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Supplementary material

S.1. FEM discretization

Here, we provide a short summary on the derivation of Eq. (10) fol-

lowing the finite element approach. Starting from Eq. (8), we first

multiply by a test function (for which we choose any interpolation

basis function I j according to Galerkin’s method):

dT

d t
I j(x) =

ε(x)

cp(x)ρ(x)h(x)

(

E(x)−σT (x)4
)

I j(x).

Next, we integrate over the entire domain, and substitute the

piecewise-constant approximation for the temperature field. We

also assume that the material properties are similarly given as

piecewise-constant data, consequently:

∫
Ω

d(∑i Ii(x)Ti)

d t
I j(x) dx =

∫
Ω

ε j

c jρ jh j

(

E(x)−σ
(

∑i
Ii(x)Ti

)4
)

I j(x) dx.

On the left-hand side, clearly only the temperature coefficients Ti

are time-dependent, while only the indicator functions vary spa-

tially. We can therefore re-arrange terms and exchange the order of

integration, summation, and differentiation. Noting that the prod-

uct IiI j is 1 when i = j and 0 otherwise, only one term of the sum

remains and the left-hand side simplifies as follows:

∫
Ω

d(∑i Ii(x)Ti)

d t
I j(x) dx = ∑i

dTi

d t

∫
Ω

Ii(x)I j(x) dx =
dTj

d t
A j.

Similarly, the fourth-order term on the right-hand side simplifies

because at any point x only one term of the sum is non-zero (also

note I4
i = Ii as the indicator is either 0 or 1):

(

∑i
Ii(x)Ti

)4
I j(x) = T

4
j I j(x).

Note that, choosing piecewise-constant interpolation and test

functions here conveniently simplifies the fourth power of the sum.

Had we used more common piecewise-linear functions instead, the

sum would consist of three terms per triangle, and the fourth-power

would generate a total of 15 terms (including 12 additional mixed

terms, where temperature variables at the corners of the triangle in-

teract in its interior due to linear interpolation). Furthermore, with

linear functions IiI j would also be non-zero for any pair of adjacent

nodes i and j.

Combining the aforementioned simplifications, index i no longer

occurs. For consistency of notation, we replace j with i in the fol-

lowing, so we now have

dTi

d t
Ai =

∫
Ω

εi

ciρihi

(

E(x)Ii(x)−σT
4

i Ii(x)
)

dx.

We then split the integral on the right-hand side and rearrange con-

stants to obtain

dTi

d t
Ai =

εi

ciρihi

(∫
Ω

E(x)Ii(x) dx−σT
4

i Ai

)

,

where we again use Ai =
∫

Ω Ii(x)dx on the right-most term. Finally,

we divide by Ai and also note that the remaining integral results in

the incident flux on the support region of Ii, which we denote as

Φ̌i =
∫

Ω E(x)Ii(x) dx, to arrive at Eq. (10):

dTi

d t
=

εi

ciρihi

(

Φ̌i

Ai
−σT

4
i

)

.

S.2. Boundary conditions

Here, we briefly outline how to incorporate the Dirichlet boundary

conditions, describing external (solar) irradiation, into the temper-

ature simulation. As discussed in the main paper, Eq. (10) (restated

above) can be concisely expressed in matrix-vector notation as

Eq. (14), i.e., dT/d t = T T·4. Recall that T is a vector of all (per-

vertex) temperature variables, and superscript ª·4º refers to taking

the component-wise fourth power of this vector. We now outline the

derivation of Eq. (18) from this starting point. Our boundary data

specifies effective temperature values at the vertices of the emitter

geometry. Therefore, some entries in the temperature vector T be-

come known due to boundary conditions (TD), while most entries

remain unknown variables (TU ). Theoretically, we can now sort T

such that all unknown components are listed before known data,

i.e., we assume without loss of generality T = [TT

U TT

D]
T. Apply-

ing the same sorting and partitioning to the transport operator T

expands the temperature equation to

d

d t

[

TU

TD

]

=

[

TUU TUD

TDU TDD

] [

T·4
U

T·4
D

]

.

As the given boundary data, TD, is known throughout the simula-

tion, we can discard the second row of this block-vector equation.

Retaining only the first row reads

dTU

d t
= TUU T

·4
U +TUDT

·4
D .

Denoting the last term as b = TUDT·4
D results in Eq. (18).

S.3. Material Parameters

Table S1 summarizes material parameters for our various numerical

experiments.
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Table S1: Material properties and simulation parameters used for the simulations shown in the various Figures. Emissivity ε, diffuse reflec-

tivity rd , specular reflectivity rs, mass density ρ [kg / m3], specific heat capacity cp [J / (kg K)], shell thickness h [m], and fixed boundary

temperature T [K] for emitting objects.

Figure Scene element ε rd rs ρ cp h fixed T

5, 6 Mesh 0.5 0.5 0.0 1000 1000 0.1 -

Radiator 0.5 0.5 0.0 1000 1000 0.1 300

7 Ground 0.7 0.3 0.0 2000 1000 10 -

Small Building 0.5 0.5 0.0 2000 1000 0.5 -

Main Building (a) 0.0 1.0 0.0 2000 1000 0.5 -

Main Building (b, c, d) 0.0 0.0 1.0 2000 1000 0.5 -

8 City 0.5 0.5 0.0 2000 1000 0.5 -

9 Mesh 0.8 0.2 0.0 1800 800 0.013 -

Radiator (diffuse) 0.8 0.2 0.0 1800 800 0.013 930

Radiator (parallel) 0.8 0.2 0.0 1800 800 0.013 345
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