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Figure 1: Our MOVIN framework enables real-time full-body motion capture with global translation from 3D LiDAR point cloud.

Abstract
Recent advancements in technology have brought forth new forms of interactive applications, such as the social metaverse,
where end users interact with each other through their virtual avatars. In such applications, precise full-body tracking is
essential for an immersive experience and a sense of embodiment with the virtual avatar. However, current motion capture
systems are not easily accessible to end users due to their high cost, the requirement for special skills to operate them, or the
discomfort associated with wearable devices. In this paper, we present MOVIN, the data-driven generative method for real-time
motion capture with global tracking, using a single LiDAR sensor. Our autoregressive conditional variational autoencoder
(CVAE) model learns the distribution of pose variations conditioned on the given 3D point cloud from LiDAR. As a central
factor for high-accuracy motion capture, we propose a novel feature encoder to learn the correlation between the historical
3D point cloud data and global, local pose features, resulting in effective learning of the pose prior. Global pose features
include root translation, rotation, and foot contacts, while local features comprise joint positions and rotations. Subsequently,
a pose generator takes into account the sampled latent variable along with the features from the previous frame to generate a
plausible current pose. Our framework accurately predicts the performer’s 3D global information and local joint details while
effectively considering temporally coherent movements across frames. We demonstrate the effectiveness of our architecture
through quantitative and qualitative evaluations, comparing it against state-of-the-art methods. Additionally, we implement a
real-time application to showcase our method in real-world scenarios. MOVIN dataset is available at https://movin3d.
github.io/movin_pg2023/.

CCS Concepts
• Computing methodologies → Motion capture; Motion processing; Neural networks;

1. Introduction

With the increasing demand for immersive and interactive experi-
ences in the fields of filming, animation, and the metaverse, real-
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time motion capture has become an essential technology for an-
imating virtual characters to realize interactions with the virtual
environment and between the users. However, state-of-the-art mo-
tion capture technologies, including optical and inertial sensors,
are hardly affordable for general users for their price and incon-
venience.

To address the limitations, researchers focused on utilizing com-
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monly accessible sensors, such as cameras and VR tracking de-
vices, to achieve high-quality motion capture in real-time. Recent
deep learning approaches robustly predict the full-body pose, lever-
aging single RGB video stream [LLZ∗22], sparse sets of IMU sen-
sors [HKA∗18], or sparse VR tracker configurations [YKL21]. De-
spite the promising results, there still remains a significant gap that
requires improvement; 2D image-based methods suffer from inac-
curate global translation, and sparse trackers provide only under-
determined constraints that cannot disambiguate different poses
with the same tracker configuration. Furthermore, these sensors of-
ten face inherent limitations including magnetic interference from
surrounding electronics and optical occlusion in complex indoor
environments, which can degrade the accuracy and reliability of
the captured motion data.

The recent success of LiDAR sensors in object and human detec-
tion for autonomous driving [ZTJF21] demonstrates the potential of
LiDAR to significantly improve the performance and usability of
current motion capture technologies. Unlike traditional 2D camera
systems, LiDAR sensors can provide reliable and precise 3D posi-
tions of the tracking target in the form of the point cloud. Moreover,
this LiDAR-generated point cloud can provide full-body informa-
tion about the subject, which is not available for sparse configu-
ration of wearable trackers. Pioneering works already proved that
LiDAR sensors can assist existing motion capture technologies and
increase accuracy for long-range human pose detection [LZW∗22].
Furthermore, as LiDAR technology has found applications across
various industrial sectors, including security and smart cities, in-
creasing demand has prompted mass production, lowering LiDAR
prices.

This paper introduces MOVIN, a novel framework for real-time
motion capture using a single LiDAR sensor, as illustrated in Fig. 1.
To the best of our knowledge, our framework is the first LiDAR-
based real-time full-body motion capture with global translation.

Our model employs an autoregressive conditional variational
autoencoder (CVAE) architecture to establish the relationship be-
tween the input point cloud and the output full-body motion,
considering the previous output motion. The encoder component,
based on the Transformer architecture, maps encoded features to
a multivariate Gaussian distribution. Meanwhile, the decoder com-
ponent follows a Mixture-of-Expert architecture, generating output
features by sampling from the distribution while incorporating con-
dition features.

To address the distinct characteristics of the input and condi-
tions, we have carefully designed input/output and feature embed-
ding/expanding modules. The input 3D point cloud integrates cur-
rent and subsampled data from the past 1-second interval to ensure
temporal coherence of the output motion. We process the condi-
tion, which represents the output of the previous frame, separately
for local and global pose features. The local pose feature of joint
local transformations is processed via a skeleton-aware Graph Con-
volutional Network that preserves inherent body part structure. The
global pose feature, which includes root position, rotation, and foot
contacts, is handled using Multilayer Perceptrons. Such designs en-
able our framework to effectively represent and integrate diverse in-
put sources of 3D point cloud, skeletal poses, and global translation
and contacts.

For training and evaluation of our framework, we collected a
precisely synchronized dataset comprising LiDAR point cloud and
optical motion capture data. The dataset involved 10 subjects with
varied body shapes and motion styles, engaging in a wide range of
action categories of in-place movements and locomotion.

To validate the effectiveness of our method, we conducted com-
prehensive testing on unseen subjects, performing not only daily
activities but also challenging motions such as lunging, sitting on
the floor, and squatting. Furthermore, we highlight the practicality
of our framework by showcasing its real-time application leverag-
ing a single LiDAR sensor, implemented with a commercial game
engine.

In summary, this paper presents the following main contribu-
tions:

• The real-time full-body motion capture framework based on a
single LiDAR, incorporating global translation tracking.

• A novel design for feature encoding and decoding from differ-
ent input sources, utilizing an autoregressive conditional vari-
ational autoencoder (CVAE) architecture to generate full-body
poses from 3D point cloud data.

• A high-quality dataset featuring diverse subjects, containing syn-
chronized LiDAR point cloud and optical motion capture data
for a wide range of actions.

2. Related Work

2.1. Motion Capture

High-quality motion capture techniques using optical markers
[opt09, vic10, VAV∗07] and inertial measurement units (IMUs)
[xse11] have emerged as leading solutions in the industry, offering
precise and reliable data for human motion analysis and charac-
ter animation. For end-users, Vive trackers [viv11] offers a cost-
effective solution. However, current technologies require a large
number of markers or sensors on the body and a time-consuming
setup process. Therefore, researchers explored alternatives with a
sparse setup of IMUs [VMRBPM17, YZX21, JYG∗22, YZH∗22]
and trackers [ACB∗22,JSQ∗22,WWY22]. Despite their promising
results, these methods still have limitations in the tracking accuracy
and coverage of motion categories.

Markerless motion capture techniques have been extensively ex-
plored [BM98, ATS∗08, HTTM12] to enhance the accessibility of
motion capture technology, by reducing the cost and improving
usability. While multi-view camera algorithms [AARS13, BSC13,
DFJ∗22] have achieved higher accuracy, they often require labo-
rious camera system calibration. Mono-camera approaches with
optimization techniques [BKL∗16, KPD19] and neural networks
[PZDD17,WLLL22,HPY∗22] lack depth information and struggle
to track global translations. Despite offering an additional depth
channel, RGBD-based solutions [BMB∗11, MSS∗17, YZ21] are
hindered by limited camera resolution and a field of view (FOV),
which makes them impractical for product-level applications.

2.2. LiDAR-based 3D Human Pose Estimation

Recent advancements in 3D human pose estimation have seen the
emergence of image-based methods like VIBE [KAB20] and Mo-
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tionBERT [ZML∗22]. These methods follow a two-stage process:
extracting 2D keypoints and fitting the SMPL model [LMR∗15] to
estimate 3D keypoints. However, relying on 2D fitting poses limita-
tions that compromise the accuracy of 3D keypoints. Additionally,
the absence of depth information presents challenges for accurate
global tracking.

To tackle these challenges, researchers have explored the inte-
gration of LiDAR sensors in 3D human pose estimation. LiDARs
offer precise depth measurements, making them well-suited for
large-scale environmental measurements for autonomous driving
scenes [LVC∗19, SGJ∗20]. Recent studies have delved into uti-
lizing LiDAR for capturing detailed 3D human poses [RZH∗23].
Moreover, sensor fusion approaches combining LiDAR and cam-
eras have been proposed [CXR∗22, RZH∗23] to leverage the com-
plementary strengths of these sensors. However, these methods pri-
marily focus on scene-level tasks like human detection and segmen-
tation, rather than capturing skeletal motions with precise global
translation.

2.3. Neural Generative Models for Motion Synthesis

Motion synthesis has been a prominent area of research, aimed at
generating high-quality motion with minimal effort. Initial stud-
ies utilized probabilistic methods including principal component
analysis (PCA) [SHP04,CH05,LZWM06], Gaussian mixture mod-
els (GMMs) [MC12], and Gaussian processes [GMHP04, WFH08,
LWH∗12].

Generative neural networks have recently gained substantial at-
tention due to their impressive results in character motion synthe-
sis. Multiple methods adopted Generative Adversarial Networks
(GANs [GPAM∗14]) for speech-to-gesture synthesis [FNM19],
motion control [WCX21], and generation from a single motion clip
[LAZ∗22]. Variational Autoencoder (VAE) is another commonly
used architecture that enables random sampling from a specified
distribution. Furthermore, conditional VAE(CVAE) [SLY15] based
methods use constraints such as motion history [LZCVDP20a],
motion categories [PBV21], and speech [LYL∗19, LYC∗20] for
generation. Henter et al. [HAB20] proposed utilizing normalizing
flow for motion generation, enabling efficient training with ex-
act maximum likelihood. Aliakbarian et al. [ACB∗22] extended
the work with an additional latent region approximator model. In-
spired by the recent accomplishments of diffusion models in com-
puter vision research, Tevet et al. [TRG∗23] and Zhang et al.
[ZCP∗22] proposed language-driven motion synthesis techniques,
while Tseng et al. [TCL23] focused on synthesizing dance motion
from music.

3. MOVIN Dataset

While most publicly available motion datasets, such as Hu-
man3.6M [IPOS13] and 3DPW [VMHB∗18], are primarily
designed for 3D pose estimation from 2D images, PROX
[VMHB∗18] and LH26M [LZW∗22] provide depth data from
RGBD cameras and LiDAR sensors, respectively. However, the
depth data in PROX are relatively noisy for sensor limitations and
the point cloud in LH26M tends to be sparse for being captured
from a far distance. In this work, we provide the MOVIN dataset

Figure 2: The integrated optical motion capture and LiDAR sys-
tem, with representations of resulting point cloud data and skeletal
motion capture.

with synchronized pairs of 3D point cloud and motion data, de-
signed for full-body motion capture from 3D point cloud data.

Train set Test set
# Subjects 8 2

Motion type Static Locomotion Static Locomotion
# Frames 56,535 75,134 12,472 17,038

Elapsed timemin 47 62 10 14

Static Locomotion
T-pose, A-pose, Idle, Hands on waist Walking
Elbows bent up, down Jogging
Bow, Look, Roll head Running
Windmill arms, Touch toes Crouching
Twist torso, Hula hoop, Lean Transitions
Lunge, Squat, Jumping Jack Moving backward
Kick, Turn Jumping
Walk / Run in place Sitting on the floor

Table 1: Dataset composition details and motion categories.

Motion capture System. We employed the OptiTrack system
[opt09] comprising 21 PRIME 13 high-speed infrared cameras to
capture human motion. By tracking passive reflective markers po-
sitioned on the subject’s body keypoints, the system accurately
records joint positions and orientations. Using an optical-based mo-
tion capture system offers the advantage of avoiding global location
errors that may arise during extended recording sessions, which is
a common issue with IMU-based motion capture systems. Given
that our Movin dataset requires prolonged collections of motion
data, an optical-based motion capture system is highly suitable for
this purpose.

LiDAR sensor. LiDAR sensors emit laser light to accurately mea-
sure distances and generate high-resolution 3D maps of the sur-
rounding environment and objects inside. The resulting 3D point
cloud data provides detailed information about objects’ geometries.
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Figure 3: Illustration of the input and output in inference time. The
gray skeleton represents the output joint positions, rotations, and
velocities at the current time frame. Blue particles represent the
3D point cloud sampled in the current and the past 1-second time
window. The green arrow and red sphere on the ground denote the
global translation of the root and foot contacts, respectively.

To capture 3D point cloud data of moving subjects, we utilized
the ML-X model [SOS23] by SOSLAB, a high-performance solid-
state LiDAR operating at a frequency of 20 Hz. The ML-X model
offers a wide field of view with a 120 degree horizontal and 35
degree vertical coverage, generating a detailed point cloud at a res-
olution of 56× 192. This point cloud provides precise 3D global
coordinates along with light intensity values. One notable advan-
tage of this solid-state LiDAR system is capturing depth and in-
tensity in both 3D and 2D image formats; this allows for treating
the point cloud data similar to images in image-motion datasets.
Moreover, the ML-X model exhibits minimal distortion compared
to other spinning-type LiDAR systems, making it well-suited for
capturing fast and complex movements with body overlaps.

Data acquisition. Motion and point cloud data are captured si-
multaneously, as shown in Figure 2. Subjects performed two main
types of static movements and locomotion. Details on the dataset
composition and motion categories are provided in Table 1.

To extract only the points belonging to human subjects, we ap-
plied background filtering to the captured point cloud. The refined
point cloud contains approximately 200 to 300 points per frame.
We recorded only the 3D position data and excluded the inten-
sity data, as it is not significant among subjects who wear identical
black motion capture suits. Furthermore, such intensity data does
not provide information about typical human clothing.

After aligning the captured motion and point cloud data to a
shared global coordinate frame, we synchronized the time frames
and downsampled the motion data to 20Hz, which matches the op-
erating frequency of the LiDAR sensor.

4. Input/Output representation

Figure 3 illustrates the input and output of our framework for a
current frame t in inference time. The input consists of the cur-
rent 3D point cloud data as well as subsampled past 1-second point
cloud data (at a frequency of 20 Hz). Each frame contains 256 3D

points. We include four past point clouds sampled from 5, 10, 15,
and 20 frames prior to the current frame. To ensure consistent in-
put dimensions, we randomly discard points beyond 256 and per-
form zero-position padding for frames with fewer than 256 points.
This results in the input pt = [pt , pt−5, pt−10, pt−15, pt−20], where
pt ∈ R256×3. Considering historical point cloud significantly im-
proves the quality of results (Sec. 7.2).

The output for a current frame t consists of a global pose fea-
ture gt and a local pose feature xt . The global pose feature in-
cludes the character’s root position, rotation, velocity, angular ve-
locity, and foot contacts, represented as gt = [rl ,rr, ṙl , ṙr,c] ∈ R17,
where rl ∈ R3, rr ∈ R6, ṙl ∈ R3, ṙr ∈ R3, and c ∈ R2. The lo-
cal pose feature consists of joint local positions, rotations, ve-
locity, and angular velocity relative to the parent joint, denoted
as xt = [xl ,xr, ẋl , ẋr] ∈ Rn j×15, where xl ∈ Rn j×3, xr ∈ Rn j×6,
ẋl ∈ Rn j×3, and ẋr ∈ Rn j×3. Here, n j represents the number of
joints.

5. MOVIN Framework

The MOVIN framework, illustrated in Fig. 4, is based on an autore-
gressive conditional variational autoencoder (CVAE) architecture.
During the training phase, MOVIN reconstructs the current global
and local pose features, denoted as gt and xt , respectively, using the
3D point cloud history pt , as well as the previous global and local
pose features gt−1 and xt−1. In addition, the model is trained to
shape the latent variable z into a Gaussian distribution. The frame-
work comprises two components: the feature encoder, responsible
for mapping input features to the latent distribution, and the pose
generator, which generates global and local pose features.

During the inference phase, the embedding modules of the fea-
ture encoder and pose generator are used exclusively to generate
the output pose features x̂t and ĝt for the current time step. The
input consists of a randomly sampled latent variable z, while the
conditions include the history of 3D point cloud pt and the output
pose features from the previous frame, x̂t−1 and ĝt−1.

5.1. Feature Encoder

The feature encoder takes the previous output pose features gt−1,
xt−1, the history of 3D point cloud data pt , and the current target
pose features gt , xt as inputs and encodes them to a latent vari-
able z in a Gaussian distribution N (µ,σ). The feature encoder is
composed of embedding modules that individually embed the in-
put features, and a transformer encoder that captures the relation-
ships between the embedded vectors, allowing the model to learn a
distribution of possible pose features for the current time frame.

Embedding modules. To capture contextual information at dif-
ferent scales in the input 3D point cloud data, we utilize Point-
Net++ [QYSG17] for extracting the embedded vector f p

t from the
history of point cloud pt :

f p
t = PointNet++(pt) ∈ R5×C, (1)

where C denotes the number of channels.

For pose features, we employ separate embeddings for global
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Figure 4: Overview of MOVIN framework. The model separates into the Feature Encoder and the Pose Generator. At inference time, only the
Pose Generator and the embedding modules of Feature Encoder are used. Given the sampled point cloud sequence pt , our model generates
current global and local pose features ĝt , x̂t , which is used as a condition the next time frame.

and local pose features (as mentioned in Sec.4). The Graph Con-
volution Network (GCN) [YLX∗19, LCC∗19, SZCL19, JPL22] is
used to reduce the spatial resolution of the input local features xt
and xt−1 while preserving the body part structure. Additionally, a
two-layer MLP is utilized to embed the global pose features gt and
gt−1. The pose feature embedding process can be defined as fol-
lows:

f x
t = GCN(xt) ∈ RC, f g

t = MLP(gt) ∈ RC (2)

By applying the same procedure to xt−1 and gt−1, we obtain f x
t−1

and f g
t−1.

After feature embedding, we have five embedded vectors: f p
t ,

f x
t , f x

t−1, f g
t , and f g

t−1. These vectors serve as input for the subse-
quent transformer encoder. Moreover, [ f p

t , f x
t−1, f g

t−1] are used as
conditions for the Pose Generator.

Transformer encoder. To model the correlation between human
joints and local clusters in the corresponding point cloud, we uti-
lize a transformer architecture [VSP∗17]. The transformer encoder
E takes learnable tokens [µtoken,σtoken] and concatenated embed-
ded vectors [ f p

t , f x
t−1, f g

t−1, f x
t , f g

t ] as inputs. These inputs are en-
coded to obtain the parameters of a Gaussian distribution N (µ,σ).
The reparameterization trick is then applied to transform these pa-
rameters and obtain the decoder input distribution z ∈ RC:

E(z| f p
t , f x

t−1, f g
t−1, f x

t , f g
t ) =N (z; ,µ,σ) (3)

5.2. Pose Generator

Given the sampled latent variable z, the pose generator is an au-
toregressive model that generates current global and local pose fea-
tures, [x̂t , ĝt ], conditioned on the embedded vectors of the sampled
point cloud history and the previous pose features [ f p

t , f x
t−1, f g

t−1].
Since a single LiDAR sensor often suffers from self-occlusions be-
tween body parts, it increases ambiguity between the obtained point

cloud and the ground truth full-body pose. To address this, we sam-
ple a latent vector z from a prior distribution and use the point cloud
as the condition to generate plausible body motion.

Inspired by motionVAE [LZCVDP20b], we incorporate a
Mixture-of-Expert (MoE) decoder, which we have observed em-
pirically to enhance pose construction and reduce visual artifacts.
MoE methods are often used to divide the problem space into dis-
tinct partitions assigned to a fixed number of neural network ex-
perts. A gating network is then employed to determine the relative
contribution of each expert’s prediction when computing the final
output or prediction. In our framework, the MoE decoder gener-
ates an output, and this output is further expanded using expanding
modules to obtain the final full-body pose and foot contacts. These
expanding modules use inverse forms of the embedding modules
found in the feature encoder.

Mixture-of-Expert decoder The MoE decoder D consists of eight
expert networks with identical structures. A single shared gating
network is incorporated to blend the weights of the experts, thereby
determining the weights of the decoder network. Given the latent
variable z and the set of condition features [ f p

t , f x
t−1, f g

t−1], the
MoE decoder D computes the output f d

t as follows:

f d
t = D(z, f p

t , f x
t−1, f g

t−1) ∈ R2C, (4)

where f p
t represents the embedded vector of the current point

cloud, and f x
t−1, f g

t−1 represent the embedded vectors of the pre-
vious pose features.

Expanding modules. The output of the MoE decoder f d
t is further

processed by De-GCN and De-MLP modules, which have architec-
tures symmetric to the embedding modules. These modules expand
the dimensions of the output to obtain the final global and local
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pose features ĝt and x̂t as follows:

x̂t = De-GCN( f d
t [: C]), ĝt = De-MLP( f d

t [C :]) (5)

6. Training

The overall model is trained by minimizing the reconstruction Lrec
and KL-divergence Lkl losses. The reconstruction loss comprises
both the local and global pose feature reconstruction losses. The
local reconstruction loss quantifies the L1 errors in joint space with
respect to the parent and character space with respect to the charac-
ter’s root. Similarly, the global reconstruction loss measures the L1
errors between the generated and ground truth global root position,
rotation, velocity, and foot contacts. In addition, the KL-divergence
loss Lkl regularize distribution of latent variable z to be near the
prior distribution N (0, I).

The total loss function is thus:

Ltotal =Lrec +wklLkl

Lrec =∥x̂t −xt∥1 +∥FK(x̂t)−FK(xt)∥1 +∥ĝt −gt∥1,
(6)

where the first and second terms of Lrec denote local reconstruction
loss, and the last term is for global reconstruction loss. wkl is weight
of KL-divergence loss.

Implementation details. The AdamW optimizer was used over
120 epochs, with a learning rate of 10−4. Loss weight wkl was set
as 1. In the embedding module, the GCN layer comprises 1 spa-
tial convolution layer along with body part pooling. The 2-layer
MLP comprised a feed-forward network with 256 hidden units and
ReLU activation. Meanwhile, PointNet++ is made up of 3 set ab-
straction layers. Transformer encoder E comprised 2 layers of 64
channels with 4 heads, and the MoE decoder D consists of 8 iden-
tically structured expert networks and a single gating network. The
gating network is also a 3-layer feed-forward network with 256
hidden units. Expanding module have architectures symmetric to
the embedding modules. To prevent the covariate shift during au-
toregressive inference, we set the prediction length as 8 frames for
training. Scheduled sampling was also utilized in our model to en-
able long-term generation by making the model robust to its own
errors. With four 12GB 2080ti GPUs, training took around 60 hours
in an end-to-end manner.

7. Evaluation and Experiments

To validate the effectiveness of our method, we conducted com-
prehensive quantitative and qualitative evaluations against state-of-
the-art methods. We selected VIBE [KAB20] and MotionBERT
[ZML∗22] as representative baselines, which are vision-based ap-
proaches. To match the skeleton hierarchy for comparison, we
applied BVH conversion and an optimization-based retargeting
[JKL18] to the output parameters of the baseline methods. Fur-
thermore, we downsampled the retargeted outputs to 20 fps to
align with our output framerate. We disabled any postprocessing
for all methods to ensure a fair comparison of the network archi-
tectures. For visual animation results, please refer to the supple-
mentary video.

MJPEcm MJRE◦ MJLVEcm MJAVE◦ Jitt.

GT − − − − 446.87
VIBE 10.86 18.39 2.39 3.16 1103.15

MotionBERT 10.62 18.05 1.75 2.24 395.11
MOVIN 6.21 10.12 1.89 2.75 871.53

MPPEcm MPRE◦ MPLVEcm MPAVE◦ Cont.%

MOVIN 4.42 11.64 2.46 4.94 94.28

Table 2: Quantitative measures of MOVIN and state-of-the-art
methods. Pelvis (P) errors are only measured for MOVIN since the
baselines cannot accurately capture global translation.

Due to the unavailability of public datasets containing synchro-
nized video, LiDAR point cloud, and motion capture data, our ex-
periments were conducted solely on our held-out test set. The test
set consists of two subjects with heights of 162 cm and 170 cm and
each subject performed motion categories of static movement and
locomotion. The length of the entire test set is around 25 minutes.

Additionally, we performed ablation studies to investigate the
impact of our design choices, including the utilization of point
cloud history and the implementation of the autoregressive scheme.

The quantitative metrics include mean position error (M*PE),
rotation error (M*RE), linear velocity error (M*LVE), and angular
velocity error (M*AVE), for the Pelvis (P) and other body Joints
(J). Joint position and linear velocity errors are calculated using
forward kinematics in the pelvis coordinate frame. In addition for
MOVIN, we assessed contact accuracy by comparing ground truth
and predicted contact labels obtained by applying a threshold of 0.5
to the predicted contact probabilities.

Lastly, we showcase a real-time motion capture demo on the wild
unseen subject and discuss about effect of post-processing.

7.1. Comparison with State-of-the-art methods

We conducted inference for VIBE and MotionBERT using their
public code and note that these baselines are offline methods with
fixed input sequence lengths of 16 and 243, respectively. In con-
trast, our model, MOVIN, performed per-frame prediction with a
sliding window size of 1 to simulate real-time usage. We specif-
ically measured pelvis errors for MOVIN, the errors significantly
impact the quality of the output full-body pose. Since explicit
global localization is not supported by the baselines, we did not
measure pelvis errors for them and provided them with ground truth
pelvis trajectory for qualitative analysis.

Table 2 presents the quantitative evaluation results of MOVIN
and the state-of-the-art methods. MOVIN demonstrated a signifi-
cant improvement over MotionBERT in terms of average joint po-
sition and rotation errors, with margins of approximately 4.41 cm
and 7.93 degrees, respectively. However, for joint linear and angu-
lar velocities, MotionBERT exhibited slightly better performance.
This advantage can be attributed to MotionBERT’s utilization of a
longer input window of 243 frames, enabling it to maintain conti-
nuity and achieve smoother transitions in the output. Notably, the
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MJPEcm MJRE◦ MJLVEcm MJAVE◦ Jitt.

GT − − − − 446.87
w/o past pcd 6.70 11.49 1.95 2.76 919.15
w/ past poses 7.25 12.67 1.80 2.44 708.08
w/o autoreg. 6.09 9.71 2.07 3.15 1118.68
512 points 6.39 10.15 1.91 2.74 929.60
MOVIN 6.21 10.12 1.89 2.75 871.53

MPPEcm MPRE◦ MPLVEcm MPAVE◦ Cont.%

w/o past pcd 4.98 12.03 1.67 6.76 92.79
w/ past poses 5.44 12.34 1.58 5.68 93.93
w/o autoreg. 4.45 11.39 1.48 5.83 94.43
512 points 4.35 11.83 1.51 5.90 94.38
MOVIN 4.42 11.64 1.50 4.94 94.28

Table 3: Quantitative measures of MOVIN and ablation models.
The term "w/o past pcd" denotes the variant trained without incor-
porating point clouds sampled from a previous time window. "w/
past poses" refers to the version that includes past poses. "w/o au-
toreg." signifies the variant that employs a non-autoregressive pose
generator. Lastly, "512 points" designates the model variant that
utilizes a point cloud consisting of 512 points.

output motions of MotionBERT displayed lower jitter values com-
pared to the ground truth, indicating an over-smoothing effect that
can be clearly observed in the supplementary video. VIBE showed
similar position and rotation errors to MotionBERT but suffered
from severe jittering in the output poses, as indicated by the large
jitter value in Table 2.

Figure 8 presents two sets (170 cm male and 162 cm female) of
four-column images representing the ground truth (GT), and output
full-body motions from MOVIN, VIBE, and MotionBERT, respec-
tively. The robustness of MOVIN is evident as it generates plausible
full-body motion, regardless of the subject body shape and across
diverse action categories. In general, MOVIN preserved details in
the ground truth and maintained temporal continuity in the output
full-body motion. Please refer to our supplementary video for a
comprehensive evaluation comparing MOVIN with the baselines.

Regarding the global localization performance, MOVIN exhib-
ited average pelvis position and rotational errors of 4.42 cm and
11.64 degrees, respectively. The snapshots from our real-time ap-
plication, depicted in Figure 6, reveal that the output global trajec-
tory is well aligned with that of the user.

7.2. Ablation study

The aim of our ablation study is to validate our design choices of
utilizing point cloud history as input, excluding past poses from
input, selecting an optimal number of input points, and implement-
ing autoregression in both training and inference phases. Table 3
presents quantitative metrics for five different ablation models: one
without past point cloud input, one with past poses as input, one
with 512 points as input, one without autoregression, and our pro-
posed model, MOVIN.

Past point cloud sequence and poses. The model without a past
point cloud sequence underperformed compared to the proposed

Figure 5: Visual comparisons of ablation models. Without past
point clouds as input, the model exhibits abrupt changes in the
global heading direction and incorrect movement. The model with
a non-autoregressive Pose Generator produces outputs with unre-
lated poses between frames.

model. it showed an increase of 0.5 cm in average joint position
error and 1.4 degrees in rotation error. Specifically for the pelvis
joint, the average position error and angular velocity error increased
by 0.5 cm and 1.8 degrees, respectively. In the output motion se-
quence, we observed that this model often fails to maintain a tem-
poral continuity, especially for rapid movements or cases when cer-
tain body parts are occluded by others (i.e. walking sideways or sit-
ting) as shown in Figure 5 (1st row); this results in abrupt changes
in the global heading direction and body poses.

Providing past poses performed the worst among the methods.
We hypothesize that simply providing previously generated poses
leads to the model suffering from accumulated errors in the au-
toregressive input, thereby making it challenging to recover from
inaccurate predictions.

Autoregression. The model without autoregression shows no sig-
nificant differences compared to the proposed model in terms of po-
sition and rotation errors. However, there are noticeable increases
in linear and angular velocity errors for the joints, particularly for
the pelvis where the angular velocity error rises by approximately
0.9 degrees. Additionally, the jitter value increases by around 250.
These findings suggest that incorporating autoregression and ex-
posing the model to accumulated prediction errors during training,
enables it to robustly handle such errors during inference and pro-
duce stable and continuous poses in the output sequence. The result
in Figure 5 (2nd row) shows that the ablated model produces the
discontinuous poses during the Lunge.

Number of the input points. Doubling the number of input
points (from 256 to 512) increases computation time proportion-
ally but does not bring a significant improvement in performance.
To achieve real-time inference at the pace of a 20Hz LiDAR sensor,
we opted for 256 points as input.
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Figure 6: Real-time motion capture results. For each user’s pose, the left shows reference images and the right shows the corresponding
captured full-body pose. Our framework robustly captures both body dimensions and a wide range of motions.

7.3. Real-time Motion Capture Demo

Figure 6 showcases snapshots from our real-time motion capture
system with a single LiDAR, implemented in Unity3D. Compared
to recent methods that use multiple RGB cameras, our system does
not require offline calibration and captures the subject’s motion in
real-time, allowing users to check the results immediately. In the
first row, a female subject with a height of 159cm performs chal-
lenging motions such as sitting on the floor and lunging, which are
accurately captured by our system. The second row highlights the
application’s ability to capture dynamic actions from a male subject
with a height of 175cm, including running, jumping jacks, kick-
ing, and squats. Our framework not only accurately tracks these
diverse movements but also effectively captures the subjects’ body
dimensions. Please refer to our supplementary video for a detailed
demonstration of our model’s real-time performance.

7.4. Effect of Post-processing

As the real-time pose generation method cannot consider future
poses, the output motion may exhibit foot sliding. To address this
issue, we employ predicted contact labels and utilize inverse kine-
matics to correct foot positions. The target foot position is deter-
mined by interpolating between the previous and the output foot
positions. Our supplemental video demonstrates the impact of this
post-processing by comparing output motions with and without it.

8. Limitations and Future Work

While our proposed model, MOVIN, successfully captures diverse
motions in real-time, it is important to acknowledge the existing
limitations for future research.

One limitation of our model arises when encountering unseen
motions, as demonstrated by the windmill motion example shown
in Figure 7. In these cases, the generated pose does not align with
the corresponding point cloud, highlighting the need for improved
generalization to novel or uncommon movements. Expanding the
size of the training dataset by incorporating a wider range of motion
variations is a potential approach to address this limitation.

Another is the relatively low frames-per-second (fps) perfor-
mance of our current implementation, primarily due to the operat-

Figure 7: An example of failure case. When the user performs an
unseen motion (windmill), the model generates a pose that does not
align with the corresponding point cloud.

ing frequency of the LiDAR sensor. To overcome this, future work
could explore techniques such as point cloud upsampling or hard-
ware improvements to enhance the fps rate. Upsampling the point
cloud data can provide denser and more frequent input information,
resulting in smoother output motion and a higher frame rate.

Additionally, while our model demonstrates reasonable handling
of self-occlusions between body parts, it struggles in cases of severe
occlusions, such as when a subject curls up or the environment is
cluttered with objects. To improve performance in such scenarios,
considering the use of multiple LiDAR sensors positioned from dif-
ferent angles could be a viable solution. By capturing aligned point
clouds from multiple perspectives, the model can access more de-
tailed information and enhance its capture performance.

9. Conclusion

We present MOVIN, the first data-driven generative model for real-
time full-body motion capture using a single LiDAR sensor. Our
approach addresses the challenges of full-body tracking by elim-
inating the need for body-worn suits and devices while maintain-
ing high-quality motion capture. MOVIN utilizes an autoregressive
CVAE model to learn the distribution of pose variations from 3D
point cloud data. By separately embedding global and local pose
features, our model effectively learns the pose prior and accurately
predicts the performer’s 3D global information and local joint de-
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tails. The proposed autoregressive Mixture-of-Expert decoder en-
sures temporal coherence across frames, resulting in natural and
realistic motion. Our real-time application showcases MOVIN’s ro-
bustness to accurately capture diverse motions from subjects with
varying body shapes, demonstrating its effectiveness in real-world
scenarios.
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(a) Male / 170 cm

(b) Female / 162 cm

Figure 8: Qualitative comparisons of full-body motion outputs: Ground Truth, MOVIN-Ours, VIBE, and MotionBERT (from left to right).
Our model, MOVIN, accurately generates output motion that closely resembles the ground truth, with natural joint trajectories. In contrast,
baseline methods often suffer from issues such as oversmoothing, inaccurate pose, or temporal discontinuities with noticeable jitter.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.


