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Figure 1: A reference color chart (left image, bottom-left corner) is commonly used for color correction which is an ill-posed problem. State-of-the-art
root-polynomial regression method reduces CIE ∆E_2000 color differences for the corrected reference blocks in the mean-sense. It improves significantly
with increasing regression order as CIE ∆ E_2000 drops with the increasing order. However, it completely ignores the spatial color variations or aberrations
that produce serious artifacts as demonstrated here (right image). The proposed method improves color correction while preserving spatial variations and
white-balancing accurately. It produces better tonal match with the reference ground truth (left image) as well. It is robust against strong illumination effects in
the input photos and consistently outperforms reference state-of-the-art methods [FMH15, VWM14a].

Abstract
Color correction for photographed images is an ill-posed problem. It is also a crucial initial step towards material acquisition
for inverse rendering methods or pipelines. Several state-of-the-art methods rely on reducing color differences for imaged
reference color chart blocks of known color values to devise or optimize their solution. In this paper, we first establish through
simulations the limitation of this minimality criteria which in principle results in overfitting. Next, we study and propose a few
spatial distribution measures to augment the evaluation criteria. Thereafter, we propose a novel patch-based, white-point centric
approach that processes luminance and chrominance information separately to improve on the color matching task. We compare
our method qualitatively with several state-of-the art methods using our augmented evaluation criteria along with quantitative
examinations. Finally, we perform rigorous experiments and demonstrate results to clearly establish the benefits of our proposed
method.
Keywords: Color correction, material acquisition, inverse appearance modeling, inverse rendering
CCS Concepts
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1 Introduction

We often expect photographs of real-world objects to look ‘real’,
i.e., to immerse us with the same visual perception that one may
experience upon physically replacing the camera with ourselves.
For instance, consumers buying goods online would expect the real
cars, shoes, dresses, paints, artefacts, ornaments and other materials
to look the same as their photographs relayed over sales portals.
Amongst other factors, authentic reconstruction of the color infor-

mation for real-world objects through camera captures remains an
open and active area of research. Color correction is traditionally the
pre-processing step that transforms the colors that a camera captures
somewhat differently in comparison to the human visual system to
recover their natural fidelity. Furthermore, it is also an essential pre-
processing step in colorimetry and image-based material acquisition
pipelines for inverse modeling and/or rendering. Such modeling and
simulations often find applications in medical diagnoses, scientific
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investigations and military operations where the accuracy of this
task often becomes paramount.

Color correction of individual images with just three input color
channels is essentially an ill-posed problem. We discuss this ill-
posedness at length in Section 3 while examining the basic math-
ematical formulation for representing the color information as de-
duced from the incident spectral power distributions and the related
practical limitation. There exists a substantial body of literature
approaching this problem from many different angles (see Section 2
for details). Methods aiming at measurable levels of fidelity in color
reconstruction mostly rely on color charts. A color chart has variedly
colored blocks of known reflectances, and it is placed in a scene
as a reference (left image in Figure 1). A color correction method
then works to transform colors in the photograph such that the color
chart blocks match their defined color values under some known
illumination, as closely as possible.

Current state-of-the-art methods focus solely on matching the
source colors (mean or median values of imaged blocks) to their
target (perceptually defined) counterparts. Some operate in RGB or
XYZ color spaces and use linear, polynomial or root-polynomial
based least-mean square formulations to estimate correction trans-
formations [KFMA22]. Others rely on minimizing CIELAB ∆E
errors in transforming reference blocks through classical optimiza-
tion methods or machine learning methods. In this work, we first
show empirically that predicating the optimality of the desired color-
correction transformation on reducing such reference color differ-
ences may only lead to an overfitted solution even at its best.

We study the factors influencing the accuracy of the color cor-
rection task (Section 3) and devise practical strategies to counter
each strong error contributing factor (Section 4). In particular, we
examine the roots and role of spatial variations and propose a metric
on local variations to take into consideration while evaluating the
goodness of color correction methods. We propose a novel method
that is especially designed to preserve local spatial variations si-
multaneously while reducing reference color differences in photos
(Section 4). Based on our studies and experiments, we devise it to:
(i) treat luminance and chrominance information separately, (ii) use
whole reference block patches instead of just mean/median statistics,
(iii) estimate a white-point centric initial transformation matrix, and
(iv) use local spatial-variation statistics within reference patches to
guide further optimization of the chrominance transformation ma-
trix. We demonstrate that our method manages to do both: (a) stay
within good tolerance limits for color differences for transformed
reference blocks, and (b) retain local spatial variations (Section 5).
In contrast, existing methods often overlook spatial variations while
overfitting their solution to reduce color differences for reference
blocks alone. Furthermore, unlike previous methods, we show our
method to be robust against variations in the illumination conditions.
We quantitatively as well as qualitatively evaluate our method in-
cluding a few example images for a publicly available image dataset
to establish comparative benefits. We also show our method to be
resilient to different levels of noises in the imaging pipeline as well
as robust to illumination variations and tonal biases.

2 Related Work

Substantial literature exists that deals with color correction and
other transformational methods aimed at accurate material appear-

ance capturing [Pal99]. This includes tone mapping, white balancing,
recoloring, spectral reconstruction as well as computational hyper-
spectral imaging [Vrh93,KC14,TB05,GGVDW11,ABB22,SSFJ22,
WSF∗19, ABS16]. Given the scope of this work, we focus only on
discussing state-of-the-art methods that can color correct individual
photographs with just three color channels, using color charts specif-
ically. Such methods can be classified broadly as transformation
matrix, nonlinear minimization, or machine learning methods.
Transformation Matrix Approach. Simplest of the transforma-
tion matrix methods involve estimating a 3× 3 matrix L using a
least mean square formulation to match the source (imaged) colors
to the target (reference) colors for the color chart blocks [KC14].
Often, a single mean or median color value per color chart block
is used in such methods. Such methods are fundamentally targeted
at using metrically linear and additive color spaces such as lin-
ear–RGB or XYZ color spaces. Conceptually, any such method is
shifting, stretching and shearing the input source color space to
best match a given target color space by minimizing the average
Euclidean distance between the corrected color values and the ref-
erence color values for the blocks in the color charts. A somewhat
nuanced extension of this approach involves piecewise linear trans-
formation [MAF16]. In this adaptation, the source color space is
partitioned into convex hulls using the chart block’s mean colors as
vertices in that space or some other criteria such as few fixed hue
planes. This way, linear transformations can operate on nonlinear,
non-additive color spaces such as HSV and CIELAB as well. How-
ever, space partitioning approaches exact a heavy computational
cost by imposing a per-pixel search in determining which linear
matrix must be used to transform it.

Instead of piecewise linear approximation of nonlinear color
spaces, Hong et al. [HLR01] examine polynomial regression sche-
mes for estimating the transformation matrix P. This approach works
better than the linear or piecewise linear regression approaches.
However, polynomial regression is brightness dependent and it only
works well for pixels with their luminance in the range expressed
by the imaged set of color chart blocks. Finlayson et al. [FMH15]
devised a root-polynomial regression method to make their color cor-
rection step independent of the pixel brightness. Root-polynomial
method works well and it is the best state-of-the-art method op-
erating with color charts that have an analytic form for directly
estimating the transformation matrix [ABB22,APCB19b]. However,
for orders higher than 2, it starts exhibiting visual artifacts and is
recommended to be used with order 2 regression in a later study
involving one of the original authors [KFMA22]. Furthermore, we
found above methods not to be robust against varying illumination
conditions (see Section 5 for details).
Nonlinear minimization. Varghese et al. [VWM14b] have devel-
oped one of the simplest and effective approaches beyond analytic
formulations. They propose estimating the linear transformation
matrix L through nonlinear minimization of CIELAB ∆E errors in
reconstructing the reference color chart blocks instead of using a
least mean square formulation in the source or target’s (linear) color
space. This method works well and improves color corrections sub-
jectively. However, we found it to be sub-optimal in white-balancing
images taken under illuminations with extreme spectral variations.
Furthermore, estimating measurable quantities (relative radiance)
through subjective color space (CIELAB) optimizations that do not
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express one-to-one inverse relations seems counter-intuitive for ap-
plications where those measurements are put to some direct physical
interpretations; for example, in medical diagnosis or other scientific
applications of colorimetry. [CRA∗21] provides greater insight into
this issue.
Machine Learning Methods. For a long time, ML-based meth-
ods have been proposed to address color correction [Vrh03]. While
the initial attempts had reasonable success under known illumina-
tion [ANU96], this illumination dependent re-training requirement
is also the limitation of some of the recent basic Neural-Network
based approaches, as noted by Kucuk et al. [KFMA22] while ex-
amining the method proposed by MacDonald and Mayer [MM21].
Recently, Afifi et al. [ABB22] propose a deep neural-network based
method for auto white-balancing photos even without the need for
color charts. Their approach is shown to produce excellent white-
balancing for scenes under non-uniform illuminations. However,
like many DNN based methods, this approach has notable memory
footprint requirements.
Other Approaches. Few other methods involve spectral recon-
struction [GGDG22, SSFJ22, WSF∗19, TV91]. These methods are
either specialized towards computational photography or require
multiple images while changing illumination. Our goal is to enable
reliable radiance estimation for inverse rendering pipelines or more
serious colorimetric applications with practical or economical imag-
ing setups. We thus focus only on methods that work for the generic
imaging modus operandi that involves capturing individual images
with or without any control over environmental lighting while still
aiming for accurate color correction.

Afifi et al. [APCB19b] proposed a large image corpus search
based method for white-balancing. Their approach is very robust
in white-balancing, and we use some of their dataset images in our
studies. We found our method to consistently color correct images
generated under different tone mappings where all correspond to
the same given white-balanced ground-truth image. Our method
produces no noticeable color distortion in the white blocks for the
color chart in the image (see Fig. 1).

Irrespective of the approach used, all the methods discussed above
rely solely on reducing color differences in the mean-sense to esti-
mate their transformation matrix or numerically tuning in a trans-
former model for color correction.This optimality criteria has seri-
ous, inherent limitations and we elaborate on them in the following
section while also proposing a meaningful augmentation to it. This
is followed by our proposed method which improves the current
state-of-the-art approaches for accurate and robust color corrections.

3 Color Correction Problem

Ill-posedness. To understand the underlying ambiguity and ill-
posedness of the color correction problem, let us begin by con-
sidering the mathematics of pixel coloration. Continuous spectral
radiance s(λ) is integrated under three different spectral response
(color) functions of the camera, say fc(λ) = [r(λ), g(λ), b(λ)]T .
Registered pixel color is then defined as:

c = [rc,gc,bc]
T = Tc[s(λ)] =

∫
s(λ)fc(λ)dλ. (1)

Here Tc represents the transformation from the spectral space to a
linear color space, say linear–RGB. This transformation Tc is linear
in the sense that Tc[a · s1(λ)+ b · s2(λ)] = aTc[s1(λ)]+ bTc[s2(λ)]

Figure 2: Ambiguity of the many-to-many problem is depicted using chro-
maticity plots. Color correction requires solving this ill-posed problem along
with luminance corrections.

for any two arbitrary scalars a, b and any two arbitrary spectral
radiances s1(λ) and s2(λ). Here we note that the R, G and B di-
mensions for a given camera’s color space are represented as three
(x,y) points in CIE’s x−y chromaticity space and these three points
vary depending on the camera’s spectral response (color) functions.
Figure 2 depicts two such cameras with two different fc functions.
s1(λ), s2(λ) and s3(λ) are three spectral radiance profiles incident
on three different camera pixels. Both s1 and s2 map to the same
RGB color value and thus the same (x,y) chromaticity position (on
the left in Figure 2) in CIE color space, due to Camera_1 specific
metamerism. Similarly, s2 and s3 map to the same chromaticity
position in CIE color space due to Camera_2’s metamerism. This ex-
ample illustrates two one-to-many mapping instances that together
result in a many-to-many mapping. Thus, an accurate mapping be-
tween two different RGB color spaces defined by two distinct sets
of color functions is essentially a many-to-many association as each
camera in this case exhibits a different metamerism. Now if one of
those cameras emulates CIE’s color functions, then the mapping
represents the color correction problem. Even when the reference
blocks map to distinct points in the chromaticity space, it does not
preclude perceptually metameric spectral radiances to map to dif-
ferent points in the x-y chromaticity space. Thus color correction is
inherently ambiguous and ill-posed, in general.

To understand camera specific metamerism, we can quickly visit
the discrete formulation which is often used for principal compo-
nent analysis (PCA) based methods for color correction. For sim-
plicity, often times the integration expressed under transformation
Tc is approximated with discretized counterparts sn×1 ≡ s(λ) and
F3×n = [r,g,b]T ≡ fc(λ) and expressed using linear algebra as
c = T [s] = Fs. Here, n is the number of discrete spectral bands used
to approximate s(λ). Clearly, F has n− 3 dimensional null-space
which results in projection losses, or in other words metamerism.

Now, let Fcie represent discretized CIE color functions. So,
ccie = (Fcies) is a perceptually correct mapping for s under chosen
discretization. With Fcie having a different null-space than F, a naive
linear transformation T3×3 = Fcie(FT F)−1

n×nFT , to map ccie = Tc
does not exist when n > 3 as (FT F) becomes rank deficient and
cannot be inverted. In such scenarios, we solve for T in a least mean
square sense by using an adequate (≥ n) number of < ccie,c > tu-
ples where each pair is known to result from same spectral profile s
under two projections <Fcie, F>. In practice, we use color charts to
give us those tuple sets. Since the set of such tuples is not unique,
T does not have a unique solution. In other-words, we can have
two different color charts where their blocks differ in their spectral
reflectances and they will result in different ‘best’ solutions for T.
This is the mathematical way of saying that color correction with
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just three color channel information per pixel is inherently an am-
biguous and ill-posed a problem. Also, it mathematically implies
that by just minimizing color differences with the references, we
cannot resolve the color correction problem. At best, we can find
the best solution under given constraints. In this paper, we propose
to extend the constraint set to include additional spatial statistics
with the justifications as discussed in the following.
Camera Noises and Color Chart Inaccuracies: The mapping
problem is further complicated by camera noise and material irreg-
ularities, even of brand new color charts whose irregularities only
increase with degradation over time (see Figure 3). Especially, color
aberrations introduced by Bayer demosaicing pose a serious chal-
lenge. We can expect that even pre-filtering these aberrations do not
remedy inaccuracies due to the color correction problem’s inherent
ambiguity. As inverse rendering and colorimetric problems often use
the raw camera recordings, these aberrations lead to serious visual
artifacts if not handled well (see Fig. 1 (right image)).

Figure 3: Xrite color chart block patches from an example photo taken in our
dark room laboratory settings are plotted pixelwise in CIE x-y chromaticity
space. Raw pixel colors are assumed to be in CIE RGB space.

Now, let us begin by assuming that each pixel is an independent
variable. This assumption is immediately challenged by the exis-
tence of Bayer filter that imposes local biases. Since such biases
are spatially imposed, spectral radiance incident on an individual
pixel expresses an imprint over its neighborhood. This justifies the
use of spatial statistics to devise additional constraints on solving
any transformation matrix T. Similarly, other degrading factors dis-
cussed above impose such spatial biases that must remain intact
under a reliable and robust color correction process.

Based upon above understanding of the color correction problem
and further empirical studies, we propose a novel evaluation criteria
that incorporates spatial statistics in estimating a transformation
matrix T. We also propose a new method that is devised to allow
for optimizing on this new evaluation criteria systematically instead
of just a brute-force minimization. Lastly, we state that all the dis-
cussions in this section about the linear 3×3 transformation matrix
T also hold true for estimating any higher-order regression based
transformation matrix. Next, we present our proposed method.

4 Proposed Method

Based on our studies, we propose a novel method that: (step i)
treats luminance and chrominance information separately, (step ii)

uses whole reference block patches instead of just mean/median
statistics, (step iii) estimates a white-point centric initial transforma-
tion matrix, and (step iv) uses local spatial variation statistics within
reference patches to guide further optimization of the chrominance
transformation matrix. To understand the relevance and justifica-
tions driving these design choices, let us begin by considering the
limitations of the commonly relied upon error metric, i.e. CIE ∆E
in CIELAB color space. While we always employ CIE ∆E_2000
throughout our research, where the context warrants generality, we
refer to it as CIE ∆E or just ∆E for the sake of brevity.

4.1 CIE ∆E Limitation and Proposed Improvement
Simulations examining ∆E reliability in color matching. Sev-
eral state-of-the-art color correction methods solely rely on minimiz-
ing color differences between the transformed and the expected color
values for a reference set. We use one such highly effective approach,
namely, root polynomial regression [FMH15, APCB19b, KFMA22]
in simulated conditions to empirically establish the shortcomings of
this metric. We simulate perfect imaging conditions for transforming
a million spectral radiance si(λ) profiles using: (a) Canon 600D’s
RGB spectral response functions (giving source data) [Sob19], and
(b) CIE XY Z color matching functions under D50 illumination
(giving ground truth). We do the same for 24 blocks of Xrite’s
color chart [Bab23]. Source code for these simulations are included
in the supplemental material. Next, using the least-squares root-
polynomial regression fitting, we estimate the color transformation
matrix and evaluate errors arising from its use. Table 1(first column-
set) shows error statistics for different orders of root-polynomial
terms where both regression and test sets are limited to color chart
blocks alone. In this scenario, CIE ∆E_2000 color difference statis-
tics fall significantly below the aspiring Just-Noticeable Difference
JND level (∆E ≤ 1) with the increasing regression order. However,
for the million spectral radiance samples not used in the regression
process, differences between corrected color values and correspond-
ing ground-truth values are comparatively high. Lastly, we regress
over all of the million samples to estimate the color transformation
matrix. The last column in Table 1 shows that for all the orders
of root-polynomial terms ∆E statistics remain notably higher than
JND. This clearly points towards data overfitting by the transfor-
mation matrix T (described in Section 3). This overfitting can lead
to noticeable visual artifacts such an increase in spatial chromatic
aberrations.
Proposed spatial metric. To find an accurate solution, we need
to estimate the spectral power distribution of the radiance incident
on a given pixel accurately. This is not doable with just three color
channels. At the same time, we noted that the major fallout of meth-
ods relying on minimizing color differences is that spatial artifacts
or anomalies are introduced. Also, in Section 3 we mathematically
examined why using color differences alone cannot resolve the
ambiguity of the color correction problem. We also discussed the
justification to use some measure of spatial variations to help pre-
serve them. Zhang and Wandell [ZW97] with their S–CIELAB
metric suggest multi-level, lowpass pre-filtering of images to in-
corporate spatial variations in ∆E measures [JF03]. Johnson and
Fairchild [JF01] further improve the filters used in S–CIELAB met-
ric while Wang and Hardeberg adapt S–CIELAB to employ six chan-
nels of information (lightness, chroma, hue, compression, noise and
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CIE ∆E_2000 Error Measures
Regression Set → 24 Color chart blocks 24 Color chart blocks Million random {si(λ) : i = 1 · · ·106}

Testing Set → 24 Color chart blocks Million random {si(λ) : i = 1 · · ·106} Million random {si(λ) : i = 1 · · ·106}
Root poly. order ↓ mean median 95% max mean median 95% max mean median 95% max

one 0.9030 0.7114 1.7194 2.7205 2.3761 2.1606 4.7560 12.4777 2.2546 2.0203 4.6439 13.2740
two 0.5385 0.4101 1.1666 1.6317 2.3372 2.1170 4.7104 12.8163 2.2533 2.0182 4.6442 13.3730

three 0.3672 0.2482 1.0046 1.0946 2.3868 2.1645 4.8065 12.9689 2.2532 2.0181 4.6443 13.3673
four 0.0121 3.1823e-05 0.0604 0.1405 5.5213 4.2903 14.4383 77.3033 2.2532 2.0180 4.6448 13.3722

Table 1: Examining the effectiveness of reducing CIE ∆E errors in optimizing the color correction matrix. Regression results against millions of random spectral
radiance profiles indicates that using only few color chart blocks as references results in overfitting. These experiments also show that using a very large gamut
results in mean ∆E around 2.25 units.

sharpness) subject to bilateral filtering [WH09, WH12]. Similarly,
Simone et al. [SOF09a] incorporate the use of log-compressed OSA-
UCS space [SOF09b] to adapt S–CIELAB into a new metric called
S–DEE. Also, Pedersen and Hardeberg [PH09] incorporate spatial
properties of the human visual system in extending a hue-angle
algorithm [HL02] to devise a new S–CIELAB like metric called
SHAME. All these metrics are particularly focused at comparing
local image features such as edges, sharpness and color flow. We,
on the other hand, want to study (non-local) mass distribution prop-
erties over reasonably sized patches with rather flatness in expected
variations. More importantly, we do not want to penalize differences
in spatial variations on an absolute scale (say standard deviation σ

for a patch). Instead, we want to preserve spatial variations under
some scale normalization. We thus propose to incorporate a spatial
variation metric which is the ratio of the standard deviation to the
mean for a patch to the optimization criteria. It is called coefficient
of variation or CoV. We found that augmenting color differences
with CoV differences allows for improvements. In Section 5 we es-
tablish how to relatively weight ∆CoV against ∆E errors to estimate
net error measures that we aim to minimize.

4.2 Key Contributive Ideas
Before detailing the algorithm for our method, we first present

the details and justifications for our four key contributive steps.
Step (i): Processing chrominance and luminance data separately.
Generally, we are motivated to impose higher-order regressions
to better match given reference color data by accounting for the
nonlinearities warranted in corrections. However, based on our ex-
periments, we found that notable spatial artifacts are introduced
with higher-order root-polynomial regression, which is mainly due
to the amplification of local variations in the luminance channel
for the input photo. We thus firstly partition the regression step
to separately process the luminance and chrominance data. This
enables us to better control and limit the visual artifacts by apply-
ing a low-order root-polynomial regression method to correct the
luminance channel information when appropriate. For instance, non-
uniform illumination conditions over the physical color chart can
lead to greater artifacts due to overfitting on the luminance data by
higher-order regression. To process luminance separately, we first
estimate robust mean color vectors as explained further in Step (ii).
All 24 robust mean color vectors are then used in a regression fitting
step to correct the luminance channel as detailed in Algorithm 1 in
supplemental.

Also, color correction is essentially a problem about fixing the

x−y chromaticities. We thus directly work in CIE x−y chromaticity
space to find the chroma transformation matrix with higher-order
regression. By processing chromaticity channels separately, we also
avoid the potential compromise on chromatic corrections that re-
sult from overfitting the out of balance luminance data that may
have been degraded due to noise or illumination non-uniformities.
We note that a linear transformation in CIE XY Z space results in a
homographic transformation in x− y space. We thus work with ho-
mogeneous chroma coordinates. By extension, we use homogeneous
coordinates for nonlinear regression as well.
Step (ii): Using patch-based robust statistics. For processing
luminance data, we compute robust mean color vectors in CIE XYZ
color space for 24 color chart block patches in the input photo. For
this we use only the inliers in each patch to compute its respective
mean color vector. Also, due to camera noises, demosaicing errors
or color chart anomalies in the imaged x− y chroma data exhibit a
high amount of color aberration. This shows up as a serious overlap
between samples from different color blocks of the color chart (see
Fig. 3). We found that instead of using mean/median chroma for each
block, using all the additional samples for each reference color block
to match a single expected target x− y pair allows for influencing
the chroma transformation matrix by individual patch distributions.
Our approach in effect works to retain the local spatial variational
distributions. Each block patch is additionally used as a reference to
quantify relative changes in spatial variations due to color correction.
We compute patchwise ∆CoV for explicit minimization as explained
in Step (iv) in the following.
Step (iii): White-point centric correction. To ensure greater ef-
ficacy in white-balancing the results from color correction, it is
recommended to employ constrained regression [FD97]. Finlayson
et al. [FMH15] also conclude that using this constrained regression
approach can help to preserve the white-point while correcting col-
ors in a luminance independent manner. However, we observe a
subtle luminance-dependent shift in the corrected white point in
the x− y space even after using one of the reference color chart
white blocks to constrain root-polynomial regressions. Section 5.2
elaborates on this anomaly with an illustration in Fig. 7. These
subtle white point drifts result from spatial chromatic aberrations
that occur due to noisy imaging. The aberrations cause marginally
different impact on chroma estimates at different brightness levels
owing to differences in relative signal-to-noise ratios between these
levels. To draw an analogy, the influence of the scale of the noise
on estimating a camera’s spectral sensitivities is studied and tabu-
lated by Jiang et al. in their research work (Section 5.2) [JLGS13].
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In effect, differences in the impact of noise at different brightness
levels lead to minor yet systematic shears in chromaticity estimates.
Such shearing effects are not amenable to correction through con-
strained regression for white point preservation, as demonstrated
in Section 5.2. Furthermore, we aim to make our color correction
algorithm to be robust against shadows on the color chart and similar
non-uniformities in the illumination intensity. We thus explicitly
apply a white-point centric transformation approach where imaged
white blocks from the color chart act as representative ‘white points’
at their recorded luminance levels respectively. This allows for ap-
proximating a corrective shear for the luminance Y axis in x− y−Y
space, prior to estimating chroma transformation in the x− y space
alone. Using the white point x− y as the origin in the homogeneous
chroma coordinate space allows for an easier, deterministic control
for white-point matching. It also results in chroma-correction er-
rors to distribute evenly around the white point. Sub-steps for our
white-point centric corrections are presented in Algorithm 1 in the
supplemental.
Step (iv): Explicit optimization for preserving spatial variations.
Lastly, to fine tune our chroma transformation matrix, we directly
employ patch-based coefficient of variance measures, i.e. ∆CoV. It
augments and regularizes our objective function that also includes
CIE ∆E_2000 color differences for reference blocks. However, for
computing color differences (say ∆Echroma) in this step, we first
equalize the luminance Y channels in the CIE x− y−Y color space
for the color vectors being compared. In other words, we assign the
luminance value of the reference color vector ccie to the luminance
value for the corresponding color corrected color vector cr to give
us a new color vector c̄r. Note that all three color vectors ccie, cr and
c̄r are in CIE x− y−Y color space. We then compute ∆Echroma as
the CIE ∆E_2000 between ccie and c̄r. The minimization problem
is then defined as:

argmin
TC

∑
i
∥∆Echroma(c

i
cie,c

i
r)∥2

2 +∑
j
∥αλ∆CoV j∥2

2, where (2)

ci
r =< TC · ci

rp >, and (3)

∆Echroma(c
i
cie,c

i
r) = ∆E(ci

cie, c̄
i
r) (4)

Here, ci
rp is the root-polynomial vector in homogeneous x− y−1

coordinates, TC is the chroma transformation matrix, < ·> indicates
transformation into regular x− y coordinates, α is the number of
inliers to be used in each patch and λ is set as discussed in Sec. 5.1.
‘i’ identifies inlier pixels and ‘ j’ identifies individual patches. ∆CoV
only considers x− y channels.

4.3 Our Algorithm
For clarity, we provide a step-by-step complete pseudo-code for

our method in the supplemental material (See Algorithm 1 in it).
Here, we include pseudo-code for two core parts of our method:
(a) estimating the luminance transformation matrix TL (see Algo-
rithm 1) and (b) estimating the chrominance transformation matrix
TC (see Algorithm 2). Next, we emphasize some of the important
technical details that warrant further clarification.

• To compute root-polynomial vectors we use the following formula
and logic. Consider a pixel i, with its photographed linear color
vector pi = [r,g,b]T . Its root-polynomial vector ri of order n

Algorithm 1 Estimate Luminance Transformation Matrix TL

Input:
• Sn×m×3: An array of photo pixel colors for ‘n’ chart blocks, each

with ‘m’ inliers and expressed in 3 color channels, namely XYZ
• Tn×3: An array of target reference pixel colors for ‘n’ chart blocks

that are expressed in 3 color channels, namely XYZ
• rluma: Regression order for processing luminance data

Output:
TL: Luminance Transformation Matrix
—————————————————————————————
function COMPUTELUMATRANSFORMATION(S,T, rluma)

p← 0
for i = 1 to n do

for j = 1 to m do
p← p+1
Rmatrix(p, :)← GiveRootPolyVector(S(i, j,1 : 2), rluma) ▷

See Eqn. 5, {using only first two color channels here}

tvector(p)← T(i,2) ▷ Reference Luminance
end for

end for
TL ← argmin T∗

L
∥tvector−RmatrixT∗

L(:)∥2
2 ▷ linsolve() in MATLAB

return TL
end function

enumerates all elements of the set:

Sn = {(rαgβbγ)1/t : t = (α+β+ γ)≤ n}. (5)

When there are less than 3 elements in the color vector, above
equation is adapted accordingly. When the color vector for a
pixel is in homogeneous coordinates, we do not compute its root-
polynomial color vector directly. Instead, we first compute the
root polynomial vector for the equivalent non-homogeneous color
vector and augment it with the homogeneity coordinate of value 1.
This way, we ensure that the scale independent operations devised
by Finlayson et al. [FMH15] are applied correctly.

• When correcting luminance, ideally we would want to regress
over Y channel alone. However, we assume that the captured
photo is in linear RGB color space while converting it into CIE
XYZ space. Now, the camera’s spectral sensitivity functions differ
from CIE prescribed RGB color functions. However, both X and
Y channels that we compute from the input photo are expected to
have high correlation with the true image luminance. We thus use
both of these channels in regressive corrections.

• When correcting luminance with rluma = 1 in Algorithm 1, the
inlier patch statistics produce the same result as with using the
robust mean color vectors alone. For higher-orders, all inlier
statistics as used in Alg. 1 to provide even better resilience against
non-uniform illumination conditions.

• White-point centric corrections result in negative chromatic
coordinates that involve complex number operations in root-
polynomial based regression. We estimate final corrections based
on the magnitude of these complex number calculations.

• For the patch-based operations we used inliers for robust statistics
for ∆E computations. However, we estimate ∆CoV errors using
entire patches.

5 Experiments and Results

We performed both quantitative as well as qualitative evaluations
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Algorithm 2 Estimate Chrominance Transformation Matrix TC

Input:
• Sn×m×2: An array of photo pixel colors for ‘n’ chart blocks, each with

‘m’ inliers and expressed in 2 color channels for CIE chromaticity x,y.
Note that pixel colors could have undergone a shift in their reference
white points as explained in Step (iii) for Section 4.2
• Tn×2: An array of target reference pixel colors for ‘n’ chart blocks

that are expressed in 2 color channels representing CIE chromaticity
x,y. Note that target reference colors could have undergone a shift in
their reference white points as explained in Step (iii) for Section 4.2

• rc: Regression order for processing chrominance data
• oflag: Flag indicating that Step (iv) in Sec. 4.2 must be applied.

Output:
TC: Chrominance Transformation Matrix
—————————————————————————————
function COMPUTECHROMATRANSFORMATION(S,T, rc)

p← 0
for i = 1 to n do

for j = 1 to m do
p← p+1
R(p, :)← GiveRootPolyVector(S(i, j, :), rc) ▷ See Eqn. 5
t1(p)← T(i,1); t2(p)← T(i,2)

end for
end for

▷ Make adjustments to deal with the ‘homogeneous’ chroma coordinates
for p1 = 1 to p do

D1(p1, p1)← t1(p1); D2(p1, p1)← t2(p1)
end for

Amatrix←
[

R 0×R −D1×R
0×R R −D2×R

]
; tvector←

[
t1
t2

]
TC← argmin T∗

C
∥tvector−AmatrixT∗

C(:)∥2
2 ▷ linsolve() in MATLAB

TC ←
[
TC

[
0 0 1

]T
]

▷ For Homogeneous Coordinates
if oflag is true then

TC ← Eqn. 2▷ Perform nonlinear minimization starting with the
initial value of TC from the previous step. See lsqnonlin() in MATLAB

end if
return TC

end function

for our method. We implemented our method in MAT LAB. When
opening raw photograph files, we use DCRAW with default options.
For photographs in other color spaces, we require and use additional
metadata to convert them to linear–RGB first. Unless otherwise
specified, we set the regression order for luminance correction to 2.
Increasing it further produces spatial artifacts. Using linear regres-
sion does not help minor nonlinearities that might creep in due to
camera’s properties or variations in the environmental lighting.

5.1 Quantitative Evaluations
We perform several quantitative examinations of our method. We

use CanonDarkroom_01.CR2 from Figure 4 as the raw input image
for these evaluations. It has a resolution of 4022×6024 pixels.
Compare with state-of-the-art methods. Firstly we com-
pared our method with both reference methods, namely Root-
Polynomial (RP) and Varghese et al. (VEM). We applied RP method
with linear to fourth-order of regression. For our method, we used
1% patch data for robust mean estimates, second-order regression
for both luma and chroma channels, kept white point shearing on
and optimized transformation matrix using nonlinear minimiza-
tion as the last step. Table 2 lists both color differences as well

Figure 4: CanonDarkroom_01.CR2 in sRGB and linear-RGB (right).

as patch-based coefficient of variation errors for all the methods.
Also, Figure 5 shows distribution of these errors across different
chart blocks for few method configurations. Looking at the table
and these images, it seems that RP method with regression order
4 does the best in reducing the color differences. Unfortunately,
this is a misleading observation as the reduction in ∆E errors for
mean color values is achieved through overfitting and at the cost of
introducing visual artifacts. Subjective evaluation of these artifacts
is done in the following subsection. In a quantitative sense, those
artifacts reflect as high numbers in mean absolute ∆CoV (last three
columns in Table 2). This table also shows that at comparable levels
of CoV errors (order 2 for RP method), our method does better in
reducing mean ∆E error. Similar to this case, we found our method
did better than other methods in reducing the net error in general as
well.

Root polynomial method with Order 2 regression

Our proposed method

Root polynomial method with Order 3 regression

Figure 5: Barcharts showing CIE ∆E_2000 errors for different color blocks
for all the examined methods in different configurations.
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Method CIE ∆E_2000 Error 100×Mean |∆CoV|
(Order) Mean Median Max x y Y (Luma)

Root-Poly (1) 2.36 2.12 6.70 0.10 0.06 0.01
Root-Poly (2) 2.37 1.86 5.55 0.20 0.10 0.12
Root-Poly (3) 1.80 1.09 5.25 2.42 1.40 3.56
Root-Poly (4) 0.06 6E-4 0.68 466 411 169
Varghese et al. 1.95 1.52 8.53 0.42 0.34 0.11
Our (L-2,C-2) 1.56 1.46 3.81 0.27 0.11 0.13

Table 2: Quantitative comparison of different methods. Color differences
as well as differences in the patch-level coefficient of variance are reported
here. Proposed method shows lower mean ∆ than other two methods at
comparable level of variance preservation.

Chroma Whitepoint Patch Step (iv) CIE ∆E_2000 Error 100×Mean |∆CoV|
Order [R] sheared [S] Used [P] Used [O] Mean Median Max x y Y

2 × × × 2.028 1.756 8.602 0.542 0.440 0.188
2 × × ✓ 1.969 1.777 8.254 0.409 0.467 0.188
2 × ✓ × 2.032 1.824 8.603 0.525 0.432 0.187
2 × ✓ ✓ 2.886 2.758 6.944 0.026 0.011 0.187
2 ✓ × × 1.425 1.435 3.303 0.503 0.427 0.188
2 ✓ × ✓ 1.429 1.403 3.298 0.481 0.365 0.188
2 ✓ ✓ × 1.418 1.463 3.430 0.473 0.407 0.187
2 ✓ ✓ ✓ 2.475 2.515 5.049 0.050 0.039 0.187
3 × × × 2.013 1.767 8.681 0.555 0.617 0.188
3 × × ✓ 2.063 1.837 8.279 0.496 0.563 0.188
3 × ✓ × 2.018 1.766 8.653 0.526 0.585 0.187
3 × ✓ ✓ 3.363 3.295 6.842 0.159 0.300 0.187
3 ✓ × × 1.412 1.369 3.246 0.510 0.520 0.188
3 ✓ × ✓ 1.373 1.361 3.138 0.474 0.375 0.188
3 ✓ ✓ × 1.410 1.385 3.385 0.475 0.510 0.187
3 ✓ ✓ ✓ 2.480 2.622 4.597 0.057 0.045 0.187

Table 3: Error statistics for various configurations of the proposed method.
Using second order regression for chromatic correction along with all other
options activated gives best results in general. Patch statistics and white-
point centric must almost always be applied. Final optimization step reduces
spatial color aberration errors considerably only when patch statistics are
used.

Figure 6: Examining the effects of varying the root polynomial order for
chromatic corrections under different configurations

Examining constrained root polynomial regressions. We in-
corporated constrained least-square regressions [FD97] in the RP
method by Finlayson et al. [FMH15]. Figure 7 illustrates our find-
ings. Case C1 uses the brightest white block as a constraint. It results
in brownish shade for the white blocks with lower luminance. C2
and C3 use white blocks with lower reflectances but they result

Input

[C1: Block 19 is fixed] ∆E: µ = 3.26, median= 2.68, max= 9.28

[C2: Block 20 is fixed] ∆E: µ = 1.83, median= 1.42, max= 9.40

[C3: Block 21 is fixed] ∆E: µ = 1.94, median= 1.62, max= 9.50

[C4: Blocks 19&20 fixed] ∆E: µ = 8.27, median= 5.71, max= 41.6

Figure 7: Examining the impact of constrained regressions on RP method by
Finlayson et al. [FMH15]. Patches in red boxes above were used to enforce
color equality constrains on their robust mean color vectors. Second-order
regressions were applied to all cases.

in bluish shift in the white point at higher luminance. Using more
than one constrain (C4) produces serious artifacts in other color
blocks. ∆E statistics included in the figure reinforce these findings
quantitatively. This case study highlights the challenges faced by
the RP method in white point preservation using constrains alone.
Examining the impact of different configurable modules. We
experimented with all combinations of all four configurable parame-
ters for our method. Table 3 shows error statistics for it. We first look
at the impact of the regression order for chromatic correction. Using
3rd order regression does not improve much over 2nd order results
in reducing ∆E errors. Also, it mostly resulted in slightly higher
CoV errors in comparison to 2nd order regression (see Fig. 6). This
reduction in higher-order effectiveness is mainly due to separate
processing of chromatic and luminance information. Higher-order
regression appear to achieve reductions in ∆E errors by overfitting to
the luminance data. In summary, we find our method to work better
with 2nd order regression. In comparison to RP method, we found
our method to have less severe CoV degradations at higher-order
regression, but we leave those results out for the sake of brevity.

Figure 8: Examining the effects of applying luminance dependent white
shifts for chromatic correction under different configurations

Our next important step of white-point centric corrections shows
reductions in mean ∆E error in every possible configuration. Figure 8
visually depicts this trend. Furthermore, it almost always reduces
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CoV errors except when patch statistics and nonlinear optimization,
both, are disabled. Even in that case, the degradation is marginal.

Figure 9: Examining the effects of using patch statistics for color correction
under different configurations

We examined the impact of using 5% of patch inliers for robust
mean estimation on our method’s performance. Figure 9 illustrates
its differentiable effects. Using patch statistics does not impact ∆E
errors unless nonlinear optimizations are used. In that case, ∆E errors
increase notably but not without significant benefits in reducing CoV
errors. On overall basis, using patch statistics result in net benefits.
Finally, using last step minimizations produce the obvious effect
of reducing CoV errors and increasing ∆E. But as per its objective
function’s design, these optimizations always result in net error
reductions.

In summary, using second-order regression for chromatic cor-
rection along with all other options activated gives best results in
general. Patch statistics and white-point centric must almost always
be applied. Final optimization step reduces spatial color aberration
errors considerably only when patch statistics are used.

Figure 10: Examining the effects of applying nonlinear minimization on
weighted cumulative errors under different configurations

Impact of relative patch size. Using patch statistics plays an
important role in making our method robust. Instead of patch median
colors, we chose to use robust mean color values estimated over a
limited set of pixels closest to the patch median. While the median

color values help ward off the outlier’s influences, they do not take
into account the influence of non-uniform illumination or systematic
degradations in the color chart blocks. We found that using robust
means makes our method robust against such degrading adversarial
scenarios. However, establishing the threshold for inclusion of patch
pixels contributing towards mean estimation is a non-trivial task. We
took an empirical approach to resolve this criteria. We tried different
inlier percentages (Cin in Algorithm 1 in the supplemental) and
studied their impact on net color matching errors. For these studies,
we first enabled white-point centric operations and post nonlinear
minimizations while setting the chroma regression order to 2. To
begin with, we set the weight factor λ = 50 for combining per pixel
∆E and CoV errors as Etotal = ∆E+λ∆CoV for the minimization
step. With this we color corrected our input photo for different
patch sizes and computed mean error for all pixels as ∆Eµ and CoVµ
as mean errors over all patches. Next, we traced plots for Eref =
∆Eµ +λraw ×∆CoVµ against Cin varying between 1% and 90% , for
different values of λraw. Since the proportion of true outliers dictate
the patch size that should be used for robust estimates, we tried
different levels of outlier noise in spatial chromatic aberrations. To
do this we used different levels of wavelet filtering to smoothen raw
images while reading with DCRAW utility [Cof18].

Figure 11 shows all the plots for different combinations of λraw
and wavelet filtering level. We found that for lower levels of λraw,
∆E dominates the minimization energy. For very high values of
λraw, ∆CoV dominates this energy term. For a range of λraw ∈
(700,2000) we found synergetic combination of these two error
types. We can use λraw to make better informed a choice about
λ. To put things in perspective, for 24 blocks with two chroma
channels and three channels for computing net mean CoV over
all patches, λ× 24× 2/3 = λraw, i.e. 16×λ = λraw. Thus a range
of λ ∈ (40,125) works well for different levels of outliers. Also,
when ∆E= ∆Echroma is used, λ ∈ (29,84). Higher values of λ are
warranted for photos with less noise. Our initial choice of λ = 50
is well within this range and we can rely on these plots to pick a
good range of patch sizes. All three plots in Figure 11 indicate that
the net synergetic energy has the best chance of minimization when
the patch size is between 1% and 10%, with most plots indicating a
minima near 5%. We thus empirically establish that around 5% of
inliers must be used to compute robust patch mean color values for
error minimization with our method.
General note on ∆CoV errors. Multiplying ∆CoV by 100 in
Tables 2 and 3 above indicates changes in the scale-normalized
variations as a percentage-wise reading. We found that even 1%
change in the ‘normalized’ σ (i.e., CoV) even with a random spread
across the patch, manifests itself into a disturbing visual artifact.
Less than 0.3% error (i.e., ∆CoV = 0.003) is not noticeable.

5.2 Qualitative Evaluations
We now look into qualitative evaluations of our method. For all

qualitative evaluations, unless otherwise specified, we configured
our method to use patches with 5% as the inlier threshold for robust
mean estimation, along with nonlinear minimization at the end and
white-point centric operations. The chromatic regression order is 2.
Aberration, Spatial Noise and White-balancing. One of the
primary motivations was to introduce statistical measures into our
color correction method to reduce spatial chromatic aberrations
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Figure 11: Examining the impact of the patch fraction used for estimating robust statistics.

from getting introduced in the process. For noisy photos, one can
state the goal here is to retain the level of spatial variations in the
output of the color correction step. We thus first make a compara-
tive evaluation of noise levels between the input and the output for
different color correction methods. For these tests, we use the same
input photo, namely CanonDarkroom_01.CR2. Figure 12 and Fig-
ure 1(right image) show notable or even disturbing noisy chromatic
aberrations for RP method with regression order greater than two.
While at lower orders, RP method results in noise levels that are
similar in subjective impressions about the spatial luminance and
chrominance variations in the output blocks, as in the input blocks.
Varghese et al. use linear regression and thus have similar pleasant
correlation between the input and output noise levels. However, both
of these methods are slightly off on resolving the white-balance
accurately. RP method shows a slightly yellowish white shading
and VEM method show a bluish tinge in the white blocks.

Similarly, we tested our method along with reference methods
on few of the images from an openly available dataset [APCB19a].
This dataset contains poorly white-balanced input photos and their
white-balanced counterparts. Figure 1 shows color correction results
for different methods as applied to one tiger image. Figure 1 also
shows that the white blocks and the tiger’s eyebrows as well as
upper lips are slightly yellowish for VEM method. RP(2) retains
an overall bluish tinge as noticeable near the inscription on the rock
in Figure 1 (middle image). Similarly, Figure 14 show that RP(3)
overshoots orange color estimates for the tiger’s body. We have
found these slight offsetting of white blocks to often show up in the
results for both reference state-of-the-art methods.

These subjective evaluations fairly balance the interpretation of
color difference reduction statistics presented in the subsection
above. In comparison, our method retains spatial variational char-
acteristics while accurately white-balancing and color correcting a
given photo.
Method Robustness. We tested our method against different levels
of spatial aberrations, illumination conditions and few challenging
reference cases as inputs. We first examined our method for differ-
ent levels of spatial variations within the color chart blocks. With
CanonDarkroom_01.CR2 as the input image subject to different
levels of wavelet filtering by DCRAW , we created different levels of
spatial smoothness for the color chart blocks. Figure 13 confirms
that our method is consistent in retaining relative spatial variations
in the output across different levels of local smoothness.

Next, we applied our method and both reference methods to the
tiger image set where the input photos depict Cloudy, Daylight,
Fluorescent, Shady and Tungsten lighting conditions. We color cor-
rected these differently illuminated (re-rendered) photos with our

Root polynomial, order 1

Root polynomial, order 2

Root polynomial, order 3

Root polynomial, order 4

Varghese et al.

Proposed method

Figure 12: Color chart block patches cutout from the input and output
images. RP method shows yellowish shade for the white blocks while Vargh-
ese et al. results in a slight bluish tinge. Also, as the regression order in-
creases, spatial chromatic aberrations get added to the results.

method, RP method and VEM method. Figure 14 shows the results
for various methods with different input illumination. Our method
produces consistently white-balanced results across all input con-
ditions. In comparison, other methods depict notable overall tonal
differences in their results for different input conditions. To further
compare the robustness in chromatic corrections, we took the color
chart cut-outs from each row in Figure 14. Next, for each set of
images corresponding to only one row in Figure 14, we picked indi-
vidual pixels randomly from any one of the images within that set.
Since the comparison is for chromatic accuracy, we fixed the output
luminance to that for respective row’s output corresponding to the
cloudy tone mapping. Figure 15 shows the results of this random
merging along with the cutout from the dataset’s ground-truth photo.
Upon closer inspection, this figure shows that overall our method
has least local variations in those largely smooth chart blocks.

Finally, we tested our method against one of the difficult input
case from the reference dataset [APCB19a]. Figure 16 shows an
input image of a painting that has heavy red bias. Our method is
able to reproduce the finer shades of red, yellow and purple on
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the front woman’s dress along with orange and green color shades
around her. Our results are close to the given ground truth as well
as Afifi et al.’s results. In contrast, RP and VEM retain stronger
overall orangish tinge from the input image. This is in spite of having
removed those effects reasonably well from the color chart blocks,
given the near extreme input conditions for this case. In summary,
we found our method to be fairly robust against several challenging
input conditions, as demonstrated in this subsection.

DCRAW Wavelet filter level = 0

DCRAW Wavelet filter level = 10

DCRAW Wavelet filter level = 20

DCRAW Wavelet filter level = 50

DCRAW Wavelet filter level = 100

DCRAW Wavelet filter level = 200

DCRAW Wavelet filter level = 500

Figure 13: Examining proposed method for robustness against different
levels of input chromatic noise in the input photo. CanonDarkroom_01.CR2
is subject to different levels of wavelet filtering by DCRAW to smooth out
spatial noises. In each case, our method produces subjectively similar im-
pressions about noise intensity as well colorful variations in each patch.

6 Summary and Future Work

In this work, we revisited the mathematical basis for transfor-
mation matrix based color correction approaches. We examined
the inherent ill-posedness of this problem through mathematical
constructs. We empirically examined limitations of color difference
reduction as the sole criteria for estimating such transformation ma-
trices. Based on our studies, we proposed augmenting the optimality
criteria to incorporate spatial statistical measures. In essence, our
strategy is to retain spatial variational relations during the color
correction process. We achieve this by incorporating patch-based
coefficient of variance differences to the objective function for non-
linear minimization. We also devise a new method that processes
luminance and chrominance data in a photo separately to reduce
the impact of overfitting with ∆E errors. Furthermore, our method
uses a good proportion of each color chart block patch to matching
chroma. This allows spatial variations in the input photo to guide
the estimation of the chroma transformation matrix. Our white-point

centric corrections result in reliable white-balancing. We empirically
established good range of parameter values to use for configuring
proposed method. Our patch based minimization was found to con-
verge in few hundred iterations with the step size reducing to the
order of 10−7. In contrast, other single mean (or median) color value
based method requires thousands of iterations to reduce the step size
to the order of 10−5.

We evaluated our method both quantitatively as well as qualita-
tively to demonstrate that it performs better than current state-of-
the-art methods in its league. Our method has a low memory foot
print as it does not use data-driven or machine learning techniques.
As one might expect, our method cannot deal with input conditions
that express gamut loss due to heavy narrow band lighting condi-
tions. Other than that, we showed that our method is consistent and
robust against broad level illumination changes, spatial variations,
heavy tone biases as well as different levels of spatial chromatic
aberrations. In the future, we will research the use of this method in
a material acquisition pipeline. Our method also holds good promise
for the traditional digital photography related applications.
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