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Figure 1: Example result of shape refinement. Our strand integration technique refines the inaccurate hair strand by integrating the gradient
along the strand. Left: Initial hair geometry from LPMVS [NWKS19]. Each point has 3D direction information illustrated as black arrows
(while the red lines are for the purpose of illustration only and are not generated). Right: Refined hair geometry using our method. Our
method improves the accuracy of the hair geometry without any additional data.

Abstract
Reconstructing 3D hair is challenging due to its complex micro-scale geometry, and is of essential importance for the efficient
creation of high-fidelity virtual humans. Existing hair capture methods based on multi-view stereo tend to generate results
that are noisy and inaccurate. In this study, we propose a refinement method for hair geometry by incorporating the gradient
of strands into the computation of their position. We formulate a gradient integration strategy for hair strands. We evaluate
the performance of our method using a synthetic multi-view dataset containing four hairstyles, and show that our refinement
produces more accurate hair geometry. Furthermore, we tested our method with a real image input. Our method produces a
plausible result. Our source code is publicly available at https://github.com/elerac/strand_integration.

CCS Concepts
• Computing methodologies → Reconstruction; Shape modeling;

1. Introduction

Hair is an important aspect of our appearance, and it has a sig-
nificant impact on how we look and feel. Modeling realistic and

† Work done during an internship at CyberAgent AI Lab.

natural-looking hair is essential to creating virtual humans for many
applications such as VR, AR, and online commerce. However, hair
modeling is a laborious and time-consuming task that requires tech-
nical expertise and artistic skill, especially when trying to achieve
a specific hairstyle.

Automatic hair generation using deep neural networks has
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widely been investigated in graphics and vision [RSW∗22,
KCF∗22]. 3D hair reconstruction from a single portrait can in par-
ticular drastically improve a hair modeling workflow [WYY∗22,
YZM∗23]. These approaches are, however, difficult to generalize
due to diverse variations in hairstyles.

On the other hand, directly capturing actual hair strands us-
ing a multi-camera system has also been explored. Although spe-
cial equipment is needed, various hairstyles can be reconstructed.
To reconstruct hair strands from multiple-view images, the multi-
view stereo (MVS) algorithm is specialized by assuming 3D lo-
cal lines instead of using 3D local planes [PCK∗08, HMLL14,
NWKS19, SNA∗21]. In these methods, reconstructed points are
associated with direction information. In particular, Nam et al.
proposed an algorithm for accurately reconstructing hair strands
named line-based PatchMatch MVS (LPMVS) [NWKS19]. While
their method achieves remarkable hair reconstruction results, the
intermediate raw output of reconstructed strands still exhibits sig-
nificant amount of noise. In the original paper, they address this
issue by eliminating the inconsistent 3D lines and selecting only a
few reliable ones. Consequently, this approach reduces the overall
density of the 3D lines, resulting in sparse reconstruction results.

In the 3D vision research field, normal integration is a classi-
cal technique for surface reconstruction that determines shape from
a set of normal vectors [HB86]. This technique is beneficial for
reconstructing the detailed shape, whereas the MVS technique is
suited to the overall shape. The basic idea is that the gradient equals
the differentiation of shape. As a result, we can reconstruct the ob-
ject shape by integrating normals. Although numerous normal inte-
gration approaches have been proposed [QDA18], all of them still
need to be modified to be applied to hair strands because existing
approaches assume smooth surfaces.

In this study, we propose a refinement method for hair strands by
integrating gradients with a line assumption, as illustrated in Fig. 1.
We start with a noisy 3D line map (depth and direction) obtained
through the LPMVS technique and refine it for each view. The re-
fined lines are merged to reconstruct the final hair geometry. Unlike
the previous approach, our refinement process can restore the noisy
3D lines instead of eliminating them. It can preserve 3D lines and
reconstruct dense and less noisy hair shapes. To accomplish this,
inspired by the normal integration method, we leverage the gradi-
ent for correcting the noisy lines. Compared to the traditional nor-
mal integration, our method extracts the gradient from the direction
of the 3D line map rather than the normal vector of a plane. Fur-
thermore, in our method, the directions of integration are defined
by the 2D hair directions estimated on the input images. Addition-
ally, as an option to further improve the quality, our method can
integrate normal vectors estimated by the photometric stereo tech-
nique [Woo80]. Because our method adapts the concept of normal
integration to the task of strand reconstruction, we call our method
Strand Integration.

2. Related Work

There are several approaches for reconstructing the 3D shape of
hair from a captured image input. 3D hair reconstruction from a
single portrait is actively studied because it can drastically reduce

the modeling cost. As 3D reconstruction from a single portrait is
an ill-posed problem, these methods estimate the 3D hair shape
using prior knowledge. For example, information from the user’s
sketch is used to determine the flow of the hair [CWW∗12,CLS∗15,
HMLL15]. Neural networks are also used to estimate the 3D shape
of the hair [CSW∗16, ZHX∗18, SHM∗18, WYY∗22, YZM∗23].
This type of data-driven approach can predict the entire 3D shape
of the hair. Although the single-view and data-driven approach is
beneficial for easier deployment, it struggles in reconstructing the
invisible area, and tends to fail to reconstruct irregular hairstyles
that are not well represented in the training dataset.

The multi-view camera system can capture accurate hair shapes
without relying on prior knowledge. Pioneering research by Paris et
al. introduced a method to reconstruct a hair shape from multi-view
images [PBS04]. Their approach involves analyzing the orientation
of hair strands to recover the 3D orientation or 3D lines. Build-
ing upon their research, subsequent work has steadily improved
the quality of hair reconstruction [WOQS05, PCK∗08, LLP∗12,
LZZR13,LLR13,HMLL14]. In addition, some research uses a spe-
cial capture approach or setup for hair reconstruction such as fo-
cal stack photography [JMM09], thermal camera [HZW12], and
RGB-D camera [ZWW∗18]. These unique setups can acquire addi-
tional physical cues to help reconstruct hair. Moreover, some stud-
ies have employed a learning-based approach with multi-view im-
ages [ZCW∗17, KCF∗22].

Among these multi-view hair capture approaches, Nam et al.
proposed a successful hair reconstruction method called LPMVS
[NWKS19]. This method expands upon a traditional MVS for hair
strands by considering hair strands as 3D lines rather than 3D
planes. Our method uses LPMVS to generate the initial input of
rough hair shape and subsequently improves its quality through re-
finement. Some of their subsequent works use LPMVS. For ex-
ample, Sun et al. combined photometric images as the feature of
matching strands [SNA∗21]. In our approach, we also use photo-
metric images, but we employ them to extract normal vectors and
integrate them into refinement. Recent advanced neural approaches
represent hair features in a latent space, enabling the rendering of
realistic hair images [RSW∗22, WNS∗22]. These methods incor-
porate the output of LPMVS as a geometric guide during opti-
mization, and can benefit from the improved accuracy of prior hair
shapes offered by our method. In this sense, our work is comple-
mentary to these neural methods and has a potential to contribute
to the overall quality improvement of hair reconstruction.

3. Strand Integration

Our strand integration algorithm is inspired by normal integration.
Normal integration, also known as shape from gradients, is a well-
known method in computer vision that reconstructs a 3D surface
from its normal vectors. This method was originally introduced by
Horn and Brooks in 1986 [HB86]. Since then, numerous improved
methods have been proposed over several decades [QDA18]. De-
spite the advancements, it remains a challenging task. Our work
adapts this idea to hair strands by leveraging the 3D direction as a
gradient.

In this section, we describe the details of our proposed method;
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Figure 2: Overall pipeline of our hair reconstruction. The input images are captured under a multi-view camera condition. As a prepro-
cessing, we reconstruct 3D lines (depth and direction) using LPMVS [NWKS19]. These 3D lines become the input to our method, Strand
Integration, which refines the depth map for each view. While our method can work without any extra input, we can also optionally accept a
normal map as an additional input. We can obtain the hair geometry as a set of 3D lines by accumulating.

see Fig. 2 for an overview. The input of our method is a 3D line
map which is obtained as the output of LPMVS [NWKS19]. This
3D line map comprises the depth map (3D points) and their 3D di-
rections. The basic concept of our strand integration is to harness
the position and direction information for improving geometrical
coherence. If we move along a 3D line following its direction, we
will likely encounter another 3D line that represents another piece
of the same strand. By following successive 3D lines, we can de-
termine the shape of an entire strand of hair. We formulate this
relationship similar to normal integration but for 3D lines.

We first introduce the notation of the geometrical parameters
of the hair strand (Fig. 3). When a calibrated camera captures
the hair, its strand is projected to a point on the image plane
u = [u,v]⊤ ∈ R2. We define the area where at least one strand
is projected as Ω, and let |Ω| denote its number of pixels. The
prior hair strands obtained by LPMVS are represented as a pair
of depth map zprior(u) ∈ R and the 3D direction map dprior(u) =
[dx,prior,dy,prior,dz,prior](u)⊤ ∈ S2 ⊂ R3 in the camera coordinate
system where u ∈ Ω. We denote the angle of the strand on the im-
age plane as θ(u) =−arctan(dy,prior/dx,prior) ∈ [−90◦,90◦).

3.1. Notation of Strand

Resolving Directional Ambiguity. Note that there exists an am-
biguity regarding the directionality of a 3D line: the 3D direction
vector dprior and its flipped version −dprior can represent the same
3D line. We eliminate this ambiguity by flipping the direction vec-
tor as needed such that the X component of the direction dx,prior is
always positive.

3.2. Deriving 3D Direction from Depth

In the following, we formulate the derivation of the 3D strand di-
rection d from the to-be-optimized depth z. First, we take the direc-

𝑣
𝑢

𝜃

Image plane

Ω
𝐮

𝑥𝑦

𝑧

𝐝
𝐩

Strand

Figure 3: Notation of strand. The 3D line as a strand is projected
to the image plane.

tional derivative of the depth as

∇θz = [cosθ,−sinθ]⊤ ·∇z (1)

where the gradient of the depth is computed by

∇z =
1

δ(u,v)

[
z(u+1,v)− z(u,v)
z(u,v+1)− z(u,v)

]
. (2)

Here, δ represents the length of one pixel seen at depth z(u,v) ob-
tained as

δ(u,v) =
z(u,v)

f
(3)

where f is the camera’s focal length.

With Equation (1), we can derive the 3D strand direction as

d = ⟨[cosθ,−sinθ,∇θz]⊤⟩ (4)

where ⟨·⟩ denotes the normalization operation. We are particularly
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interested in its Z component

dz =
∇θz√

1+(∇θz)2
(5)

which is used in our loss function introduced in the next subsection.

3.3. Loss Function

Our strand integration finds the depth map which minimizes a loss
function consisting of the following terms.

Direction Loss. The direction loss Ld evaluates the difference be-
tween the prior direction dprior and the direction d computed from
the unknown depth using Equation (4). Because we are optimizing
the depth, only the Z component needs to be compared:

Ld(z) =
1
|Ω| ∑

Ω

(
dz −dz,prior

)2
. (6)

Depth Loss. The depth loss Lz is a regularization term which com-
pares the unknown depth z to the prior depth zprior:

Lz(z) =
1
|Ω| ∑

Ω

c(z− zprior)
2. (7)

Here, we introduce a per-pixel weight c; the higher the weight, the
more consistent the 3D line with respect to neighboring views. We
defer the details on how to compute this weight to Subsection 3.5.
With this weighting scheme, we can effectively incorporate the
multiview constraint into the reconstruction process.

Normal Loss. This loss is optional but has the potential to improve
reconstruction quality. If we obtain the normal vector nprior of hair
as prior knowledge (e.g., by using photometric stereo or polariza-
tion imaging), we can incorporate it as an additional constraint. A
strand’s normal vector should be perpendicular to its 3D direction;
i.e., the dot product of these vectors should be small. Accordingly,
we define the normal loss Ln as

Ln(z) =
1
|Ω| ∑

Ω

(nprior ·d)2. (8)

Total Loss. We combine these loss functions into our total loss
function Ltotal defined as

Ltotal(z) = Lz(z)+λdLd(z)+λnLn(z) (9)

where λd and λn are the weight parameters controlling the impor-
tance of the individual terms. We optimize the depth z such that the
total loss is minimized by using a gradient descent method.

3.4. Robust Discretization

For making our algorithm more robust to noisy 3D lines, we find it
useful to use both the forward and backward differencing schemes
when computing the derivative. We denote the forward differenc-
ing operator introduced in Equation (2) by ∇+z, and likewise in-
troduce the backward differencing operator as

∇−z =
1

δ(u,v)

[
z(u,v)− z(u−1,v)
z(u,v)− z(u,v−1)

]
. (10)

Using these two operators, we obtain two versions of the estimated
strand direction, d+ and d− following the same Equation (4). We
then modify the direction loss and the normal loss as

Ld(z) =
1
|Ω| ∑

Ω

(
d+

z −dz,prior
)2

+
(
d−

z −dz,prior
)2

2
(11)

Ln(z) =
1
|Ω| ∑

Ω

(nprior ·d+)2 +(nprior ·d−)2

2
. (12)

3.5. 3D Line Consistency Map

In this subsection, we give details on how to compute the con-
sistency weight map c used in the depth loss (Equation (7)). Our
method is inspired by the consistency checking method used in the
filtering step of LPMVS [NWKS19] (Subsection 4.2): we project
the 3D line on the reference view to its neighboring views, and
check for the consistency in terms of both position and direction.

Specifically, for each pixel on the reference view, we turn the
prior depth zprior into a 3D point pprior in the world coordinate sys-
tem using the camera information, and then project it to each of
the neighboring views. On the neighboring view i, the projected
location has its prior depth zi,prior which can then be turned into
a world-coordinate 3D point pi,prior. We compute the squared dis-
tance between these two points, and take the weighted average of
this value over the set of neighboring views:

r =
∑

Nnei
i=1 wi||pprior −pi,prior||2

∑
Nnei
i=1 wi

. (13)

Here, the weight wi is derived by considering the consistency of
the directions of the corresponding 3D lines. Specifically, let dprior
and di,prior denote the 3D direction vectors associated with the 3D
lines on the reference view and the neighbor view i, respectively,
expressed in the world coordinate system. We define the weight as

wi = 90◦−∠(dprior,di,prior), (14)

where ∠(·, ·) measures the angle between given two 3D lines. This
definition allows us to ignore outlier or occluded lines in the neigh-
boring views when computing the weighted average of the squared
distances.

We plug this weighted average of the squared distances into the
Gaussian kernel to derive the consistency weight:

c = exp
(
− r

2σ2

)
, (15)

where σ (set to 25mm) is the radius of the Gaussian kernel which
controls the tolerance of depth inconsistency.

Note that we use this consistency map for the depth loss only,
because we found that the direction map estimated by LPMVS is
much more reliable than the depth map for most pixels.

4. Experiment

We evaluated our method using four synthetic hair geometry data
released by Cem Yuksel [YSK09] (referred to as Straight, Curly,
Wavy and WavyThin) as well as an actual multi-view capture of a
real human subject (referred to as Real), as reported below.
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Top

Back

Figure 4: Camera poses of our synthetic data. We position the
cameras denser on the back side of the head.

4.1. Implementation Details

Since there exists no publicly-available implementation of LP-
MVS [NWKS19], we created a CPU-based reimplementation of
it in C++ with parallelization via OpenMP. We implemented
our strand integration algorithm using PyTorch, and we used
Adam [KB15] to minimize the loss function in Equation (9) and
used the exponential learning rate decay scheme such that the learn-
ing rate is scaled down by 0.01 in the last iteration. The initial learn-
ing rate was set to 1.0 for all the synthetic cases, while it was set to
0.01 for the Real case. We adjusted the total number of iterations
depending on the geometric complexity: 30k for the Straight case,
40k for the Wavy and WavyThin cases, and 50k for the Curly and
Real cases. When running on a MacBook Pro with the Apple M1
Max chip and using PyTorch’s GPU support, the typical per-view
running time of our strand integration algorithm for the Straight
case was about 20m.

4.2. Evaluation with Synthetic Data

Data Preparation. We used pbrt-v4 to render the hair geometry
data into images of resolution 2730×4096. As shown in Fig. 4, we
placed 60 cameras around the head model with more (less) cam-
eras placed on the back (front) side, simulating an actual multi-
view capture setup. We used 30 directional light sources evenly dis-
tributed in all directions, and rendered images in the one-light-at-a-
time (OLAT) fashion. We fed this data to the classical photometric
stereo technique [Woo80], assuming the Lambertian reflectance, to
obtain normal maps needed by our normal loss (Equation (8)). We
generated fully lit images by summing all the OLAT images, and
used them as input to LPMVS [NWKS19]. Using the “gbuffer”
functionality of pbrt-v4, we generated ground-truth depth maps as
well as the mask images representing the hair region Ω.

Table 1: Aggregated error across all the views. Our method con-
sistently achieves lower errors than LPMVS.

Straight Curly Wavy Wavythin

MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

LPMVS 34.58 54.20 37.60 59.55 31.62 53.06 32.64 52.61
Ours 12.79 18.56 17.08 26.09 11.43 18.68 15.11 23.50

Error Analysis on Depth Maps. Using the ground-truth depth
maps, we analyzed the errors of the depth maps generated by LP-
MVS [NWKS19], our method without normal loss (λd = 72,λn =
0), and our method with normal loss (λd = 72,λn = 36). Note that
we determined these weight values relative to the depth loss which
is assumed to be in the unit of mm2. We report the mean-absolute-
error (MAE) and root-mean-squared-error (RMSE) of the depth
maps (both in mm) in Fig. 5 for a single view from the back, and in
Table 1 for the aggregated values over all the views. We can see that
our method consistently achieved lower error compared to LPMVS
for all the cases, and the use of normal loss proved effective for all
but the Wavy case where there was no significant difference. Fig. 6
shows how the error varies depending on the direction loss weight
λd (the normal loss weight λn was fixed to 0), indicating that our
algorithm can consistently achieve higher accuracy than LPMVS
without relying on hyperparameter tuning.

Merged Hair Geometry. After obtaining depth maps of all the
views, we merge the point clouds of all the views into one point
cloud. Fig. 7 shows two versions of merged point clouds: those that
use the filtering scheme of LPMVS [NWKS19] (Subsection 4.2)
and those that do not. For the filtering, we set the positional thresh-
old τp and the directional threshold τd to 7.3mm and 10◦, respec-
tively, and kept points that satisfy the multi-view consistency crite-
ria in at least 2 out of 6 neighboring views. Note that our method’s
merged point clouds come from the depth maps generated without
using the normal loss. We can clearly see that the unfiltered results
of LPMVS contain a significant amount of outlier points, while the
filtered results of our method retain significantly more points thanks
to the more accurate depth maps obtained by our strand integration.

An exception to the above assessment is observed with the Curly
hairstyle where the number of remaining points after filtering is
higher for the result of LPMVS than ours (37M vs. 34M). A plausi-
ble explanation for this is that the number of remaining points after
filtering is likely not the most useful measure of success, especially
when it comes to complex and heavily occluded hairstyles such as
Curly. To show this, we ran the same filtering on the ground truth
point clouds and confirmed that for the Curly hairstyle, 49.6% of
points were removed, whereas only 9.8% of points were removed
for the Straight hairstyle. This significant reduction of points is be-
cause a ground truth 3D point seen from one viewpoint may often
be invisible from its neighboring viewpoints due to occlusion. As
such, we deem the reported numbers for the Curly hairstyle to be
less meaningful. This insight also suggests a better way of filtering
the point cloud, a subject for future work.

4.3. Evaluation with Real Data

Capture Setup. We photographed a real female person with long
hairs in a multi-view capture setup with 60 cameras arranged in a
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Figure 5: Error analysis on synthetic data. Top: Ground truth point cloud and estimated 3D line maps. The color represents the 3D direction
(The xyz components of dprior corresponds to RGB, respectively.). Middle: Depth maps. Bottom: Absolute error maps of the depth map. The
numbers represent MAE / RMSE (in mm).
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Figure 6: Impact of weight parameter on the accuracy. We plot
errors resulting from varying λd on the Straight case (Fig 5(a)).
Our strand integration produces more accurate depth maps than
LPMVS over a wide range of values. Note that this result does not
use the normal loss.

way almost identical to the one used in our experiment reported in
the previous section, where the image resolution was 5315×8001.
Note that our capture setup was not in the OLAT fashion, so we did
not use the normal loss in our strand integration. We used the facer
toolkit [ZYZ∗22] for generating masks of the hair regions. Since
we found that the 3D hair directions estimated by LPMVS tended
to be less reliable compared to the synthetic cases, we set λd = 5
so that the depth maps would not get drifted too much by the noisy
directional prior.

Result. Similar to our experiment reported in the previous section,
Fig. 8 shows both the unfiltered and filtered point clouds result-
ing from LPMVS [NWKS19] and our method. As expected, our
method leaves much more points after filtering compared to LP-
MVS thanks to the higher accuracy in our optimized depth maps.

5. Conclusion

In this paper, we proposed a refinement method for hair geome-
try by integrating the gradient of strands with line assumption. We
conducted an evaluation using both synthetically rendered images
and real photographs. The result verified that our method improves
reconstruction quality for different hairstyles. We believe that this
result has the potential to benefit various downstream tasks such as
(semi-)automatic modeling of long hair strands as well as training
of neural networks that infer hair geometry.

Limitations and Future Work. Our method assumes that hair is
continuous and coherent everywhere, implying that the adjacent
pixels belong to the same hair strand. This assumption can, how-
ever, break when the hair is strongly curled or scattered (e.g., the
Curly case). Nevertheless, our method is less sensitive to discon-
tinuity than the typical normal integration methods thanks to our
depth loss (Eq. 7) that partially mitigates this issue by fixing the
depth values that are deemed reliable. Our method can also struggle
with certain hairstyles (even without curls) where multiple groups
of hair strands with different directions are layered on top of each
other. Such sudden changes in the strand direction will cause our
integration method to generate inaccurate hair shape. This limita-
tion is not unique to our method, as standard normal integration

methods also encounter similar challenges. One possible way to
overcome this issue may be to adapt the one-sided partial deriva-
tives [CSS∗22] to our strand integration task.

While our input is multi-view, our refinement algorithm is in-
herently single-view, leveraging the multi-view information only
indirectly through the use of the consistency weight term in the
depth loss (Equation (7)). It may be worthwhile to explore other
more direct ways of introducing the multi-view constraints into the
refinement process. In particular, integrating our refinement idea
into the LPMVS algorithm itself could be an interesting avenue for
future work.

To use the resulting oriented point cloud for downstream applica-
tions such as rendering and simulation, one would need to convert
it into a set of long 3D strands by using the strand-growing algo-
rithm described in the original LPMVS paper or by utilizing it as
a prior for neural rendering [RSW∗22, WNS∗22]. Either way, our
refined result will improve the overall quality of these tasks.
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Figure 7: Final merged hair shapes. We show both unfiltered and filtered 3D lines. Note that viewpoints of rendered images as a reference
are different from the rendered point clouds. The value expressed in millions (M) below is the total count of 3D lines. A higher value indicates
denser 3D lines. Before applying the filtering, the raw 3D lines obtained from LPMVS contain a significant number of noisy lines. In contrast,
our refinement can reduce noisy lines while preserving the overall line count.
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Figure 8: Reconstruction result of real hair. The value shown below is the total count of 3D lines in million (M). Also in a real capture
scenario, our refinement method achieves less noise and denser 3D lines.
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