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Abstract
Low-light conditions often result in the presence of significant noise and artifacts in captured images, which can be further ex-
acerbated during the image enhancement process, leading to a decrease in visual quality. This paper aims to present an effective
low-light image enhancement model based on the variation Retinex model that successfully suppresses noise and artifacts while
preserving image details. To achieve this, we propose a modified Bilateral Total Variation to better smooth out fine textures in the
illuminance component while maintaining weak structures. Additionally, tensor sparse coding is employed as a regularization
term to remove noise and artifacts from the reflectance component. Experimental results on extensive and challenging datasets
demonstrate the effectiveness of the proposed method, exhibiting superior or comparable performance compared to state-of-
the-art approaches. Code, dataset and experimental results are available at https://github.com/YangWeipengscut/BTRetinex.

CCS Concepts
• Computing methodologies → Image processing; Low-level-vision tasks;

1. Introduction

The Retinex theory is a color vision model that aims to explain
how humans perceive color under varying conditions of illumi-
nance [Lan77]. Specifically, the Retinex theory aims at decompos-
ing an observed image SSS into illuminance component LLL and re-
flectance component RRR via SSS = LLL◦RRR, where ◦ represents element-
wise multiplication. The illuminance component LLL represents the
influence of the light source intensity and color on the object color,
while the reflectance component RRR represents the inherent color
information of the object itself [CXG∗17].The Retinex theory is
used in many image processing tasks, such as low-light image en-
hancement [RJW96, WZHL13, CXG∗17, LL22], and color correc-
tion [FZH∗16b, XHR∗20].

With the increasing popularity of the Retinex model, numer-
ous researchers have discovered the valuable properties of the il-
luminance and reflectance components, which can effectively ad-
dress the challenges of low-light image enhancement and color
correction. These models can be broadly categorized into three
types: classical methods, variation-based methods and learning-
based methods. Early classical Retinex methods [BW86, Lan83]
were based on the assumption that the reflectance component could
be computed using random paths. However, these methods were
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computationally expensive and lacked stability in practical appli-
cations. To overcome these limitations, researchers [MPS10] uti-
lized the solution of the Retinex model’s differential equation, sat-
isfying the discrete Poisson equation, to efficiently estimate the re-
flectance using fast Fourier transform. However, due to the piece-
wise smooth gradients of the illuminance component, its structure
could suffer from degradation. Therefore, corresponding single-
scale Retinex [JRW97b] and multi-scale Retinex [RJW96,JRW97a]
methods were proposed. These methods typically assume that the
illuminance component is piecewise smooth, while the reflectance
component is non-smooth, resulting in improved model perfor-
mance. However, due to the lack of appropriate edge constraints,
these methods often exhibit halo artifacts and pseudo-shadows
around edges.

To improve the application of the smoothness assumption in es-
timating the illuminance component within the Retinex model, re-
searchers [MMOC11,PDCRM05] have introduced variation-based
methods for decomposing the illuminance and reflectance based on
the Retinex model. Estimating illuminance and reflectance from a
single observed image is an ill-posed problem. The variation-based
Retinex method offers a promising solution by estimating piece-
wise smooth illuminance and piece-wise continuous reflectance,
then adjusts the illuminance and multiplies it with the reflectance
to obtain the enhanced result. In the context of the variation-based
Retinex method, the primary design methods for the regularization
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Figure 1: Comparative analysis of various representative low-light image enhancement methods, including MSRCR [RJW96], ZeroDCE
[GLG∗20], LLFlow [WWY∗22], URetinex [WWZ∗22], JieP [CXG∗17], STAR [XHR∗20], SCI [MML∗22], LIME [GLL16], NPE [WZHL13],
LR3M [RYCL20], WVM [FZH∗16b] and PnPRetinex [LL22].

terms of the illuminance component and reflectance component are
as follows:

1) In order to obtain piece-wise smooth illuminance components,
researchers have proposed different regularization terms to dis-
tinguish the details and structures of the illuminance com-
ponents. For instance, WVM [FZH∗16b] method utilizes the
L2 norm of the illuminance component gradients, while the
SRRR [LLY∗18] and LR3M [RYCL20] methods employ the to-
tal variation of the illuminance component gradients. The Jiep
[CXG∗17] method utilizes the local variation deviation of the
illuminance component, and the STAR [XHR∗20] method uti-
lizes the exponentiated mean local variance of the illuminance
component. The PnPRetinex [LL22] method combines the frac-
tional norm and guided filter [HST12] to constrain the illumi-
nance component. However, these methods have certain limi-
tations. On one hand, SRRR, LR3M, Jiep and STAR methods
produce illuminance components that contain excessive details,
resulting in reduced contrast in the enhanced images. On the
other hand, WVM and PnPRetinex methods excessively smooth
the intense or structures of the illuminance components, leading
to inaccurate brightness estimation in the enhanced images and
subsequent loss of color information.

2) Furthermore, devising a regularization term to eliminate noise
and artifacts in the reflectance component while preserving
its details remains a challenging task. Methods [FZH∗16b,
FLZ∗15, LLY∗18, CXG∗17, XHR∗20, LL22, RYCL20] utilize
only local priors, such as L1, L2 or Lp norm (0 <p <1), to penal-
ize the reflectance gradient. In order to better distinguish noise
and details, methods [FZH∗16b,XHR∗20,LL22] also introduce
weighted strategies based on local variance or gradient into the
norm of the reflectance gradient. It’s worth noting that these
methods are effective only when noise levels are low. In the
case of intense noise, these methods based solely on local prior
of the reflectance gradient either have difficulty reducing noise
or result in over-smoothing of details and artifacts. Later on,
Ren et al. [RYCL20] were the first to use the low-rank matrix
prior based on non-local self-similarity to reduce intense noise
and artifacts in the reflectance. However, they uniformly shrunk
all singular values of the reflectance, which ignored the phys-
ical meaning of singular values with varying amplitudes. Con-

sequently, although this method can reduced noise somewhat,
it also led to excessive smoothing of image details. In addition,
all of these methods modeled the prior of color image in vector
space, which obviously overlooks the multidimensional struc-
ture of color images and inevitably results in structural losses
and distortions [CYZ∗20].

With the remarkable achievements of deep learning across vari-
ous domains, [WWYL18] pioneered the application of deep learn-
ing to the Retinex model by proposing a two-stage Retinex-based
method known as Retinex-Net. Retinex-Net comprises a decompo-
sition module and an illuminance adjustment module. Drawing in-
spiration from Retinex-Net, Zhang et al. introduced two improved
methods called KinD [ZZG19] and KinD++ [ZGM∗21]. Expand-
ing on these advancements, [WCZ∗19] proposed a progressive
Retinex network consisting of an illuminance module network for
estimating illuminance and an noise module network for estimat-
ing noise level. These two sub-networks operate progressively until
stable results are achieved. More recently, Wu et al. [WWZ∗22] in-
troduced a novel deep unfolding network based on Retinex known
as URetinex, aiming to further integrate the benefits of variation-
based and learning-based approaches. Nevertheless, it is worth not-
ing that deep learning-based methods typically necessitate a signif-
icant amount of paired training data. Moreover, when the statistical
characteristics of the test image diverge from those of the training
images, the enhanced results often exhibit visual artifacts, color dis-
tortion or excessive enhancement.

To address the limitations of existing variation-based Retinex
methods in low-light image enhancement tasks, this paper presents
the following main contributions:

1) This paper presents a modified bilateral total variation method
that effectively removes textures while preserves weak struc-
tures in the illuminance component of low-light images.

2) To address the issue of noise and artifacts in the reflectance com-
ponent, the paper proposes the utilization of tensor sparse cod-
ing as a regularization term. This technique successfully sup-
presses noise and artifacts, resulting in a cleaner and more visu-
ally appealing reflectance component, while effectively preserv-
ing the details of the image.

3) The effectiveness of the proposed method is demonstrated
through comprehensive evaluation on extensive and challenging
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datasets. It outperforms or performs comparably to state-of-the-
art approaches in enhancing low-light images.

2. BACKGROUND

2.1. Notations

A tensor can be treated as a multi-indexed array, with its order
determined by the number of dimensions or modes. In this pa-
per, a tensor of N-order is denoted by Euler script letter, e.g.,
X ∈ RI1×I2×···×IN . A matrix is a tensor of 2-order, denoted by
boldface captital letter, e.g., XXX , and a vector is a tensor of 1-order,
denoted as xxx.

2.2. Variation-based Retinex Model

Traditional variation-based Retinex models are commonly formu-
lated using matrix representations. For example, they may sepa-
rately process the red, green and blue channels of a color image
[RJW96], or transform the color image into the HSV color space
and operate only on the luminance channel [RYCL20, XHR∗20,
LL22, CXG∗17]. The matrix representation of the Retinex model
can be expressed as follows:

SSS = LLL◦RRR, (1)

where ◦ represents element-wise multiplication. The illuminance
component LLL describes the distribution and intensity of light in a
scene, which is related to the lighting conditions in the environ-
ment. It typically consists of low-frequency components that rep-
resent the overall illuminance variations in the image. In contrast,
the reflectance component RRR reflects the surface characteristics of
objects in terms of light reflectance and is associated with material
and texture properties. It usually contains high-frequency compo-
nents that capture the local details in the image.

Estimating illuminance and reflectance from a single observed
image is an ill-posed problem. The variation Retinex method of-
fers a promising solution by estimating piece-wise smooth illu-
minance and piece-wise continuous reflectance. This is achieved
by introducing specific regularization terms, such as total varia-
tion [CXG∗17] and low-rank priors [RYCL20], to enhance the ac-
curacy and robustness of the estimation. The general framework of
the variation-based Retinex model is outlined as follows:

min
LLL,RRR

∥SSS−LLL◦RRR∥2
F +αΦ1(LLL)+βΦ2(RRR), (2)

where ∥SSS−LLL ·RRR∥2
F represents the fidelity term, while Φ1(LLL) and

Φ2(RRR) denote the constraint terms imposed on lll and RRR, respec-
tively. The parameters α and β serve as balance parameters, which
are utilized to adjust the weighting of these constraint terms during
the estimation process. In Figure 2, we illustrate the decomposition
results of the latest variation-based Retinex methods.

2.3. Modified Bilateral Total Variation and Tensor Sparse
Coding

Low-light images often suffer from issues like noise and arti-
facts, which can interfere with the decomposition process and pose
challenges in accurately extracting the illuminance and reflectance

components. To overcome this challenge, we begin by redesign-
ing the bilateral total variation to constrain the illuminance compo-
nent, smoothing out fine textures while preserving structural infor-
mation. Additionally, we employ tensor sparse priors to constrain
the reflectance component, aiming to eliminate noise and artifacts
within it. Therefore, we jointly employ the bilateral total variation
prior and tensor sparse prior to simultaneously estimating the il-
luminance L ∈ Rm×m×3 and reflectance R ∈ Rm×m×3 from the
observed low-light image S ∈ Rm×m×3. Here, m, m and 3 respec-
tively represent the height, width and number of channels of the
image.

2.3.1. Modified Bilateral Total Variation

The primary objective of introducing the Bilateral Total Variation
(BTV) [HXXC22] was to facilitate texture smoothing and preserve
image structure. In contrast to conventional methods like Total
Variation (TV) [ROF92], Relative Total Variation (RTV) [XYXJ12]
or Bilateral Texture Filtering (BTF) [CLKL14a], BTV exhibits su-
perior discrimination between image texture and structure. It ef-
fectively smooths image textures while simultaneously preserving
weak structures. The presence of these weak structures can be at-
tributed to variations in illuminance or changes in surface charac-
teristics of the scene, necessitating their retention within the illumi-
nance component.

In this section, we propose a modified Bilateral Total Variation
(mBTV), designed to enhance the robustness of texture and struc-
ture discrimination in complex scenarios, such as the coexistence
of textures and weak structures within a region or the presence of
noise. It is denoted as

mBTV (L)i =

∥∥∥∥ Dh(i)
GBh(i)+ ε

∥∥∥∥
1
+

∥∥∥∥ Dv(i)
GBv(i)+ ε

∥∥∥∥
1
, (3)

where i represents the spatial position coordinates, ε is a small con-
stant introduced to prevent division by zero.

The windowed total variation, denoted as Dh/v(i), is defined as
the weighted sum of the absolute of spatial differences within a lo-
cal window. The expression for its horizontal direction x or vertical
direction y is given as follows:

Dh/v(i) = ∑
j∈Ω(i)

gks(i, j) · |(∂h/vL) j|, (4)

where Ω(i) represents a local window at pixel i = (xi,yi) with the
size of (2 ∗ ks + 1)× (2 ∗ ks + 1), ks means the spatial scale. The
weight gks(i, j) at pixel j = (x j,y j) is determined by a Gaussian
function with a standard deviation of ks, written as

gks(i, j) =
1√
2πks

exp

(
−
(xi − x j)

2 +(yi − y j)
2

2k2
s

)
. (5)

Dh/v(i) can only differentiate between smooth regions and os-
cillatory areas. If Dh/v(i) is solely used as a constraint term for
the illuminance component L, it would be challenging to distin-
guish textures and weak structures . As a result, both textures and
weak structures would be subject to smoothing, leading to inaccu-
rate estimation of the illuminance component, similar to the meth-
ods [FLZ∗15, CXG∗17].
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Figure 2: Comparative analysis of the enhancement and decomposition results between our proposed model and the latest variation-based
Retinex methods, namely WVM [FZH∗16b], JieP [CXG∗17], STAR [XHR∗20], LR3M [RYCL20] and PnPRetinex [LL22], under low noise
level. Row 1 represents the enhanced results, while rows 2 and 3 correspond the illuminance and reflectance components, respectively.

To overcome this limitation, [HXXC22] proposed a guidance bi-
lateral variation GBh/v(i) based on bilateral filtering, which can be
expressed as follows:

GBh/v(i) =
∥∥∥(∂h/v( fGB(L,G)))i

∥∥∥
1
, (6)

fGB(L,G)i =
1
kn

∑
j∈Ω(i)

fks(i, j) · fkr (Gi −G j) ·Li, (7)

where ∂h/v is the partial derivatives in horizontal or vertical direc-
tion, fGB is the guidance bilateral filter, kn serves as a normalization
factor. The values of fks(i, j) and fkr (Gi −G j) are calculated based
on the Gaussian functions of the spatial and range distance between
two pixels, namely i = (xi,yi) and j = (x j,y j), respectively. They
are defined as follows:

fks(i, j) = exp

(
−
(xi − x j)

2 +(yi − y j)
2

2k2
s

)
, (8)

fkr (Gi −G j) = exp

(
−
(Gi −G j)

2 +(Gi −G j)
2

2k2
r

)
. (9)

The range parameter kr controls the sensitivity of fGB to the
structure. G represents the guidance map, obtained by applying

Gaussian filtering to the smoothed image in [HXXC22]. To handle
complex scenarios, such as the coexistence of textures and weak
structures within a region or the presence of noise, this paper di-
rectly calculates the guidance map based on the modified relative
total variation (mRTV), as elaborated in [CLKL14b].

To enhance the discriminative power between textures and
edges, we combine terms Dh/v(i) and GBh/v(i) to form our novel
regularization term, namely the modified bilateral total variation,
as shown in Eq. (3).

2.3.2. Tensor Sparse Coding

Sparse dictionary learning [OF97,AEB06,EA06] has emerged as a
powerful technique for image denoising. It usually involves learn-
ing an over-complete dictionary of atoms from a set of train-
ing images and utilizing it to efficiently represent and reconstruct
clean images from noisy observations. The underlying principle of
dictionary learning is based on the assumption that images can
be sparsely represented in terms of a few atoms from the over-
complete dictionary.

In sparse dictionary learning, the goal is to find a dictionary ma-
trix DDD and a sparse coding vector xxx that best represents the clean
image from noisy observations zzz. The formulation can be expressed
as follows:
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min
DDD,xxx

∥zzz−DDDxxx∥2
F +λ∥xxx∥0 , (10)

where || · ||F denotes the the Frobenius norm [CYZ∗20], || · ||0 rep-
resents the sparsity-promoting L0 norm, and λ is a regularization
parameter that controls the sparsity level. The term ||zzz − DDDxxx||2F
measures the fidelity of the reconstruction by minimizing the
squared difference between the noisy image zzz and the reconstructed
image DDDxxx.

However, matrix-based dictionary learning assumes that data can
be adequately represented using a matrix, which may not be suit-
able for high-dimensional data such as images, videos or hyper-
spectral data. When applied directly to high-dimensional data, ma-
trix dictionary learning fails to exploit the inherent multiway struc-
ture and correlations among different dimensions, resulting in sub-
optimal representations.

Tensor dictionary learning [DWL∗12,QHJ15,DHQ∗18] extends
the concept of dictionary learning from matrices to higher-order
tensors, allowing for the modeling of more complex and struc-
tured data. This is particularly beneficial when dealing with multi-
dimensional data such as color images, videos, and hyperspectral
images, where the relationship between different modes of data can
be effectively captured using tensor representations.

3. Our method

In this section, we propose a new variation-based Retinex model
based on modified Bilateral total variation and Tensor sparse cod-
ing, referred to as BTRetinex, for simultaneously estimating the
illuminance L and reflectance R from the observed image S based
on S = L◦R.

The proposed BTRetinex model is represented as follows:

argmin
L,R,DDD,CCC

∥S −L◦R∥2
F +λ1

3mn

∑
i=1

mBTV (L)i +
λ2
2
∥R−P(DDDCCC)∥2

F

+λ3 ∥CCC∥0

s.t.DDDT DDD = III,
(11)

wherein, the first term represents the data fidelity term. The second
term corresponds to the regularization term of the illuminance com-
ponent, which is based on modified bilateral total variation. Its ob-
jective is to achieve adequate piece-wise smoothness while preserv-
ing weak structures in the illuminance component. The third and
fourth terms represent the regularization terms of the reflectance
component, employing tensor sparse coding. The primary objec-
tive is to eliminate noise and artifacts in the reflectance compo-
nent while preserving important details. λ1, λ2, λ3 are regulariza-
tion parameters to balance the terms. P is an operation used to
aggregate matrix into a tensor [DHQ∗18]. III is the identity matrix.
In order to enhance the efficiency of the proposed model, this pa-
per adopts an orthogonal dictionary DDD, similar to the approach em-
ployed in [BCJ13, CJSY14].

3.1. Solution for Our Model

The objective function in Eq. (11) is separable with respect to vari-
ables L, R, DDD and CCC, allowing us to employ an alternating op-
timization approach for solving it. Specifically, we optimize one
variable while keeping the other three fixed. We initialize the illu-
minance component L0 as S and the reflectance component R0 as
I, where I represents a unit tensor.

All the sub-problems in the (k+ 1)-th iteration are listed in the
following equation:



Lk+1 = argmin
L

∥∥∥S −L◦Rk
∥∥∥2

F
+λ1

3mn

∑
i=1

mBTV (L)i

Rk+1 = argmin
R

∥∥∥S −Lk+1 ◦R
∥∥∥2

F
+

λ2
2

∥∥∥R−P−1(DDDkCCCk)
∥∥∥2

F

DDDk+1 = argmin
DDDT DDD=III

∥∥∥Rk+1 −P−1(DDDkCCC)
∥∥∥2

F

CCCk+1 = argmin
CCC

λ2
2

∥∥∥Rk+1 −P−1(DDDk+1CCC)
∥∥∥2

F
+λ3 ∥CCC∥0 .

(12)

For the sake of conciseness, the superscript k or k+ 1 denoting
the iteration number is partially omitted in the subsequent solving
process.

(1) Update L: The corresponding optimization sub-problem for
Lk+1 is

Lk+1 = argmin
L

∥S −L◦R∥2
F +λ1

3mn

∑
i=1

mBTV (L)i

= argmin
L

∥sss− lll ◦ rrr∥2
F

+λ1

(
lllT MMMT

h WWW hMMMhlll + lllT MMMT
v WWW vMMMvlll

)
,

(13)

where MMMh, MMMv are Toeplitz matrices from discrete gradient opera-
tors with forward difference. The vectors sss, lll and rrr represent the
vector representations of S, L and R, respectively. The weight
vectors wh, wv are computed according to the methods described
in [XYXJ12] or [HXXC22], respectively. The expressions for the
them at position i are as follows:

wwwi
h/v =

(
∑

j∈Ω(i)

gks(i, j)
GBh/v(i)+ ε

)
1

|(∂h/vL)i|+ ε
, i = 1,2, · · · ,(mn)

(14)

It should be noted that for the color illuminance component, we
need to calculate the weight vectors wwwh and wwwv separately for each
channel c (c = 1,2,3). To simplify the equation representation, we
have omitted the channel indicators here and directly represented
wwwh and wwwv as the concatenation of the weight vectors for the three
channels. The matrices WWW h and WWW h represent the diagonalization
of matrices wwwh and wwwv, respectively.

By taking the derivative of Eq. (13) with respect to lll and setting
the derivative equal to 0, we obtain

((DDDr ◦DDDr)+λ1QQQ) lll = DDDrsss, (15)
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where DDDr is the diagonalization matrix of rrr, QQQ = MMMT
h WWW hMMMh +

MMMT
v WWW vMMMv.

Then, the solution for lll can be transformed into solving a series
of linear equation systems:

lll = ((DDDr ◦DDDr)+λ1QQQ)−1 (DDDrsss). (16)

After obtaining the solution for lll ∈ R3mn×1, we reshape it into
L ∈ Rm×n×3.

(2) Update R: The corresponding optimization sub-problem for
Rk+1 is

Rk+1 = argmin
R

∥S −L◦R∥2
F +

λ2
2
∥R−P(DDDCCC)∥2

F . (17)

This is a least squares problem and its closed-form solution is
given by

(2(DDDl ◦DDDl)+ III)rrr = 2DDDlsss+λ2 pppdc, (18)

where DDDl is the diagonalization matrix of lll, the vector pppdc is the
column-wise vectorization of the tensor P(DC).

Similar to the solution process for lll, the solution of rrr can also be
transformed into solving a series of linear equation systems:

rrr = (2(DDDl ◦DDDl)+ III)−1 (2DDDlsss+λ2 pppdc). (19)

This paper utilizes the preconditioned conjugate gradient (PCG)
method [BBC∗94] to expedite the solution of linear equation sys-
tems within the sub-problems of L and R.

(3) Update DDD: The corresponding optimization sub-problem for
dictionary DDDk+1 is

DDDk+1 = argmin
DDDT DDD=III

∥∥∥R−P−1(DDDCCC)
∥∥∥2

F

= argmin
DDDT DDD=I

∥∥∥P [R−P−1(DDDCCC)
]∥∥∥2

F

= argmin
DDDT DDD=III

∥P(R)−DDDCCC∥2
F ,

(20)

where P−1 is the inverse operation of P , employed to transform
tensors into matrices.

According to [BCJ13, LSF∗15], the solution to the problem in
Eq. (20) is given by

DDDk+1 =UUUVVV T , (21)

where UUU and VVV are obtained through the singular value decompo-
sition of matrix P(R)CCCT , that is, P(R)CCCT =UUUΣΣΣVVV T .

(4) Update CCC: The corresponding optimization sub-problem for
sparse code CCCk+1 is

CCCk+1 = argmin
CCC

λ2
2

∥∥∥R−P−1(DDDCCC)
∥∥∥2

F
+λ3 ∥CCC∥0

= argmin
CCC

λ2
2

∥∥∥P [R−P−1(DDDCCC)
]∥∥∥2

F
+λ3 ∥CCC∥0

= argmin
CCC

λ2
2

∥∥∥P(R)−DDDTCCC
∥∥∥2

F
+λ3 ∥CCC∥0

= argmin
CCC

λ2
2

∥∥∥DDDTP(R)−CCC
∥∥∥2

F
+λ3 ∥CCC∥0 .

(22)

The problem can be solved by employing the hard thresholding
method [BD08], leading to the following solution:

CCCk+1 = H√ 2λ3
λ2

(
DDDTP(R)

)
, (23)

where Hthresh is the hard thresholding operator:

Hthresh(t) =

{
t, |t|> thresh

0, otherwise.
(24)

Subsequently, the reconstructed reflectance component R̂ can be
obtained by

R̂k+1 = P−1(DDDCCC). (25)

(5) Convergence criteria: The algorithm will terminate the iter-
ation when either of the following conditions are satisfied.

∥∥∥Lk+1 −Lk
∥∥∥2

F
/∥L∥2

F ≤ δ∥∥∥Rk+1 −Rk
∥∥∥2

F
/∥R∥2

F ≤ δ,

(26)

where δ is set to 0.001.

3.2. Illuminance Adjustment

After obtaining the illuminance L and reflectance R estimates,
Gamma correction is adopted to the illuminance as in [CXG∗17,
LL22] to modify the estimated illuminance. It is important to note
that gamma correction is performed in the HSV color space to pre-
serve color information. The Gamma correction of the V channel

image LLLv of L is defined as LLL′
v = LLL

1
γ

v , where the parameter γ is
empirically set as 2.2. The final enhanced result is represented as

Ŝ = L′ ◦ R̂, (27)

where L′ is obtained by converting the gamma-corrected lumi-
nance to the RGB color space.

Algorithm 1 outlines the whole process of enhancing low-light
images using the proposed BTRetinex model.

Algorithm 1 Low-Light Image Enhancement Based on the
BTRetinex Model in Equation (11)
Input: Observed image S, parameters λ1, λ2 and λ3, number of

iterations K, stopping criteria δ.
1: Initialize L0 = S, R0 = I and k = 0;
2: Update Lk+1 via Eq. (16);
3: Update Rk+1 via Eq. (19);
4: Update Dk+1 via Eq. (21);
5: Update Ck+1 via Eq. (23);
6: Check convergence criteria via Eq. (26);
7: If the convergence criteria are not satisfied, set k = k+ 1 and

return to the step 2.
Output: The enhanced image Ŝ via Eq. (27).
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Table 1: Quantitative comparison of the recent high-performing
Retinex-based methods on the MixPG660 dataset. Bold red indi-
cates the best results, while bold green indicates the second-best
results.

Metric ILNIQE↓ NIQMC↑ VIF↑ Time↓
Input 27.445 4.508 1.000 -
WVM 26.153 4.683 1.315 8.177
Jiep 25.517 4.732 1.319 2.724

STAR 25.836 4.804 1.212 3.254
LR3M 27.909 4.842 0.782 184.302

PnPRetinex 25.998 4.999 1.520 5.223
BTRetinex(Ours) 24.819 4.939 1.328 41.606

4. Experiments

In this section, we assess the performance of our proposed
BTRetinex Model by subjectively and objectively comparing it
with state-of-the-art Retinex decomposition and low-light image
enhancement methods. We run our experiments using MATLAB
2022b on a PC with AMD Ryzen 5 3600 6-Core Processor and
32GB RAM.

4.1. Implementation Details

Parameters Setting: The empirical parameters λ1, λ2 , λ3 and ε

are respectively set as 0.002, 0.005, 10−6 and 0.001. The experi-
ments confirm that the proposed model achieves convergence after
8 iterations, demonstrating satisfactory convergence behavior. To
strike a balance between performance and algorithm efficiency, we
set the maximum number of iterations, K, to 8.

Dataset: We use 660 images collected from MF [FZH∗16a], LIME
[GLL16], SIRE [WBSS04], DICM [LLK13], NPE [WZHL13],
MEF [MZW15] and ExDark [LC19] to test the performance. We
temporarily designate the dataset we collect as MixPG660, which
encompasses low-light images under various lighting conditions
and noise levels encountered in real-world scenarios. This dataset
effectively serves as a robust benchmark for evaluating the perfor-
mance of Retinex decomposition and low-light enhancement algo-
rithms.

Evaluation Metrics: We employ two blind image quality assess-
ment metrics, namely Integrated Local Natural Image Quality Eval-
uator (ILNIQE) [ZZB15] and No-reference Image Quality Metric
for Contrast distortion (NIQMC) [GLZ∗16], along with one full-
reference image quality assessment metric, Visual Information Fi-
delity (VIF) [SB06], to provide a comprehensive evaluation of the
enhanced results. These metrics assess various aspects of image
quality, including perceptual quality, contrast and detail preserva-
tion. Lower ILNIQE values and higher values of NIQMC and VIF
indicate higher image quality.

Methods Included in the Comparison: We compare our proposed
BTRetinex model with five state-of-the-art Retinex-based low-
light image enhancement methods, including WVM [FZH∗16b],
Jiep [CXG∗17], STAR [XHR∗20], Low-Rank Regularized Retinex
Model(LR3M) [RYCL20], PnPRetinex [LL22], and the four lat-
est learning-based methods, including ZeroDCE [GLG∗20], SCI

[MML∗22], URetinex [WWZ∗22] and LLFlow [WWY∗22]. All
results of the compared methods are obtained using the parameters
recommended by the authors.

It is worth noting that the MSRCR [RJW96], NPE [WZHL13]
and LIME [GLL16] methods shown in Figure 1 were proposed
relatively early, and they exhibit significant issues in the results
of image enhancement, such as color distortion, severe artifacts,
excessive brightness enhancement and noise amplification. There-
fore, for the sake of conciseness, this paper does not provide a
detailed enumeration of the qualitative and quantitative results of
these methods.

4.2. Comparing with variation-based Retinex Methods

Figure 2, 3, 4 and Table 1 illustrate the qualitative and quantitative
comparison results between our proposed BTRetinex model and
the latest state-of-the-art Retinex-based methods, namely LR3M,
WVM, JieP, STAR and PnPRetinex, on the MixPG660 dataset.

Qualitative Comparison: We start our analysis by examining the
characteristics of the illuminance and reflectance components.

Regarding the illuminance component, we can draw the follow-
ing conclusions:

1) Although the WVM method is capable of smoothing out the de-
tails of the illuminance component, it exhibits noticeable dif-
fusion effects at strong edges of the illuminance component,
leading to a decrease in the accuracy of the reflectance compo-
nent decomposition. Specifically, this is manifested by a lower
grayscale value of the reflectance component at strong edges, re-
sulting in insufficient brightness enhancement and a consequent
decrease in the contrast metric NIQMC, as shown in Table 1.

2) The JieP, STAR and LR3M methods all demonstrate effective
preservation of the edges in the illuminance component. How-
ever, there are still some image details present in the illuminance
component, particularly with the STAR and LR3M methods.
The illuminance component of these methods lacks sufficient
piece-wise smoothness, which, consequently, leads to a decrease
in the contrast of the enhanced image.

3) The PnPRetinex method effectively smooths out the details of
the illuminance component while preserving strong edges in the
image, as demonstrated by the dress in the second row of Figure
2. However, the PnPRetinex method also smoothes out the weak
edges in the image, as indicated by the red or yellow boxes in
the second row of Figure 2, 3 and 4. This results in enhanced
images with higher contrast, as evidenced by the higher value of
the contrast evaluation metric, NIQMC. Nevertheless, excessive
smoothing of weak edges can lead to uneven brightness and loss
of color information in the enhanced image, as observed in the
leg area highlighted by the red box in the first row of Figure 2.

Regarding the reflectance component, we can draw the following
conclusions:

1) The WVM, JieP, STAR, LR3M and PnPRetinex methods effec-
tively preserve the details and edges of the reflectance compo-
nent, as demonstrated in the third row of Figures 2, 3 and 4.
However, when the input low-light images contain intense noise
or artifacts, these methods are unable to effectively remove the
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Figure 3: Comparative analysis of the enhancement and decomposition results between our proposed model and the latest variation-based
Retinex methods, namely WVM [FZH∗16b], JieP [CXG∗17], STAR [XHR∗20], LR3M [RYCL20] and PnPRetinex [LL22], under intense
noise level. Row 1 represents the enhanced results, while rows 2 and 3 correspond the illuminance and reflectance components, respectively.

Figure 4: Comparative analysis of the enhancement and decomposition results between our proposed model and the latest variation-based
Retinex methods, namely WVM [FZH∗16b], JieP [CXG∗17], STAR [XHR∗20], LR3M [RYCL20] and PnPRetinex [LL22], under intense
artifacts. Row 1 represents the enhanced results, while rows 2 and 3 correspond the illuminance and reflectance components, respectively.

noise and artifacts from the reflectance component, resulting in
noticeable noise and artifacts in the enhanced images, as shown
in the first and third row of Figure 3 and 4.

2) The LR3M method can effectively remove noise from the re-
flectance component. However, at the same time, it results in ex-
cessive smoothing of image details, leading to a significant loss
of detail information in the enhanced images, as shown in the
first row of Figures 2, 3 and 4. This is mainly due to the low-rank
constraint imposed on the reflectance component and the equal
shrinkage of singular values with different magnitudes. Addi-
tionally, in the presence of strong artifacts, the LR3M method
fails to completely eliminate artifacts in the reflectance compo-
nent, as illustrated in the first row of Figure 4.

Based on the results shown in Figures 2, 3 and 4, it can be con-
cluded that our proposed BTRetinex model effectively suppresses
noise and artifacts in the enhanced images while preserving im-
age details. This is mainly attributed to the application of a ten-
sor sparse coding prior on the reflectance component, which al-
lows for the suppression of noise and artifacts. Furthermore, our

model is capable of generating enhanced images with a piece-wise
smooth brightness distribution and higher contrast. This is primar-
ily achieved through the implementation of the modified bilateral
total variation constraint on the illuminance component, which en-
sures both piece-wise smoothness and the preservation of weak
structures in the decomposed illuminance component.

Quantitative Comparison: According to Table 1, our model sig-
nificantly outperforms other methods in terms of ILNIQE, result-
ing in enhanced images that are comparable to natural images and
preserve more details. Moreover, our model ranks second in terms
of the NIQMC metric, and its value is very close to that of the Pn-
PRetinex method. This indicates that our model produces enhanced
results with excellent contrast. Additionally, our model demon-
strates outstanding visual quality, as evidenced by its attainment of
the second highest ranking in the VIF metric. However, in terms of
efficiency, our method falls behind the WVM, JieP, STAR and Pn-
PRetinex methods, although it still outperforms the LR3M method.
Further improvements are necessary to improve the efficiency of
our model.
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Table 2: Quantitative comparison of the four latest learning-based
methods on the MixPG660 dataset. Bold red indicates the best re-
sults, while bold green indicates the second-best results.

Metric ILNIQE↓ NIQMC↑ VIF↑ Time↓
Input 27.445 4.508 1.000 -

ZeroDCE 25.545 4.930 1.260 0.001
SCI 26.875 5.278 1.229 0.110

URetinex 24.008 5.166 1.074 0.043
LLFlow 23.062 5.293 1.171 0.185

BTRetinex(Ours) 24.819 4.939 1.328 41.606

4.3. Comparison with Learning-based Methods

Figure 5 and Table 2 illustrate the qualitative and quantitative com-
parison results between our proposed BTRetinex model and the
recent state-of-the-art learning-based methods, namely ZeroDCE,
LLFlow, URetinex and SCI, on the MixPG660 dataset.

From Figure 5, it can be observed that, unlike the variation
Retinex-based methods discussed in Section 4.2, the learning-based
methods exhibit noticeable visual distortions, including color dis-
tortions, over-enhancement, and strong artifacts. These distortion
issues lead to the instability of the ILNIQE and NIQMC met-
rics [ZZB15,GLZ∗16]. Therefore, in Table 2, we only provide their
values without considering them as quantitative indicators. Further-
more, in Figure 5, by comparing with the brighter regions in the
input low-light images, it can be observed that our method pro-
duces results that closely resemble the visual effects of the input
low-light images. Consequently, our model demonstrates superior
performance in terms of visual fidelity, as indicated by the Visual
Information Fidelity (VIF) metric, as shown in Table 2. In terms of
computational efficiency, the learning-based methods exhibit ex-
ceptional efficiency due to the utilization of GPU acceleration.

4.4. Limitations

While our proposed BTRetinex model demonstrates strong noise
suppression capabilities and visually appealing enhancement re-
sults for low-light image enhancement tasks, it does exhibit two
primary limitations. Firstly, due to the significant number of image
patch operations involved in tensor sparse coding, the BTRetinex
model tends to be time-consuming. In the future, we plan to en-
hance the model’s time efficiency and generalization performance
by integrating physical imaging models with deep learning tech-
niques. Secondly, for regions in images with high noise levels and
low brightness, the BTRetinex model tends to smooth out part
structural information while removing noise, leading to a slight de-
ficiency in brightness improvement in these regions. To address this
limitation, we intend to introduce a weighted strategy based on im-
age structure information in the tensor sparse coding process.

5. Conclusion

This paper proposed the BTRetinex model as an effective approach
for enhancing low-light images by effectively suppressing noise
and artifacts while preserving important details. The BTRetinex
model employs the modified bilateral total variation technique to

efficiently smooth out textures in the illuminance component while
preserving weak structures, and utilizes tensor sparse coding to
eliminate noise and artifacts from the reflectance component. Ex-
perimental results on diverse datasets demonstrate that the pro-
posed method outperforms or performs comparably to state-of-the-
art approaches in both qualitative and quantitative evaluations.

Similar to other variation Retinex methods, suitable model pa-
rameters need to be manually selected through experimentation,
which can be a tedious process. However, once the model parame-
ters are determined, our model exhibits stable and reliable perfor-
mance. Moreover, while our model demonstrates acceptable com-
putational efficiency, there is still potential for further improvement
in terms of optimizing its computational performance.
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