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Continuous Layout Editing of Single Images with Diffusion Models
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Figure 1: Our method can continuously edit the layout of a single image with multiple objects. The first column shows the input image,
followed by three columns of edited results. The edited results preserve the visual properties of the input image while remaining faithful to the
layout map provided by the user.

Abstract
Recent advancements in large-scale text-to-image diffusion models have enabled many applications in image editing. However,
none of these methods have been able to edit the layout of single existing images. To address this gap, we propose the first
framework for layout editing of a single image while preserving its visual properties, thus allowing for continuous editing on
a single image. Our approach is achieved through two key modules. First, to preserve the characteristics of multiple objects
within an image, we disentangle the concepts of different objects and embed them into separate textual tokens using a novel
method called masked textual inversion. Next, we propose a training-free optimization method to perform layout control for
a pre-trained diffusion model, which allows us to regenerate images with learned concepts and align them with user-specified
layouts. As the first framework to edit the layout of existing images, we demonstrate that our method is effective and outperforms
other baselines that were modified to support this task. Code is available at our project page.
CCS Concepts
• Computing methodologies → Image manipulation; Graphics systems and interfaces; Neural networks;

1. Introduction

Recent advances in text-to-image generation have made signifi-
cant progress through the use of diffusion models trained on large-
scale datasets [NDR∗21, RBL∗22, SCS∗22]. However, due to the
inherent ambiguity of text and its limitations in expressing pre-
cise spatial relationships in the image space, controlling the layout
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of generated images is still a challenge for these large-scale text-
to-image models. To address this issue, some latest methods have
been proposed to enable layout control in image generation. These
methods are typically based on pre-trained diffusion models, which
either incorporate layout guidance as a new condition through fine-
tuning [AHG∗23, ZA23, LLW∗23] or optimize the noise diffusion
process on-the-fly to achieve layout control [BTYLD23].

Despite the success of existing layout control methods [AHG∗23,
ZA23, LLW∗23, BTYLD23] in generating new images with con-
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trolled layouts, they are unable to rearrange and edit the layout of
existing images. In practice, users may want to continuously edit
the positions of objects in an existing image without altering its
visual properties. For example, as illustrated in the first example
of Figure 1, a user may want to experiment with different layout
options to find the best arrangement of a cat and a pot in an image.
However, previous methods do not support this functionality since
their layout control does not take into account the input image, and
a new image with different cat and pot will be generated for each
specified layout. To fill this gap, we propose the first framework for
continuous layout editing of single input images.

One of the key challenges in continuous layout editing is preserv-
ing the visual properties of the input image, which requires learning
concepts for multiple objects within a single image and using the
learned concepts to regenerate new images under different layouts.
While some pioneer textual inversion methods [GAA∗22, RLJ∗23]
have proposed fine-tuning a text token embedding of pre-trained
text-to-image diffusion models to learn the concept of an object
from multiple images containing the same object, they are lim-
ited in their ability to learn multiple objects within a single image.
To overcome this limitation, we propose a novel approach, called
masked textual inversion, that disentangles the concepts of differ-
ent objects within a single image and embeds them into separate
tokens. By adding masks to the regions of each object, our method
ensures that the visual characteristics of each object are effectively
learned by the corresponding token embedding.

After learning the concepts of multiple objects within a single
image, the next challenge is to control the positions of these objects
to align with the desired layout. P2P [HMT∗22] suggests that the
cross-attention of a pretrained text-to-image diffusion model can
represent the position of the generated object associated with the
corresponding text token and Attend-and-Excite [CAV∗23] further
utilizes the cross-attention to ensure the generation of objects. In-
spired by these papers, we propose a novel, training-free layout
editing method that iteratively optimizes the cross-attention during
the diffusion process. This optimization is guided by a region loss
that prioritizes the alignment of the specified object with its des-
ignated region in the layout by encouraging higher cross-attention
between the object’s text embedding and its corresponding region
than with any other region in the image. Our approach enables
precise and flexible control over the positions of objects in the
image, without requiring additional training or fine-tuning of the
pre-trained diffusion model.

Extensive experiments and perceptual studies have demonstrated
that our proposed method is effective in editing the layout of sin-
gle images and outperforms other baseline methods (modified to
perform this task). We also provide a user interface for interac-
tive layout editing to assist in the design process. In summary, our
contributions to the field are as follows:

• We propose the first framework which supports continuous layout
editing of single images.

• We present a masked textual inversion method to learn disentan-
gled concepts of multiple objects within single images.

• We propose a training-free optimization method to perform layout
control with diffusion models.

2. Related Works

In this section, we will review works related to our method, which
includes diffusion models, image editing with diffusion models
through textual inversion, and layout control with diffusion mod-
els.

2.1. Diffusion Models

Diffusion models have become one of the most popular genera-
tive models due to their impressive quality in image generation.
The original DDPM [HJA20] simulates a Markovian process where
Gaussian noise is added to clean images 𝑥0 to create the noisy image
𝑥𝑡 in the forward process. Then, a model is trained to predict and re-
move the noise in 𝑥𝑡 to generate images. To accelerate the denoising
process, DDIM [SME20] converts DDPM into a non-Markovian
process, which requires no additional training.

Recently, text-to-image diffusion models [BNH∗22, SCS∗22,
RDN∗22] trained on large-scale datasets have gained significant
attention due to their ability to generate diverse high-quality im-
ages with text prompts. Among them, Stable Diffusion [RBL∗22]
operates the diffusion process in latent space instead of pixel space,
allowing it to generate high-resolution images.

2.2. Image Editing with Textual Inversion

By leveraging the power of pretrained text-to-image diffusion mod-
els, many image editing methods have been derived. Among them,
a major category is to learn the concepts of objects or styles into
text tokens and then generate new images with the extracted con-
cepts. Pioneer works in this category include Textual inversion
[GAA∗22] and DreamBooth [RLJ∗23]. Textual inversion [GAA∗22]
embeds concepts of objects into pseudo-words, while Dream-
Booth [RLJ∗23] further finetunes the UNet to learn more details.
However, these two methods can only extract a single common con-
cept from multiple images. Multi-Concept [BTYLD23] extends to
learn multiple objects and explores the most effective layers in UNet
to be finetuned; however, each concept still needs to be learned from
multiple images. In contrast, null-text inversion [MHA∗23] opti-
mizes null-text embeddings for each time step to learn all the details
of the input image, which makes it hard to disentangle the object
concepts, background details, and structural layout, thereby unable
to be applied in layout editing. Overall, a method that can learn
multiple concepts from a single image is still under exploration,
and our masked textual inversion fills this gap.

2.3. Layout Control with Diffusion Models

Due to the sparsity and ambiguity of text descriptions, it is difficult
to precisely control the layout of generated images by pretrained
text-to-image diffusion models. To address this limitation, some
layout control methods [NDR∗21, RBL∗22, SCS∗22] based on dif-
fusion models have been proposed, which can be divided into two
categories.

The first category requires finetuning the pretrained text-to-image
model to incorporate layout guidance as an extra condition besides
text. Spatext [AHG∗23] proposes to convert the concept of each
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Figure 2: Overall framework of our method.

object into CLIP image features with unCLIP [RDN∗22], which
are then stacked at the target positions of that object to form a
spatio-textual representation. This layout condition is concatenated
with the noisy latent to control the layout during the denoising
process. ControlNet [ZA23] inserts additional conditions, such as
the semantic maps for layout control, by utilizing a trainable copy
of the original UNet model. The conditional copy and the original
model are fused in intermediate layers to generate a conditioned
output. GLIGEN [LLW∗23] adds additional trainable gated self-
attention layers that take the information of layout conditions (i.e.,
bounding boxes) to control the layout of the generated image. A
common limitation of these methods is that additional modules
are added to the original UNet, and datasets of paired data (e.g.,
images and corresponding semantic maps) are required to finetune
the diffusion model and added modules. Also, their capabilities are
restricted by the training data.

The second category explores training-free layout control with
on-the-flight optimization. The representative work is MultiDiffu-
sion [BTYLD23], which denoises different crops of each object
locally and then fuses the results globally for each denoising step.
Compared with computing multiple denoising directions for each
object, which may cause artifacts and discontinuities at the boundary
of objects, our training-free layout editing method directly denoises
the whole image and optimizes the image latent for layout con-
trol, to avoid the gaps and discontinuities among multiple denoising
directions.

Both categories of methods still focus on the layout control of
generated images, which cannot be used to edit the layout of existing
images. Our proposed framework targets this gap.

2.4. Image Inpainting with Diffusion Models

Diffusion-based inpainting methods perform editing within a desig-
nated region of an existing image. Blended-diffusion [ALF22] mod-
ifies a locally masked area while preserving the surroundings. It em-
ploys the CLIP model to guide edits based on provided text and blend
with noisy versions of the input image. Paint-by-Example [YGZ∗23]
aims for exemplar-based image inpainting. It utilizes self-supervised
training and addresses copy-and-paste issues by extracting seman-
tics from references and using diverse augmentations. Inpainting
methods could be modified to adapt to our task, by first removing
the objects followed by redrawing the objects at the target positions
separately. However, inpainting methods focus on local edits of a
single object and lack support for editing multiple objects simulta-
neously. In contrast, our proposed framework targets the editing of
the global arrangements of objects within the image.

3. Methodology

Preliminaries. Our method is implemented with Stable Diffu-
sion [RBL∗22], a large-scale text-to-image model. Therefore, before
discussing our method, we first introduce Latent Diffusion Models
(LDMs) [RBL∗22], which is the theory of Stable Diffusion. LDMs
consist of two key stages. In the first stage, the encoder of an autoen-
coder maps the image to latent space 𝑧0 = E(𝐼), and a decoder maps
it back to imageD(E(𝐼)) ≈ 𝐼. In the second stage, a diffusion model
𝜖𝜃 is trained to denoise the noised latent 𝑧𝑡 =

√
𝛼𝑡 𝑧0 +

√
1−𝛼𝑡 𝜖 ,

where 𝛼𝑡 is a factor to determine noise level for each timestep 𝑡, and
𝜖 ∼ N(0,1) is Gaussian noise. Then the diffusion model is trained
to predict the added Gaussian noise with the LDM loss [HJA20]:

L𝐿𝐷𝑀 := E𝑧0∈E (𝐼 ) ,𝑦, 𝜖∼N(0,1) ,𝑡 [∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐𝜃 (𝑦))∥
2
2] (1)
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where 𝑦 is the input text condition, and 𝑐𝜃 is the text encoder.

Overview. As shown in Fig. 2, our methods can be divided into
two stages. In the first stage, we learn the concepts of multiple
objects from a single input image 𝐼 into text tokens 𝑣1, 𝑣2, ..., 𝑣𝑁
with masked textual inversion, where the regions of each object are
specified by masks 𝑀1, 𝑀2, ..., 𝑀𝑁 . We further learn the details of
the objects by finetuning the diffusion model 𝜖𝜃 and optimizing
the appended text tokens 𝑣 [1] , ..., 𝑣 [𝐿 ] . After the first stage, we
get the optimized text tokens for objects 𝑦∗ = [𝑣1∗, ..., 𝑣𝑁∗] and
the finetuned model 𝜖𝜃∗. Then, in the second stage, we rearrange
the positions of the objects according to the user-specified layout
map 𝐼𝐿 through a training-free layout editing method with iterative
optimization:

𝐼𝑒𝑑𝑖𝑡 = Layout-control(𝐼, 𝑐𝜃 (𝑦∗), 𝜖𝜃∗, 𝐼𝐿) (2)

3.1. Learn Concepts of Multiple Objects within Single Image

To rearrange the layout of an input image, we first need to extract
the concepts of multiple objects within the single input image to
best preserve their visual characteristics, such as shape, color, and
texture. We propose using masked textual inversion to learn and
embed the concept of each individual object into a unique text
token. We then fine-tune the diffusion model to better grasp the
detailed texture of the learned objects.

3.1.1. Masked textual inversion

Original technique of text inversion only supports learning the con-
cept of a single object from a set of images (typically 3-5). However,
in our applications, we need to learn multiple concepts from a sin-
gle image. As observed in [AHG∗23], the latent vector 𝑧0 = E(𝐼)
encoded from the input image with the autoencoder [RBL∗22] has
local property in the spatial dimension and the encoder performs
like a down-sampler. Therefore, we can disentangle the concepts
of different objects by simply applying a spatial mask. Instead of
calculating the loss of the whole latent, we only propagate the loss
within the region of the object to update the corresponding text
token:

𝑣𝑘∗ = argmin
𝑣𝑘

E𝑧0∈E (𝐼 ) ,𝑦, 𝜖∼N(0,1) ,𝑡

[𝑀𝑘 ⊙ ∥𝜖−𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐𝜃 (𝑦))∥22] (3)

where 𝑀𝑘 is the mask of the 𝑘-th object (𝑘 = 1, ..., 𝑁 is the index
of the 𝑁 objects), 𝑣𝑘 is the corresponding text token of the 𝑘-
th object, and the input text condition 𝑦 consists of text tokens
[𝑣1, ..., 𝑣𝑁 ]. The mask can either be generated coarsely by hand
or automatically using CLIP Segmentation [LE22]. We repeat this
process independently for each of the 𝑁 objects to optimize the
text tokens for each object. To avoid overfitting, we only run each
optimization for 200 steps, which is much less than the original
textual inversion 3000-5000 steps).

3.1.2. Model fintuning

A single text token can only store limited information of an object,
which may cause obvious distortion or artifacts during sampling.
Therefore, we propose further fine-tuning the denoising network 𝜖𝜃
to better grasp the detailed texture of the objects. In multi-concept

customization [KZZ∗23], it was discovered that fine-tuning the key
and value projections in cross-attention layers of the denoising net-
work is the most effective way to achieve this. We set the input text
condition to the optimized tokens. To avoid overfitting, we further
append additional 𝐿 trainable tokens at the end of the text condi-
tion and apply prior preservation loss as in [KZZ∗23]. The training
objective is as follows:

𝑣 [1:𝐿 ]∗, 𝜖𝜃∗ = argmin
𝑣[1:𝐿 ] , 𝜖𝜃

E𝑧0∈E (𝐼 ) ,𝑦′ , 𝜖∼N(0,1) ,𝑡

[∥𝜖 − 𝜖𝜃 (𝑧𝑡 ,𝑡, 𝑐𝜃 (𝑦′))∥22] (4)

where 𝑦′ = [𝑣1∗, ..., 𝑣𝑁∗, 𝑣 [1:𝐿 ] ] and 𝑣 [1:𝐿 ] are the trainable ap-
pended tokens. Only key and value projections of cross-attention
layers in 𝜖𝜃∗ are finetuned.

Algorithm 1: Denoising process with layout control
Input: The sequence of optimized text tokens for objects 𝑦∗,

the initial image 𝐼∗, a set of object masks 𝑀 ,
optimization learning rate 𝛼𝑡 , a set of thresholds
{𝑄𝑡 }, the timestep to stop optimization and blending
𝑡𝑜𝑝𝑡 and 𝑡𝑏𝑙𝑑 .

Output: An edited Image 𝐼
1 Encode input image: 𝑧∗0 = E(𝐼∗);
2 Initialize with Gaussian noise: 𝑧𝑇 =N(0, 𝐼);
3 for 𝑡 = 𝑇, ..., 1 do

// Iterative optimization:
4 if 𝑡 ≥ 𝑡𝑜𝑝𝑡 then
5 Get cross attention: 𝐴← 𝜖𝜃∗ (𝑧𝑡 , 𝑐𝜃 (𝑦∗), 𝑡);
6 for 𝑘 = 1, ..., 𝑁 do
7 𝐴𝑙,𝑘 ← 𝐴𝑙 [:, :, 𝑘];
8 Calculate L𝑘 with 𝑀𝑘 as in Eqn. (6);
9 end

10 Calculate mean-max loss L as in Eqn. (7);
11 if L > 1−𝑄𝑡 then
12 Update 𝑧𝑡 with: 𝑧𝑡 ← 𝑧𝑡 −𝛼𝑡 · ∇𝑧𝑡L;
13 if Reach maximum optimization steps then
14 go to 22;
15 end
16 else
17 go to 5;
18 end
19 end
20 end

// Background Blending:
21 if 𝑡 ≥ 𝑡𝑏𝑙𝑑 then
22 Add noise to original latent: 𝑧∗𝑡 = 𝑎𝑑𝑑𝑛𝑜𝑖𝑠𝑒(𝑧∗0, 𝑡) ;
23 Get mask of background: 𝑀𝑏𝑔 = 1−∑𝑘 𝑀𝑘 ;
24 Blending: 𝑧𝑡 ← 𝑀𝑏𝑔 ⊙ 𝑧∗𝑡 + (1−𝑀𝑏𝑔) ⊙ 𝑧𝑡 ;
25 end
26 𝑧𝑡−1← 𝑑𝑒𝑛𝑜𝑖𝑠𝑖𝑛𝑔(𝑧𝑡 , 𝑐𝜃 (𝑦∗), 𝑡) ;
27 end
28 Decode the edited image: 𝐼 =D(𝑧0)
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3.2. Training-Free Layout Editing

With the learned concepts of multiple objects 𝑣1∗, ..., 𝑣𝑁∗ and the
fine-tuned model 𝜖𝜃∗, we rearrange the positions of the objects
to edit the layout. A straightforward way to control the layout
is to add a new layout condition to a stable diffusion model, as
in [AHG∗23,ZA23,LLW∗23]. However, this approach requires fur-
ther fine-tuning with an additional dataset. Instead, we propose a
training-free method to control the layout to avoid dataset collection.

As discovered in P2P [HMT∗22], the cross-attention in the de-
noising network of text-to-image diffusion models can reflect the
positions of each generated object specified by the corresponding
text token, which is calculated from:

𝐴𝑙 = 𝜎(𝑄𝑙 (𝑧𝑙𝑡 )𝐾𝑙 (𝑦)𝑇 ) (5)

where 𝐴𝑙 is the cross-attention at layer 𝑙 of the denoising network,
𝑄𝑙 ,𝐾𝑙 are the query and key projections, 𝜎 is the softmax operation
along the dimension of text embedding 𝑦, and 𝑧𝑙𝑡 is the intermediate
feature of the image latent. The calculated attention 𝐴𝑙 has the size of
ℎ𝑙 ×𝑤𝑙 × 𝑑, where ℎ𝑙 and 𝑤𝑙 is the spatial dimension of the feature
𝑧𝑙𝑡 and 𝑑 is the length of input text tokens. More specifically, for
each text token, we could get an attention map of size ℎ𝑙 ×𝑤𝑙 which
reflects the relevance to its concept. For example, in the attention
map with the text "cat", the positions within the area containing the
cat should have larger values than other positions.

Therefore, we could optimize 𝑧𝑡 towards the target that the de-
sired area of the object has large values. Previous study [HMT∗22]
has shown that the layers of resolution 16× 16 contain the most
meaningful semantic information. Therefore, we choose 𝑙 to be the
layers with ℎ𝑙 = 𝑤𝑙 = 16. As shown in Fig. 3, for each layer 𝑙, each
channel of the cross attention 𝐴𝑙 represents the spatial relevance to
the corresponding text token. For example, if we want to optimize
the position of the object represented by 𝑣2∗, we can extract the
corresponding channel 𝐴𝑙,2 and multiply it with the target region
mask of 𝑣2∗ (i.e., the yellow mask). Finally, the region loss can
be calculated with the summation of the values within the mask
(yellow region) and of all positions (black and yellow regions):

L𝑘 = 1−
∑
𝑖 (𝑀∗𝑘 ⊙

∑
𝑙 𝐴𝑙,𝑘)∑

𝑖

∑
𝑙 𝐴𝑙,𝑘

(6)

L =
1
𝑁

𝑁∑︁
𝑘=1
L𝑘 +max(L1, ...,L𝑁 ) (7)

whereL𝑘 is the loss for the 𝑘-th object with target position specified
by 𝑀∗

𝑘
, 𝐴𝑙,𝑘 is the cross-attention map with the optimized token 𝑣𝑘∗

(from Eqn. (3)) at layer 𝑙, and 𝑖 is the spatial position in 𝐴𝑙,𝑘 . We use
the mean value together with the maximum value of L𝑘 , so that the
model can control the positions of each object and simultaneously
focus on the object with a large loss.

We optimize the latent 𝑧𝑡 with the loss L in Eqn. (7) only at large
timesteps, i.e., 𝑡 >= 0.5, which is enough to fix the layout of the gen-
erated image. We apply iterative optimization for 𝑡 = 1.0,0.8,0.6
with maximum steps and early stopping. For other timesteps, we
only update 𝑧𝑡 for one single step. Although the model has memo-
rized the background during the process mentioned in Sec. 3.1, it
still introduces distortions to the background during the optimiza-
tion for layout control. To preserve the original background, we start

Figure 3: Region loss calculated from cross attention. It encourages
higher cross-attention between the object’s text embedding and its
corresponding region than with any other region.

to blend with the original input image at the area without objects
as in [ALF22], for timesteps 𝑡 >= 0.7. The detailed algorithm for
our layout control method during the denoising process is shown in
Algo. 1.

3.3. Implementation Details

We optimize each token for different objects using masked textual
inversion for 200 steps with a batch size of 4. The learning rate is set
to 0.002, and it takes approximately 40 seconds for each token on
a single Nvidia V100 GPU. Next, we fine-tune the model using all
the optimized tokens concatenated with 1-3 additional rare tokens
for 800 steps (for 2 or 3 objects) or 1200 steps (for 4 objects), with
a batch size of 4. The learning rate is set to 0.0002, and it takes
around 3-4 minutes on an Nvidia V100 GPU. To sample images,
we use DDIM sampling [SME20] with 50 steps. For layout control,
we optimize 𝑧𝑡 with a learning rate that decreases from 20 to 15
for 𝑡 values from 1.0 to 0.5. We apply iterative optimization for 40
iterations with early stopping thresholds of 0.4, 0.3, and 0.2 when
𝑡 is 1.0, 0.8, and 0.6, respectively. It takes around 37 seconds to
generate an image with a new layout.

4. Experiments

To evaluate our proposed method, we first compare it qualitatively
and quantitatively with several baselines, and then conduct a user
study to compare them perceptually. Additionally, we conduct sev-
eral ablation studies to validate the effectiveness of each important
component of our method and demonstrate its application in contin-
uous layout editing, which was not feasible with previous methods.

4.1. Baselines

We consider both GAN-based and diffusion-based methods for com-
parison with our method. While a GAN-based framework for layout
manipulation has been recently proposed [ZLL*22], it operates at
the semantic level and is limited to specific categories of objects
within the training dataset. Therefore, we look for diffusion-based
methods instead, which can handle open-set objects. Since no exist-
ing diffusion methods perform the same task as ours, which is to edit
the layout of existing images, we compare our method with six base-
lines that have been designed or modified from existing methods:
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 4: Qualitative comparison with other baseline methods. From left to right: (a) Input images; (b) Target layout; (c) Image-level
manipulation; (d) Latent-level manipulation; (e) GLIGEN + textual inversion; (f) MultiDiffusion + Dreambooth; (g) Blended-diffusion; (h)
Paint-by-Example; (i) Ours

image-level manipulation, latent-level manipulation, two variations
of combining existing layout control methods with inversion meth-
ods (i.e., GLIGEN [LLW∗23] with textual inversion [GAA∗22],
MultiDiffusion [BTYLD23] with Dreambooth [RLJ∗23]), and two
inpainting methods modified to support our task (i.e., Blended-
diffusion [ALF22] and Paint-by-Example [YGZ∗23]).

Image-level manipulation. We first crop and paste the objects
from the original input image onto a blank image at the positions
specified in the target layout. Since the target layout may specify
objects with different widths and heights, we scale the cropped
patches to match the desired size. Next, we use stable diffusion
inpainting to fill in the blank areas.

Latent-level manipulation. Instead of cropping and pasting on
the image-level, we perform a similar process on the noised latent
from DDIM inversion [SME20]. We initialize a random noise as
the "canvas" and prepare a "source image" by adding noise to the
original input image until 𝑡 = 0.7 using DDIM inversion. Then, we
copy objects in the "source image" and paste them onto the "canvas"
following the target layout without scaling, as resizing in latent space
can lead to distorted results. Finally, we use the DDIM scheduler to
denoise the "canvas" and obtain the result.

GLIGEN with textual inversion. Although GLIGEN [LLW∗23]
can perform layout control, it can only generate new images with
target layouts. Therefore, to adapt it to our task, we need to add an
additional step of textual inversion [GAA∗22] to learn the appear-
ances of the objects in existing images. After textual inversion, we

use the learned text tokens to sample the image, where the layout is
controlled with GLIGEN.

MultiDiffusion with Dreambooth. MultiDiffusion [BTYLD23]
is a training-free method for layout control, but it cannot be directly
used for existing image layout editing. Therefore, before using it, we
adopt Dreambooth [RLJ∗23] to learn the concepts of the objects in
the input image, and convert them into multiple text tokens. Then, we
provide the prompt with the learned text tokens and corresponding
masks to MultiDiffusion to perform our task of layout editing.

Blended-diffusion. Blended-diffusion [ALF22] generates ob-
jects in the specified region using CLIP guidance. We first ap-
plied the method to remove objects requiring rearrangement with
an empty prompt and then drew these objects at target positions
separately. To maintain the appearance of the drawn objects, we
cropped them from the original input image and extracted CLIP
image features of the objects for guidance, rather than text features.

Paint-by-Example. Paint-by-Example [YGZ∗23] is designed for
exemplar-based image inpainting. We adapted it for layout editing
by cropping the objects from the input image as exemplars. We first
remove the objects in background with Stable-Diffusion inpainting
model and then use Paint-by-Example method to inpaint the objects
into the target positions with the cropped objects as exemplar.

4.2. Qualitative Comparison

Fig. 4 illustrates the qualitative comparisons between our method
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and six baselines. The image-level manipulation method (column
c) produces less realistic results as it only copies and resizes objects
to the target positions without natural editing. For example, in row
4, the size of the horse is significantly larger than that of the tree,
violating the proper order of sizes. Moreover, noticeable artifacts
appear around objects due to imperfect cropping and inpainting, as
evidenced by the distorted chair armrests in row 3 and the artifacts
on the horse’s back in row 4. The noise-level manipulation (column
d) can maintain the basic layout but cannot retain the visual features
of original objects since DDIM inversion cannot reconstruct the
input image, resulting in the loss of the "dog" appearance in row 2.

For layout control methods, GLIGEN with textual inversion (col-
umn e) also fails to retain the visual properties of objects since
the textual inversion on the whole image cannot disentangle the
concepts of multiple objects within a single image. In row 5, for
instance, the concept of the "pot" is not correctly learned. Addition-
ally, GLIGEN is pre-trained with a dataset to perform layout control,
which cannot be perfectly adapted to learned concepts from a partic-
ular image, leading to some misalignment with the specified layout,
as shown in row 4. MultiDiffusion with Dreambooth (column f)
has better layout alignment than GLIGEN with textual inversion
because MultiDiffusion is a training-free method that can better co-
operate with learned concepts. However, Dreambooth is designed
for learning concepts of single objects from multiple images and
still cannot disentangle multiple objects present in a single image,
causing significant changes in object characteristics, as shown by
the car in row 1 and the dog in row 2. Furthermore, it introduces
artifacts around the boundaries of objects because MultiDiffusion
denoises each sub-region with different diffusion processes. In row
4, for instance, the regions of the "horse" and the "tree" are separately
generated, resulting in artifacts around the objects and discontinuity
between objects, such as the yellow background around the "horse"
and the cyan background around the "tree".

Blended-diffusion (column g) can preserve the background as
it performs background blending throughout the whole denoising
process, however, the overall quality is affected. For example, in
row 1, the "car" and "house" look different from the original ones,
and the tree is not well generated. This might be due to that CLIP-
guidance with high-level image features is inadequate to preserve the
visual details of the objects. Paint-by-Example (column h) fails to
preserve the details of the exemplar objects, e.g., the "house" in row
4. Inpainting the background and drawing objects separately also
lead to discontinuities and unwanted objects, such as the floating
cat and extra pot in row 5.

Overall, our method (column i) achieves the best results by ef-
fectively controlling the layout of objects while retaining the visual
features of the input images. It also produces the highest quality and
most harmonious images among all four baselines.

4.3. Quantitative Comparison

We conduct a quantitative study to further evaluate the preserva-
tion of visual properties and layout alignment of our method and
compare it with baselines. To measure the visual similarity between
the edited result and the input image, we calculate one minus the
CLIP distance between the input image and edited image. A higher

Table 1: Quantitative comparison with other baseline methods.
Our method achieves the best performance on both metrics: visual
similarity to the input image and alignment with the specified layout.

Visual Layout
similarity ↑ alignment ↑

Image-level manipulation 0.57 0.0068

Latent-level manipulation 0.41 0.0071

GLIGEN with textual inversion 0.34 0.0027

MultiDiffusion with Dreambooth 0.53 0.0047

Blend-diffusion 0.28 -0.0065

Paint-by-Example 0.42 0.0088

Ours 0.61 0.0099

score indicates that the objects in the edited image have a more
similar visual appearance to the input image. For layout alignment,
we calculate the CLIP distance between the image and text prompt.
Specifically, for an object in the layout map, we erase the corre-
sponding region in the edited image and fill it with black color.
We then calculate the change in CLIP distance between the image
(before and after erasing) and the text token corresponding to the
object. If the CLIP distance drops dramatically after erasing, it in-
dicates that the object is placed in the correct position after layout
editing. This process is repeated for each object, and an average
score is calculated. The experiment shows that our method has the
best performance in both metrics: the least image-to-image distance
(0.61) and the largest change in image-to-text distance (0.0099).

Figure 5: Results of the user study on visual similarity, layout
alignment, image quality, and overall quality, respectively.

4.4. User Study

In this part, we perform a user study to verify the effectiveness and
quality of our method. We compare our method with four baselines
mentioned in Sec. 4.1, i.e., Image-level manipulation, Latent-level
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manipulation, GLIGEN with textual inversion, and MultiDiffusion
with Dreambooth.

The user study consists of 16 questions. For each of the questions,
we first show the original input image and the target layout to the
user. Then we show the five images edited by four compared methods
and our method in random order. Finally, the user is asked to make
four selections regarding four different factors:

• Visual similarity: to choose the image whose generated objects
have the highest similarity to the objects in the original input
image.

• Layout alignment: to select the image whose layout is best aligned
with the target layout.

• Image quality: to select the image with the highest quality and
photorealism.

• Overall quality: to choose the best result considering all the three
factors above.

Among the 16 questions, we also set a validation question where the
5 edited images consist of a ground-truth image with four unrelated
images. The user has to make more than 3 correct selections out of
4, to be considered as a valid questionnaire.

We finally collected 42 questionnaires, among which 31 are valid
by passing the validation questions. Among the 31 valid participants,
5 users are below 20 years old, 17 range from 20 to 30 years of age,
6 are between 30 and 40 years old, and 3 are above 40 years old.
The result of the user study are shown in Fig. 5, and we find that
our method outperforms other methods in all the four factors with a
preferred rate of 31% in visual similarity, 29% in layout alignment,
26% in image quality, and 26% in overall quality.

(a) (b) (c) (d) (e) (f)

Figure 6: Ablation study on different textual inversion methods.
From left to right: (a) Input images; (b) Target layouts; (c) Inver-
sion with Dreambooth [RLJ∗23]; (d) Textual inversion [GAA∗22]
+ finetune [KZZ∗23]; (e) Masked textual inversion w/o finetune; (f)
Our full inversion method with masked textual inversion and fine-
tune.

4.5. Ablation Study

4.5.1. Inversion Methods

In this part, we compare the inversion method with and with-
out a mask. We selected Dreambooth [RLJ∗23] and textual inver-
sion [GAA∗22] + finetune as representatives of the methods without
a mask. For Dreambooth, we jointly trained the model on multiple
concepts with a single image and prompt pair, while the textual in-
version + finetune method first runs the textual inversion to update

each token on the entire image and then uses the updated tokens to
fine-tune the cross-attention layers of the model. The results show
that if a single image contains multiple objects, the methods without
a mask, including both Dreambooth and textual inversion, cannot
precisely learn and disentangle the concepts of different objects,
which may result in the loss of visual properties. For example, in
Fig. 6, row 1, the shape and color of the flower change significantly
in columns (c) and (d). Another issue with these methods without
a mask is learning incorrect objects. For instance, in Fig. 6, row
2, columns (c) and (d), the information about the white and brown
dogs is not encoded into two separate tokens. Therefore, both meth-
ods cannot correctly swap the position of the two dogs. The textual
inversion + finetune method (d) even generates a trolley-like object
instead of a dog.

In our method, we optimize the text tokens using masked textual
inversion followed by model finetuning, as described in Sec. 3.1.
By applying the mask, the information of different objects in the
image is correctly disentangled. In Fig. 6, row 2, columns (e) and
(f), the two dogs successfully swap positions. Moreover, adding
finetuning after our masked textual inversion can further preserve
visual details, including colors and textures.

(a) (b) (c) (d) (e) (f)

Figure 7: Ablation study on differen layout control methods. From
left to right: (a) Input images; (b) Target layouts; (c) Our inversion
+ ControlNet [ZA23]; (d) Our inversion + GLIGEN [LLW∗23]; (e)
Our inversion + MultiDiffusion [BTYLD23]; (f) Our full methods.

Input images Mean loss Max loss Mean+max
(ours)

Figure 8: Ablation study on optimization loss of layout control.

4.5.2. Layout Control Methods

After verifying the effectiveness of our masked textual inversion,
we compared our layout control method with three other meth-
ods: ControlNet [ZA23], GLIGEN [LLW∗23], and MultiDiffu-
sion [BTYLD23]. For the training-based methods ControlNet and
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Figure 9: Ablation study on iterative optimization. The number
above the image indicates the denoising step on which iterative
optimization is applied. If more than one number is labeled, iterative
optimization is applied to multiple denoising steps.

Figure 10: Ablation study on blending steps. The number above the
image indicates the number of steps where blending is applied.

GLIGEN, the generated objects fail to keep some visual features in
the input images, such as the "car" in row 1 and the "lighthouse"
in row 2 of Fig. 7. This is because those models are pretrained
with datasets that may not be well-adapted to our learned concepts,
especially considering that our finetuning after masked textual in-
version may further change the parameters of the cross-attention
layers, which can affect the ability of the pretrained model. As for
the training-free method MultiDiffusion, it can better incorporate
learned concepts, but it tends to yield some artifacts around the
objects as it denoises each sub-region separately and fails to fuse
them smoothly. For example, there is a yellow painting on the house
in Fig. 7, row 1, column (e). Our iterative layout control method
solves the aforementioned problems and generates the best results
in (f)

4.5.3. Optimization Loss

In Eqn. (7), we mention that both the mean and the maximum
values of L𝑘 are calculated for the optimization loss. As shown in
Fig. 8, if only the mean loss is applied, the controls against each

object are equal, and no additional effort can be put on the difficult
one. Therefore, the positions of some objects may be insufficiently
controlled. For example, part of the "dog" still stays at the original
position in Fig. 8, row 1, and the relative position of the "dog" and
the "pot" is not correctly arranged in row 2.

On the other hand, if only the max loss is applied, the model may
focus too much on single object, but ignore others. For example,
the position of the "dog" is not modified in Fig. 8, row 1, and the
"pot" is stretched and distorted to fit the target position in row 2.
Therefore, we finally apply both the mean and max loss, which can
balance the layout control of each object and simultaneously focus
more on objects that are difficult to control.

4.5.4. Iterative Optimization

As described in Section 3.2, we only apply iterative optimization at
certain time steps. In this part, we performed experiments to verify
the effect of iterative optimization and determine which time steps
to apply it. As shown in Figure 9, when iterative optimization is not
applied, the objects are not well aligned with the target layout.

We also found that the determination of the layout control happens
at the time steps closer to the noise. If iterative optimization is
applied at large time steps (e.g., 𝑡 = 1.0, 0.8, or 0.6), it is more
effective for layout control, as a ball appears in the upper part of
the image. Conversely, with small time steps (e.g., 𝑡 = 0.4, 0.2, or
0.02), the layout has little change. This implies that the layout of the
objects is nearly fixed at large 𝑡 and can hardly be modified when 𝑡 is
small. Therefore, we implement iterative optimization at relatively
larger time steps, i.e., 𝑡 = 1.0+0.8+0.6.

As shown in the image, our choice can generate a ball with the
desirable size. However, fewer iterative optimization time points
(e.g., 𝑡 = 1.0 + 0.8) may not be sufficient for generating the ball
completely. Conversely, too many iterative optimization time points
(e.g., 𝑡 = 1.0+0.8+0.6+0.4, 𝑡 = 1.0+0.8+0.6+0.4+0.2) have little
effect on the final layout but require longer optimization time and
may introduce artifacts. Thus, we choose 𝑡 = 1.0 + 0.8 + 0.6 for a
balance between quality and speed.

4.5.5. Blending

As described in Section 3.2, we blend the edited image with the
original input at the region of the background. In this part, we
perform experiments to evaluate the effect of the different number
of blending steps. As shown in Figure 10, the background will be
completely changed if no blending is applied because the optimiza-
tion process for layout control will have a large influence on the
background. Blending when 𝑡 is large (e.g., 𝑡 > 0.8) has the most
substantial effect on the background, and the effect of blending starts
to converge for more steps when 𝑡 > 0.6. Therefore, we choose to
apply background blending when 𝑡 > 0.7.

4.6. Results of Continuous Editing

Our method is capable of rearranging the positions of objects in an
input image to fit a target layout without altering its visual properties.
This unique capability enables our method to perform continuous
layout editing of single input images, which was not possible with
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Figure 11: Continuous layout editing with different target layouts.

previous methods. Figure 11 and Figure 1 demonstrate some exam-
ples of our method’s effectiveness. For instance, in row 3 of Figure
11, we show how our method can change the positions of the dog
and ball to fit three different layouts, creating natural interactions
between them for each layout. Moreover, our method can handle
images with multiple objects. We demonstrate this by showing how
it can edit the positions of three objects in Figure 11, rows 4, and
four objects in Figure 1, row 2, to align with different input layouts.
These examples highlight the flexibility of our method to handle
varying numbers of objects of different categories and sizes.

5. Conclusions & Limitations

We present the first framework that supports continuous layout edit-
ing of single images, generating high-quality results by rearranging
the positions of objects in the input image to fit a user-specified
layout while preserving their visual properties. A key component
enabling us to learn objects from a single image is Masked Tex-
tual Inversion, which disentangles multiple concepts into different
tokens. With learned objects, we propose a training-free iterative
optimization method for layout control. We demonstrate that our
framework outperforms other baselines, including image-level ma-
nipulation, latent-level manipulation, and combinations of existing
learning and layout control methods.

However, our method still encounters some limitations. One of
the limitations is that it may fail to preserve the visual details of

Input images Edited images

Figure 12: Failure cases: In the first row, our method fails to main-
tain the visual features of objects when there is a significant size
difference between the input and edited images. In the second row,
our method fails to generate the full body of objects when they suffer
from large occlusions in the original image.

an object if the size of the object in the initial image and edited
image varies significantly, as shown by the sailboat in Figure 12,
row 1. Another limitation is that it may have difficulty recovering
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the full body of an object if the object in the input image is heavily
occluded, as shown by the dog in Figure 12, row 2. We believe that
these problems are caused by the limited information that can be
inferred from a single image by object concept learning. To mitigate
these limitations, we could augment the input images to different
sizes and angles and even inpaint missing parts of the object caused
by occlusion before applying our masked textual inversion. An-
other limitation is that the background details cannot be perfectly
preserved, because we only perform background blending at large
timesteps. Blending for all timesteps could better preserve the back-
ground, however, it would cause inconsistency and discontinuity
between the background and the objects at the new positions. The
problem of background preservation is still under exploration for fu-
ture works. Furthermore, our layout editing is not in real-time due to
the iterative sampling nature of the diffusion model. Future research
directions include exploring methods to accelerate the process and
supporting more applications of layout editing.
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