Matrix MultiplicationX Matrix Multiplicationm MLPm MLP

Query

fb

f3
Value

fm

Figure 4: The principle of the cross-attention module (CA). The
self-attended bottleneck features fb and the features from the pre-
vious layer, f3, are cross attended and combined to obtain the final
refined features f ′

b for further decoding.

where || represents concatenation. Here, like the self-attention pro-
cess of fb, f3 are transformed by another MLP M3 as lower but
refined dimensional data, value, before doing the cross-attention
computation.

Further decoding f ′
b by the denoising network will finally get the

denoised frontal depth map D′
F . Then, the frontal point cloud CF

can be obtained by re-projecting (Π−1) D′
F to 3D space according

to the camera matrix A,

CF = Π
−1(D′

F ,A). (3)

Figure 5 shows an example denoising result by this cross-
attention based method. The CA module can effectively suppress
the noise for a fine frontal depth map so that its 3D frontal surface
(Figure 5b and 5b) has rich details but without apparent noise.
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(a) (b) (c)

Figure 5: Demonstration of the cross-attention based denoising
method for the frontal depth maps. (a): Source RGB-D image; (b)
reconstructed frontal surface after denoising; and (c) side view of
the reconstruction.

3.4. Progressive modeling of the unseen back surface

The estimation of the unseen back surface (see the back estimation
part in Figure 3) is mainly fulfilled by two progressive steps for ac-
curate back depth maps: coarse estimation by the parametric body
model and refinement by normal-maps conditioned GAN. The re-
fined depth maps are then re-projected as 3D back cloud for further
fusion.

For the coarse estimation, the full-body parametric model P can
be estimated from the input image by some existing studies, such as
PIXIE [FCB∗21] and PyMAF-X [ZTZ∗23]. Here, the coarse back
depth map D(R)

B can be computed by projecting the model to the
view plane,

D(R)
B = Π(P,A). (4)

Note that this re-projection can also be obtained by an existing ren-
derer, such as PyTorch3D or OpenGL.

The refinement is based on the normal-maps constrained GAN
because the normal maps are geometrically richer than the depth
maps and thus can be adopted for better depth map refinement (See
our ablation in Section 4.5 for more information). Here the gener-
ator G takes a U-Net based eight-layer structure. It accepts D(R)

B as
input and outputs the refined back depth map with surface details,

D′
B = G(D(R)

B ). (5)

This refined depth is adversarially trained by a normal-maps based
discriminator D based on the Markovian discriminator [IZZE17],
penalizing structures by local image patches and thus ensuring ef-
ficient generation.

The normal maps used in D are obtained as follows. The nor-
mal of the i-th point pi, li, can be approximated with its neighbors
indexed as the set C,

li = ∑
j,k∈C

(p j −pi)× (pk −pi), (6)

where · denotes the normalization operation.

Figure 6 shows an example from the above progressive estima-
tion. The coarse parametric model based back (Figure 6b) provides
important cues to do further refinement, even though it’s not ac-
curate. The final back (Figure 6c and 6d) is fine with rich details,
thanks to the normal maps empowered GAN.

(a) (b) (c) (d)

Figure 6: Demonstration of the progressive estimation method for
the back depth map. (a): Source RGB-D image; (b) coarse SMPL-
X based back surface; (c): finally reconstructed back surface after
the progressive estimation; and (d) side view of the reconstruction.

After above two progressive steps, the 3D back cloud CB can be
obtained through re-projection in the same way as computing the
frontal cloud (Equation 3).

3.5. Nearest-neighbor based fusion

Now comes to the final fusion, where the frontal and back clouds,
CF and CB, are combined with the nearest neighbors between them.
The triangulation is applied to those neighboring points with inter-
polation to avoid abrupt changes due to apparent gaps. The details
on how to do this fusion can be found in NormalGAN [WZY∗20].

To further improve the results, the Poisson mesh editing can also
be applied to smooth the cloud for better output. However, we don’t
use the Poisson method in our experiment for fair comparison with
existing methods.

3.6. Loss

Two types of loss, frontal loss and back loss, are considered accord-
ing to the training targets on either frontal or back surfaces.

3.6.1. Frontal losses

The frontal loss should first include the difference between the es-
timated frontal depth maps D′

F and their ground-truth depth maps
D̂F ,

LD(D
′
F , D̂F ) = ∥D′

F − D̂F∥1. (7)

However, the depths themselves are not enough because of the lack
of 3D supervision and thus may lead to unstable results. Therefore,
normal differences between the estimated (N′

F ) and the ground-
truth ones (N̂F )) are also adopted as supervision,

LN(N
′
F , N̂F ) = ∥N′

F − N̂F∥1. (8)

In addition, the features of the normal map estimated by
VGG19 [SZ14] is also adopted to tune the performances for bet-
ter geometrical details. The corresponding loss is measured by the
weighted sum of differences from features of i-th layer, Vi, between
the estimated and ground-truth norm maps.

LV (N
′
F , N̂F ) = ∑

i
λvi∥Vi(N

′
F )−Vi(N̂F ))∥1, (9)

where λvi are the weights.
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Consequently, the total frontal loss L f ront can be formulated as

L f ront = γDLD(D
′
F , D̂F )+ γNLN(N

′
F , N̂F )+ γV LV (N

′
F , N̂F ). (10)

where γ{·} are the coefficients.

3.6.2. Back losses

For the back, the depth difference LD(D′
B, D̂B) (Equation 7) be-

tween the predicted and the ground-truth back depth maps, D′
B and

D̂B, should be included for training the generator G. The typical
GAN loss [GPAM∗14] is also adopted based on the estimated nor-
mal N′

B and its ground truth N̂B,

LG(N
′
B, N̂B) =EN̂B

[logD(N̂B)]+EN′
B
[log (1−D(G(N′

B)))]. (11)

However, GAN may not converge due to the possible drastic
changes of the normals. Therefore an additional feature matching
loss [WLZ∗18] is included to constrain the discriminator. It com-
pares the feature differences between predicted normal maps and
their ground truths from different layers of D,

LM(N′
B, N̂B) =

T−1

∑
k=2

∥Dk(N
′
B)−Dk(N̂B)∥1, (12)

where Dk represents the k-th layer of D with total T layers.

In addition, D(R)
B by the parametric model is important for back

depth refinement and further 3D estimation. Therefore, an addi-
tional silhouette loss measuring the difference of binary masks be-
tween the estimated parametric model and imaged subject, PL and
HL, are also taken,

LP(PL,HL) = ∥PL −HL∥1. (13)

Finally, the VGG loss LV (Equation 9) is also considered. Conse-
quently, the total generator loss, L(G)

back, can be formulated as

L(G)
back = βDLD(D

′
B, D̂B)+βGLG(N

′
B, N̂B)+βMLM(N′

B, N̂B)+

βPLP(PL,HL)+βV LV (N
′
B, N̂B).

(14)

where β{·} are the coefficients.

For the disriminator D, only the normal differences is considered
and, therefore, its loss is

L(D)
back = LG(N

′
B, N̂B). (15)

4. Experimental Results

4.1. Implementation settings

THuman 2.0 [YZG∗21] is adopted as the experimental dataset
where 500 models including their SMPL-X models are chosen to
train and test the proposed framework. The training and testing
sub-sets are divided by the ratio 4 : 1. All images are prepared
by Blender [Fou] as 424× 512 according to the depth map size in
Kinect V2. Two data augmentation methods are used: 14 RGB-D
images of each model are obtained by randomly rotating it horizon-
tally between −30◦ and 30◦, with each depth map then randomly
perturbed by multiple Gaussian noises as NormalGAN [WZY∗20].

The whole idea is implemented by Python and trained on two
NVIDIA® V100 graphics cards. Separate trainings are conducted

for the frontal and back branches. The batch size of the front branch
is set to 16, while that of the back one is set to 32. Adam optimizer
with learning rate 0.001 is adopted, where 45 and 25 epochs are
applied for the front and back estimation respectively.

Other hyper parameters are set as follows. γD, γN and γV in Equa-
tion 10 are set to 1.0, 20.0 and 20.0 respectively, while βD, βG, βM ,
βP and βV in Equation 14 are set to 10.0, 5.0, 20.0, 20.0 and 1.0
respectively. There are five layers in VGG and, therefore, corre-
spondingly five weights in λvi of Equation 9 are 1/32, 1/16, 1/8,
1/4 and 1 from i = 1 to i = 5.

4.2. Performance comparison settings

Five methods are adopted for performance comparison, includ-
ing NormalGAN [WZY∗20], the occupancy planes based method
or OPlanes [ZHRS23], PIFuHD [SSSJ20], ICON [XYTB22] and
ECON [XYC∗23]. Two of them, NormalGAN and OPlanes, are
for single RGB-D images with the left three for single RGB im-
ages. For fair reasons, 1) the orthogonalization step of NormalGAN
is removed; and 2) all those methods are directly tested with their
open codes. Note that the optimal ECONEX version of ECON is
adopted for comparison due to its superior performances especially
in recovering geometrical details.

Three metrics are adopted to show and compare the perfor-
mances of different methods: Chamfer distances (CD), point to
surface distances (P2S) and normal errors (L2). CD (cm) is one-
directional point-to-surface distance; P2S (cm) is a bi-directional
point-to-surface distance; L2 is the average difference between nor-
mal images separately rendered from reconstructed and ground-
truth surfaces by four angles {0◦,90◦,180◦,270◦}. Generally, their
average values are used to evaluate the performances of different
methods when doing comparison.

Different methods may obtain models with different sizes and
positions. Therefore, for fair comparison, all reconstructed mod-
els from different methods are normalized by re-scaling them to
exactly fit a 1× 1× 1 bounding box with their origins overlapped
with the box center. Normal maps are computed by orthogonal pro-
jection as 512×512 with PyOpenGL for quantitative comparison.

4.3. Qualitative results

The performance comparison of different methods with images rel-
ative easy to reconstruct is shown in Figure 7. All other methods
cannot recover as many details as ours for the frontal surfaces. They
also return over-smooth results (e.g., ICON, ECON and PIFUHD)
or incorrect details with frontal ones (NormalGAN) for the back
surfaces. The results of OPlanes seem to be the worst with rough
and blurry results, partly due to the direct complete surface estima-
tion from both RGB images and depth maps and partly due to the
lack of priors. In general, our method can obtain best results not
only on the fine unseen back surfaces but also on the fine frontal
surfaces among all methods.

Experiments with more challenge RGB-D images are also taken
(Figure 8), where the depths of the fronts change significantly. In
this case, the frontal noise is generally higher than that shown in

© 2023 Eurographics - The European Association
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0

(g) Ours(b) PIFuHD [SSSJ20] (c) ICON [XYTB22] (d) ECON [XYC∗23] (e) NormalGAN [WZY∗20] (f) OPlanes [ZHRS23](a) RGB-D Image (h) GT

Figure 7: Performance comparison of different methods on easy images where their subjects are well posed and thus imaged without dramatic
depth variations. The frontal and back surfaces from each method are shown on the left and right of its corresponding subfigure respectively.

(g) Ours(b) PIFuHD [SSSJ20] (c) ICON [XYTB22] (d) ECON [XYC∗23] (e) NormalGAN [WZY∗20] (f) OPlanes [ZHRS23](a) RGB-D Image (h) GT

Figure 8: Performance comparison of different methods on hard images. Note that depth variations are significant due to the challenging
poses. The frontal and back surfaces from each method are shown on the left and right of its corresponding subfigure respectively.

Figure 7 and the unseen back can be easily mis-estimated without
proper handling. The single RGB image based methods (PIFuHD,
ICON and ECON) cannot obtain results with fine details. Existing
signal RGB-D image based methods still obtain the over-smooth
results as before, with too many frontal details due to the direct
frontal-to-back inference (NormalGAN). Our method can obtain
the best results with lots of correct details in both frontal and back
surfaces, thanks to the proposed cross-attention based denoising
method for frontal depth maps and the parametric model incor-

porated progressive estimation method for the unseen back depth
maps.

Experiment on the real RGB-D images captured by Kinect V2 is
also conducted. The parametric models for all images are obtained
by PIXIE [FCB∗21] and consequently the proposed reconstruction
model is retrained. These images are rich with noise that is difficult
to suppress by all methods. However, our method can still obtain
better results, especially on the back surfaces when comparing to
existing methods (Figure 10).
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(e) NormalGAN [WZY∗20] (f) OPlanes [ZHRS23]

100mm

0mm

(g) Ours(a) RGB-D Image (b) PIFuHD [SSSJ20] (c) ICON [XYTB22] (d) ECON [XYC∗23]

Figure 9: Performance comparison of different methods by error maps. The frontal and back surfaces from each method are shown on the
left and right of its corresponding subfigure respectively.

(g) Ours(b) PIFuHD [SSSJ20] (c) ICON [XYTB22] (d) ECON [XYC∗23]
(e) NormalGAN

[WZY∗20]

(f) Oplanes

[ZHRS23]
(a) RGB-D Image

Figure 10: Performance comparison of different methods for
real RGB-D images. Reconstruction results for back surfaces are
shown.

4.4. Quantitative results

The statistical results of different methods on the accuracy of full
human surface are collected (Table 1). Our method achieves the
best results among all results for all metrics.

Table 1: Statistical results of different methods. The best results are
shown in bold.

Method CD ×10−2 ↓ P2S ×10−2 ↓ L2 ↓
PIFuHD [SSSJ20] 0.1658 0.1680 0.1197
ICON [XYTB22] 0.1916 0.1965 0.1339
ECON [XYC∗23] 0.2121 0.2206 0.1516

NormalGAN [WZY∗20] 0.1590 0.1549 0.1053
OPlanes [ZHRS23] 0.2105 0.2317 0.1941

Ours 0.1227 0.1254 0.0897

Further details from different methods on either frontal or back
surfaces are also collected (Table 2). Here only the normal based L2
is used because it can better depict the geometrical accuracy than

CD and P2S for such unclosed surfaces. Our method still obtains
the best results among all methods for either the frontal or the back
surfaces.

Table 2: Statistical results of different methods for the frontal and
back surfaces only by L2. Average means the average L2 error from
both frontal and back surfaces. The best results are shown in bold.

Methods Front ↓ Back ↓ Average ↓
PIFUHD [SSSJ20] 0.0602 0.0632 0.0617
ICON [XYTB22] 0.0688 0.0711 0.0700
ECON [XYC∗23] 0.0818 0.0820 0.0819

NormalGAN [WZY∗20] 0.0558 0.0670 0.0614
OPlanes [ZHRS23] 0.1896 0.2067 0.1982

Ours 0.0509 0.0612 0.0560

The comparison among different methods can also be visualized
by error maps (Figure 9). Our method can best capture the ground-
truth model than all other methods, which again demonstrates the
superiority of ours.

4.5. Ablation

Two ablation studies are conducted according to the two methods
proposed in the front and back branches of our framework respec-
tively. Our method reconstructs the frontal and back surfaces in-
dependently and, therefore, the L2 metric for either the frontal or
back normal maps alone is also additionally used in each ablation
study.

For the methods of front estimation, three configurations of dif-
ferent denoising ideas for frontal depth maps are tested, includ-
ing U-Net, U-Net with the normal-maps conditioned GAN (U-
Net+nGAN) which is also used by NormalGAN [WZY∗20] and
our proposed U-Net and CA combined cross-attention based meth-
ods (U-Net+CA). Figure 11 gives the example visual compari-
son results. Our method (Attention) achieves fine results and is
better than other methods which obtain incorrect geometries. Ta-
ble 3 gives the statistic results on the reconstructed frontal surfaces,
which again shows that our proposed method is best among all con-
figurations.

For the back estimation, three configurations of different
back depth estimation methods are taken, including the normal-
maps conditioned GAN (nGAN), SMPL-X initialized back depth
maps plus depth-maps conditioned GAN (SMPL+dGAN) and our
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Figure 11: Example reconstructions for different front estimation
ideas in the ablation study. The red circles show the incorrect parts
on the surfaces.

Table 3: Statistical results for different denoising ideas for frontal
depth maps. The best result is shown in bold. Note: Front L2 repre-
sents the average L2 error for the frontal surfaces.

Methods Front L2 ↓ CD ×10−2 ↓ P2S ×10−2 ↓ L2 ↓
U-Net 0.0538 0.1344 0.1386 0.0966

U-Net+nGAN 0.0530 0.1330 0.1392 0.0904
U-Net+CA (Ours) 0.0509 0.1227 0.1254 0.0897

method, i.e., the SMPL-X initialized back depth maps plus normal-
maps conditioned GAN (SMPL+nGAN). Figure 12 gives the ex-
ample visual comparison results. Our method (SMPL+nGAN)
achieves better back results than other methods which can exhibit
apparent errors. Table 4 gives the statistic results on the recon-
structed back surfaces. Again, this table shows that our progres-
sive depth map estimation method for the unseen back is the most
effective among all configurations.

SMPL+nGAN (Ours)SMPL+dGANnGAN GTRGB-D Image

Figure 12: Example reconstructions for different back estimation
ideas in the ablation study. The red circles show the incorrect parts
on the surfaces.

Table 4: Statistical results for different estimation ideas for back
depth maps. The best result is shown in bold. Note: Back L2 repre-
sents the average L2 error for the back surfaces.

Methods Back L2 ↓ CD×10−2 ↓ P2S×10−2 ↓ L2 ↓
nGAN 0.0670 0.1574 0.1551 0.1002

SMPL+dGAN 0.0631 0.1628 0.1521 0.0954
SMPL+nGAN (Ours) 0.0611 0.1227 0.1254 0.0897

4.6. Additional experiment on light condition

Light condition may also affect the reconstruction performances.
Intuitively, it might be more and more difficult to rebuild the ge-
ometries when the light turns lower and lower with the subject

appearances more and more ambiguous. Here an additional ex-
periment is taken where 20 rendering light powers from a direct
point light equally decreased from 2000W and 100W according
to Blender [Fou] are used. Figure 13 shows that the geometrical
details of an example model almost lose nothing during the dimin-
ishing process. This is because the depth images and parametric
models are not affected by such light changes and, therefore, still
provide important cues to help recover surface details even under
weak light conditions (e.g., 100W).

Figure 13: Example reconstruction results of both the frontal and
back surfaces of a model under five different light powers.

Quantitative results are also collected (Figure 14). All measure-
ments change little during the diminishing process, even though
those by L2 slightly go higher with the light turning lower. These
results again justify the visual performances shown in Figure 13.
We can therefore conclude that this method is generally not affected
by the light variation.

(a) (b)

Figure 14: Statistical results of our method under different light
powers. (a): Measurements by CD, P2S and L2; (b): L2 errors and
their averages for frontal and back surfaces.

4.7. Limitations

Our method may fail when there are self-occlusions caused by the
arms far away from the main body (Figure 15). In this case, the in-
formation from the occluded body parts cannot be successfully in-
ferred from the frontal depth maps because the distances between
the arms and body are too big. Consequently, the occluded arm
parts and the body will be directly connected due to the triangula-
tion based reconstruction.

In addition, the parametric body model is important for the suc-
cess of the proposed method. However this model sometimes can-
not be successfully estimated by existing methods, especially when
the subjects are in some challenging poses, such as in hunkering
down or flying kick. In this case, our method will also fail. More
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(a) (b) (c)

Figure 15: Demonstration of the failure from the distant-to-body
part caused self-occlusion. (a): RGB-D Image; (b): one side view of
the reconstruction; and (c): another side view of the reconstruction

robust pose and shape estimation method will make our method
apply to more challenging RGB-D images.

5. Conclusions

Existing single RGB-D image based methods for the human sur-
face reconstruction lack surface details with even frontal details of-
ten appearing in the unseen back. Noticing that the unseen back is
better to be predicted without the interference of the frontal depth
map due to the possibly significant difference between them, we
introduce a novel framework for effective reconstruction with rich
geometrical details, especially fine back surfaces. This framework
takes the parametric human model as the strong prior and thus
proposes a progressive depth map estimation method for the un-
seen back. This method combines the parametric body model and
normal-maps conditioned GAN to subsequently obtain the coarse
depth maps and further refined ones. This framework also includes
a cross-attention based denoising method to improve the quality
of the captured frontal depth maps. Experimental results show the
advantages of the proposed approach over existing methods.
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