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Figure 1: Neural representation of volumetric data using our proposed method. (PSNR: Peak Signal to Noise Ratio, TC: Time to compress)

Abstract
In this paper, we propose an efficient approach for the compression and representation of volumetric data utilizing coordinate-
based networks and multi-resolution hash encoding. Efficient compression of volumetric data is crucial for various applications,
such as medical imaging and scientific simulations. Our approach enables effective compression by learning a mapping between
spatial coordinates and intensity values. We compare different encoding schemes and demonstrate the superiority of multi-
resolution hash encoding in terms of compression quality and training efficiency. Furthermore, we leverage optimization-based
meta-learning, specifically using the Reptile algorithm, to learn weight initialization for neural representations tailored to
volumetric data, enabling faster convergence during optimization. Additionally, we compare our approach with state-of-the-art
methods to showcase improved image quality and compression ratios. These findings highlight the potential of coordinate-based
networks and multi-resolution hash encoding for an efficient and accurate representation of volumetric data, paving the way
for advancements in large-scale data visualization and other applications.

CCS Concepts
• Human-centered computing → Visualization; • Computing methodologies → Image compression;

1. Introduction

Visualization of large-scale data can be a challenging problem.
First, large-scale data sets can require significant amounts of stor-
age space, making it difficult to store and access the data efficiently.
Second, large-scale data sets can take a long time to transfer over

a network, which can impact the performance of visualization. An-
other challenge with large-scale data visualization is that the sheer
size of the data can overwhelm visualization tools and systems,
leading to slow rendering times, unresponsive interfaces, and diffi-
culty in exploring the data.
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Data compression can help address some of these challenges by
reducing the amount of data that needs to be stored, transferred, and
processed. There are many different techniques that can be used for
volume data compression, ranging from traditional methods such as
lossless and lossy compression to more recent approaches based on
deep learning and neural networks.

One of the earliest methods for lossy compression was intro-
duced in the 1990s by Ning and Hesselink [NH92], who proposed
vector quantization (VQ) as a way to compress 3D scalar data.
In their method, a codebook of representative 3D vectors is con-
structed by clustering similar data points. The original data is then
compressed by replacing each data point with the closest codebook
vector. Other early research on lossy compression for volume ren-
dering also includes using discrete cosine transform (DCT) based
compression [CLCM91] [YL95] and Fourier domain-based volume
rendering [Mal93] [Lev92] [TL93]. These techniques are particu-
larly useful for compressing smooth data, where most of the energy
is concentrated in low-frequency components. Since the human vi-
sual system is more perceptive to low-frequency components, the
high-frequency components from the image are safely discarded
while still maintaining most of the information contained in the
image.

Recently, scene representation using neural networks have
gained a lot of popularity in the visualization community where
the network encodes a field function that maps input 3D coordi-
nates (coupled with direction vectors in some cases) to a field value,
such as density or radiance, using neural networks. This approach
has enabled a range of applications, such as novel view reconstruc-
tion [MST∗20] and compression [SPY∗22] [TET∗22]. Thanks to
the flexibility and differentiability of neural networks, this new ap-
proach has opened up many possibilities for volume data compres-
sion and visualization [LJLB21] [WHW21].

In our work, inspired by scene representation networks (SCN),
we plan to represent volume data by directly approximating the
mapping from spatial coordinates to volume values using a multi-
layer perceptron (MLP). The trained MLP is then considered a
compressed version of the original data. This representation is ef-
ficient because the memory footprint of a neural network is often
orders of magnitude smaller than the original data, and sampling
the representation is flexible as one can arbitrarily query volume
values without explicit decompression and interpolation.

Recent research has demonstrated the efficacy of optimization-
based meta-learning in reducing the number of gradient descent
steps required for optimizing coordinate based neural networks
in various domains, including images [SPY∗22], signed distance
fields [SCT∗20], and radiance fields [TMW∗20]. In our work, we
focus on learning the weight initialization for neural representa-
tions specifically tailored to volumetric data. By utilizing learned
values as the initial network weights, we establish a strong prior
that facilitates faster convergence during optimization. To achieve
this, we employ Reptile [NAS18], an optimization-based meta-
learning algorithm, to generate optimized initial weights for rep-
resenting a specific signal class, such as medical volume datasets.
We opt for Reptile over alternative meta-learning algorithms like
MAML [FAL17] due to its simplicity and computational efficiency.
While MAML differentiates through the computation graph of the

gradient descent algorithm, Reptile employs gradient descent in-
dividually on each task, eliminating the need for graph unrolling
or second derivative calculations [NAS18]. This key distinction al-
lows for lower memory consumption and better computational ef-
ficiency.

To summarize, the main contributions from our work are as fol-
lows:

• A fast neural compression approach for volume data based on
multiresolution hash encoding and a study on performance com-
parison with other input encoding techniques.

• Evaluation on the effectiveness of representation transfer with
meta-learned intialization for neural compression of volume
data.

• Experimental results on the efficacy of our volume compression
approach against other state of the art techniques

2. Related Work

Volume data compression has been extensively researched in the
field of computer science and data compression. Various lossy and
lossless techniques have been proposed to achieve high compres-
sion ratios while preserving the quality of data. In this section, we
provide an overview of some of the key works in three different
research areas that are closely tied with each other: volume com-
pression, neural scene representation, and neural volume represen-
tation.

2.1. Volume Compression

Recent years have seen a growing interest in lossy compression of
large-scale volumes, driven by the expanding capabilities of sim-
ulation and data acquisition. Early research focused primarily on
discrete cosine transforms [CLCM91] [YL95], and wavelet-based
compression [IP99] [Mur93]. These techniques involve removing
high-frequency information to achieve sparser data representation,
which can then be quantized to reduce the number of bits required
to store the data. Quantization-based volume compression tech-
niques [NH92] [VGK96] [LH96] [TCRS00] involve dividing the
volume into non-overlapping regions and mapping each region to
a discrete value a set of representative values, which can be either
pre-defined or learned from the data [SW03] [FM07] [GG16].

Inspired by fixed-rate texture compression methods, ZFP
[Lin14] provides a compression method for floating point data
in multi-dimensional arrays. This method uses a fixed-rate com-
pression approach that maps small blocks of values in multiple
dimensions to a user-specified number of bits per block. In re-
cent years, tensor decomposition-based compression techniques
[BRP15] [SMP13] are also being used for compactly encoding
large multidimensional arrays. A notable mention in this category is
TTHRESH [BRLP20] which utilizes Higher Order Singular Value
Decomposition (HOSVD) with bit-plane, run-length, and arith-
metic coding for volume data compression.

2.2. Scene Representation using Neural Networks

Scene representation networks (SRN) are a class of deep neural
networks that can be used to encode occupancy fields [MON∗19]
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Figure 2: Overview of Multi-resolution hash encoding. In this two-dimensional example, we first break the image in L resolution levels
(grids). Figure shows an example with two levels, L : 0 and L : 1. For a given normalized input coordinate x, the integer coordinates of the
surrounding corners are hashed to obtain an index to a hash table with size T . Every entry in the hash table is a trainable feature vector
of size W. In the example shown above, we have L = 2, T = 8, and W = 4. The feature vectors from the surrounding corners are linearly
interpolated to obtain the feature vector at coordinate x. Then all the feature vectors for x from each level are concatenated with each other
which forms the final encoded vector for input x.

[PNM∗20], implicit surfaces like SDF [MLL∗21] [MPJ∗19]
[PFS∗19], or radiance fields [LGL∗20] [MST∗20] [MRNK21] of
complex 3D scenes in a compact and efficient manner. Most of
these approaches use an encoding method that maps the input co-
ordinates to a higher dimensional space before passing them to the
network. For instance, to synthesize novel views of complex scenes
using a sparse set of input images, Mildenhall et al. proposed to en-
code coordinates as a multi-resolution sequence of sine and cosine
functions for the NeRF algorithm [MST∗20]. Later, it was shown
that using sinusoids with logarithmically-spaced axis-aligned fre-
quencies further improves the reconstruction ability of coordinate-

based networks [TSM∗20]. These encoding schemes are referred
to as frequency-based encoding.

Recently, parametric encodings have been introduced which
achieve state-of-the-art results. This encoding scheme involves ar-
ranging additional trainable parameters in auxiliary task-specific
data structures such as a tree [TLY∗21] or grid [JSM∗20] [SSC22]
[YFKT∗21]. Although the total number of trainable parameters is
higher for parametric encoding, it enables the use of much smaller
coordinate-based networks and can be trained to converge much
faster without sacrificing approximation quality. Recently, Müller
et al. proposed the use of a multiresolution hash table of train-
able parameters for input encoding which is task-independent and
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outperforms all the previous approaches [MESK22]. Motivated by
this, we plan to implement this encoding scheme in our volume
representation.

While our approach draws inspiration from the principles of
Müller et al.’s work [MESK22], there are notable differences that
distinguish our approach. Unlike their work, we focus on neu-
ral representation of volumetric data where the network maps in-
put coordinates to voxel values. Additionally, our study incorpo-
rates meta-learning to facilitate more efficient parameter initializa-
tion for the neural network representation. This inclusion of meta-
learning allows us to harness domain-specific knowledge and fur-
ther optimize the compression process for volumetric data.

2.3. Volume Representation using Neural Networks

Several approaches have been proposed to use deep learning in
representing volume data for visualization. Some of the previous
works introduced a new technique for volume visualization, which
does not rely on the traditional rendering pipeline. Instead, they
used either Generative Adversarial Networks [BLL19] or encoder-
decoder [HLY19]. He et al. [HWG∗20] used a convolutional re-
gression model to learn the mapping from the simulation and visu-
alization parameters to the final visualization. This allowed flexi-
ble exploration of parameter space for large-scale ensemble simu-
lations. These networks can render the volume data directly using
the compact representations stored in the network weights. How-
ever, the networks may not perform well if the training data does
not contain the specific combination of views and transfer functions
that are used in the test data.

The field of super-resolution is closely related to volume com-
pression and can be used to enhance the visual quality of low-
resolution volume data or rendered frames. Instead of storing data
in higher resolution, super-resolution networks can efficiently up-
scale the resolution of the data. One approach by Weiss et al.
[WCTW21] used a deep learning-based architecture for isosur-
face rendering. Another method by Devkota et al. [DP22] im-
plemented temporal reprojection for volumetric cases to perform
super-resolution for direct volume rendering. Although these meth-
ods were applied to volumetric scalar fields, other works have fo-
cused on temporal [HW20] and spatial [HW22b] super-resolution
for time-varying vector field data. Additionally, recent advance-
ments in neural representation have led to methods that han-
dle diverse scientific visualization tasks in a single framework.
For instance, Han et al. [HW22a] proposed a unified coordinate-
based neural network architecture capable of tackling both super-
resolution and visualization tasks relevant to time-varying volumet-
ric data visualization.

Recent contributions have brought forward numerous SCN-
based approaches for volume representation. Neurcomp [LJLB21]
demonstrated the effectiveness of coordinate-based networks for
volume compression for scalar field data. Using implicit neural rep-
resentation, their approach frames compression as function approx-
imation, achieving highly compact representations that outperform
existing volume compression methods. Their utilization of neural
networks introduces a novel way of handling scalar field compres-
sion, and its performance benchmarks will be used for direct com-
parisons in our evaluation. Weiss et al. [WHW21] proposed to use

SCNs with tensor cores for faster decoding time and lower mem-
ory consumption during data reconstruction. Kim et al. introduced
NeuralVDB [KLM22], a hybrid storage scheme with hierarchical
neural network and wide VDB tree structure for efficient storage of
sparse volumetric data. These studies have shown that SCN-based
compression method achieves high compression ratios while main-
taining a high level of visual fidelity compared to traditional com-
pression methods. This makes it a promising approach for com-
pressing large volumetric datasets in scientific visualization and
medical imaging applications.

3. Methodology

We are interested in a function φθ(x) that satisfies the objective
function of the form

argmin
θ

F(δx,φθ(x)) (1)

The function φθ(x) is a coordinate-based network with parame-
ters θ that maps the spatial coordinates x ∈ Rd to some value that
is as close as possible to δx, which is the intensity at coordinate x.
Thus, our goal is to define such a volume representation network
φθ(x) that takes spatial coordinates as input to learn a mapping be-
tween the input coordinates and a target output.

In coordinate-based scene representation networks, the input co-
ordinates undergo an encoding process to transform them to a
higher-dimensional space before being inputted into the neural net-
work. The encoding of the input plays a significant role in capturing
the spatial information of the input data. If the input is not encoded,
the network can only learn a relatively smooth function of posi-
tion, which results in an inadequate representation of the intensity
field [MESK22].

Recently, state-of-the-art results have been achieved by paramet-
ric encodings [JSM∗20] [SSC22] [YFKT∗21] for coordinate based
networks. Motivated by these works, we propose to use multi-
resolution hash encoding [MESK22] which we explain in the fol-
lowing section.

3.1. Multi-resolution Hash Encoding

Multi-resolution Hash Encoding introduces a multi-step process to
effectively encode input coordinates. This subsection details each
step of the encoding process.

Step 1 - Find cell coordinates

The encoding starts with breaking up a d dimensional array into
L different levels (grids) with increasing resolution. Figure 2 shows
an example domain with two dimensions (an image). The resolu-
tion for each level is a constant multiple of the previous level. The
constant multiple is given by a growth factor b, which is computed
based on three hyper-parameters: number of levels L, resolution of
the coarsest level N0 and resolution of the finest level NL−1

b = e
ln NL−1−ln N0

L−1 (2)
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Therefore, the resolution for each grid level l is computed as

Nl = ⌊Nl−1 ∗b⌋=
⌊

N0 ∗bl
⌋
. (3)

Consider a normalized input coordinate x∈Rd in [0, 1]. For each
level l, x is first scaled by the resolution of that level and is rounded
up and down to find the integer coordinates of each corner of the
cell containing x.

Step 2 - Hashing

Each of the 2d integer coordinates surrounding the coordinate x
is hashed using a hash function H(x) [THM∗03].

H(x) =
d⊕

i=1
xiπi mod T (4)

Here, πi denotes large prime numbers for each dimension i and⊕
denotes bit-wise XOR operation. The output from the hashing

function is the index to a trainable hash table of size T . Each entry
in the hash table is an array of trainable weights of size W . Thus,
each grid level l has a corresponding hash table which is described
by two hyper-parameters W and T . During training, the gradients
are back-propagated all the way back to the hash table entries, dy-
namically optimizing them to learn a good input encoding.

Step 3 - Interpolation

After all the surrounding coordinates are mapped to index values
which is used to query the hash table, the trainable weights from
the corresponding slots are linearly interpolated in d dimensions to
obtain the feature vector at coordinate x.

Step 4 - Concatenation

These feature vectors of size W from each of the L levels are
concatenated together to form the input to a multi-layer percep-
tron. The output from the MLP is the predicted intensity value at
coordinate x.

3.2. Meta Learned initialization

When we overfit any model to a volume data sample, it learns their
parameters from scratch during training. With weights typically ini-
tiated at random, these models do not carry any domain knowledge
about the volume data they are assigned to compress. Simply put,
these models suffer from a lack of inductive biases. Inductive bi-
ases are assumptions that a model makes about the data that can
help the model to learn more effectively.

To address this, we propose to apply the Reptile algorithm
[NAS18]. This first-order meta-learning algorithm works by con-
sistently selecting a task, conducting stochastic gradient descent on
the chosen task, and subsequently shifting the initial parameters in
the direction of the final parameters that were learned during that
task. By building on inductive biases, it aims to enrich the model
with a greater understanding of the data domain before the actual
learning process begins.

In our case, we start with multiple volume datasets, sourced from
a specific distribution Vd (for example: medical imaging or scien-
tific simulation). The goal here is to identify initial weights, rep-
resented by θ, which would yield the lowest possible loss when

we optimize a network to represent a novel and previously unseen
volume from the same distribution.

For our purpose, the algorithm works as shown in 1

Algorithm 1 Reptile Meta-Learning [NAS18]

1: Initialize θ, the initial parameter vector
2: for iteration 1,2,3, . . . do
3: Select a volume V at random from distribution Vd
4: Perform k > 1 steps of gradient descent on V , starting with

parameters θ, resulting in parameters W
5: Update: θ← θ+ ε(W −θ)
6: end for
7: return θ

4. Experiments

In this section, we perform an array of experiments, ranging from
investigating different encoding schemes and hyperparameters to
performance comparisons against state-of-the-art techniques. In all
of our experiments, we adopt mixed precision training [MNA∗18],
where the neural network weights are stored as f loat16. During
training, in order to match the accuracy of the f loat32 networks,
a f loat32 master copy of weights is maintained for parameter up-
date. Unless otherwise stated, our hash encoding network in all of
our experiments employs an MLP with two hidden layers and 64
neurons. Additionally, we use ReLU (rectified linear unit) as the
activation function and L2-loss to guide the training process.

4.1. Encoding Schemes

In the context of coordinate-based networks, the encoding of inputs
holds significant importance, and we compare the performance of
different encoding schemes to determine their effectiveness. These
encoding schemes are essential for mapping the coordinate inputs
to a higher-dimensional space. One such scheme is frequency en-
coding, where each coordinate x ∈ R is represented as a sequence
of sine and cosine functions :

E(x) = (sin(20
πx),cos(20

πx)...sin(2M
πx),cos(2M

πx)),

In our implementation, we select a value of M = 10. Another
encoding scheme, called triangle wave encoding, replaces the sine
function with a more computationally efficient triangle wave and
omits the cosine function. Additionally, we explore the one-blob
encoding scheme, a generalized version of one-hot encoding, where
a Gaussian kernel is applied over the normalized input coordinate
and discretized into multiple bins. In our case, we use k = 64 bins
for this encoding scheme.

To showcase why we choose hash encoding over other schemes,
we conduct a performance comparison of various encoding
schemes for compressing the skull dataset. Figure 3 illustrates this
comparison with similar compression ratios ranging from 81:1 to
91:1. We ensure that all networks have a similar number of trainable
parameters. For the hash encoding network, we use a small MLP
with 2 hidden layers and 64 neurons each, along with trainable
multi-resolution hashtables (L = 6,W = 8,T = 12). In contrast,
the other networks consist of 12 hidden layers with 128 neurons
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(a) Ground Truth
Skull

(256x256x256)

(b) Identity
PSNR: 31.60 dB

SSIM: 0.821
TC: 69.28 secs

CR: 91:1

(c) Triangle wave
PSNR: 34.48 dB

SSIM: 0.877
TC: 70.29
CR: 89:1

(d) Frequency
PSNR: 33.84 dB

SSIM: 0.854
TC: 72.55
CR: 88:1

(e) One blob
PSNR: 34.52 dB

SSIM: 0.880
TC: 79.97 secs

CR: 81:1

(f) Hash
PSNR: 35.35 dB

SSIM: 0.879
TC: 35.93 secs

CR: 81:1

Figure 3: A comparison of various encoding schemes for compressing the skull dataset is presented. Each configuration was trained for 50
epochs, where each epoch is one complete pass over the entire volume. The top left image represents the ground truth rendering (a). The
reconstruction quality is assessed using metrics such as PSNR and SSIM, while additional information including time to compress (TC) and
compression ratio (CR) is provided beneath each image. Notably, the reconstructed rendering using Hash encoding demonstrates comparable
quality to Triangle wave (c) and One blob encoding (e), but exhibits faster compression time, by at least 2x

each. We train the networks for 50 epochs where each epoch is one
complete pass over the entire volume. When the network employed
no encoding, specifically identity encoding, it struggled to preserve
the high-frequency details present in the volume data, resulting in
a smoothed approximation of the field data. Conversely, schemes
such as frequency encoding, triangle wave encoding, and one-blob
encoding enabled a more accurate representation of the field data
within the same-sized network. However, these schemes still take
substantial training times. In the case of multi-resolution hash en-
coding, the inclusion of trainable parameters within the hash ta-
ble facilitated training with a smaller MLP architecture. Moreover,
since the hash tables for all resolutions are queried in parallel, we
achieved faster training times for compression. Notably, for our
skull dataset, we observed a minimum 2x speedup with hash en-
coding compared to the alternative encoding schemes.

4.2. Hyperparameter study

Multi-resolution hash encoding offers flexibility in determining the
number of encoding parameters, which is given by the product of
hyperparameters L (number of levels), W (number of weights in
each entry of the hash table), and T (size of the hash table). The
choice of the hash table size T involves a trade-off between com-
pression performance, memory usage, and compression quality. For
T , we rely on the findings reported by Müller et al. [MESK22].
Based on their results, higher values of T lead to improved recon-
struction quality, but at the expense of increased memory usage and
slower training and inference. The memory footprint is linear in T ,
whereas quality and performance tend to scale sub-linearly. In our
experiments, we select T values ranging from 28 to 212 for different
volume datasets, to lower the training and inference time while still
having acceptable compression quality.

Table 1: Datasets used in our evaluation.

S.N. Name Dimension Type Source
1 Tooth 103x94x161 uint8 Open scivis

[Ope]
2 MRI ventricles 256x256x124 uint8 [Bar]
3 MRHead 256x256x130 uint16 Slicer [Wik]
4 Aneurism 256x256x256 uint8 Philips Research

[Phi]
5 Skull 256x256x256 uint8 Siemens [Sie]
6 Foot 256x256x256 uint16 Philips Research

[Phi]
7 Mrt-angio 416x512x112 uint16 Institute for

Neuroradiol-
ogy [Gür]

8 Panoramix 441x321x215 int16 Slicer [Wik]
9 CT-chest 512x512x139 int32 Slicer [Wik]

10 CTA-cardio 512x512x321 int16 Slicer [Wik]
11 Manix 512x512x460 int16 [OSI]
12 Boston teapot 256x256x178 uint8 Terarecon

Inc [Ter]
13 Backpack 512*512*373 uint16 Viatronix

Inc [Kre]
14 Engine 256x256x128 uint8 General Electric

[Gen]
15 Tacc turbulence 256x256x256 float32 Open scivis

[Ope]
16 Csafe heptane 302x302x302 uint16 [Cen]
17 Vorticity magni-

tude
480x720x120 float32 [Vor]

18 Magnetic recon-
nection

512x512x512 float32 [GLDL14]
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(a) Csafe-heptane (b) Panoramix-cropped (c) Engine (d) Tacc-turbulence (e) Skull

Figure 4: Figure shows compression error against the number of epochs for various combinations of L and W while keeping the total
encoding parameters as constant. Notably, we find that configurations with W values ranging from 4 to 8 consistently achieve higher PSNR
values across all datasets.

The hyperparameters L and W also influence the trade-off be-
tween compression quality and performance. To determine the op-
timal range of L and W for our specific use case, we plot the com-
pression error against the number of epochs for various combina-
tions of L and W , while keeping the total number of encoding pa-
rameters fixed (i.e., maintaining a constant compression ratio). As
depicted in Figure 4, a configuration with W between 4 and 8 ap-
pears to yield favorable results across most datasets, and thus, we
adopt this configuration for the majority of our evaluations. We vary
L to achieve different compression levels while keeping the total
encoding parameters constant.

4.3. Performance Comparison with Meta-Initialization

In this section, we investigate the potential benefits of incorporating
meta-learned initialization into our volume representation network.
Initially, we evaluate the impact of meta-initialization within a spe-
cific distribution of volume data. We perform meta-learning with
a particular set of medical volume data and then use the learned
parameters to compress another medical volume data that was not
included in the meta-learning stage. Additionally, we also investi-
gate whether meta-learned initialization from one domain, such as
medical volume data, can enhance the performance of the network
when applied to compress volume data from a different domain,
such as scientific simulations.

4.3.1. Intra-domain Weight Transfer

For the first experiment, we apply meta-learning to optimize
coordinate-based networks for representing medical datasets. The
underlying dataset for meta-learning consists of medical volume
data # 1 to 10 from Table 1. We use Reptile learning to meta-learn
the initial weights for each medical volume data shown in Figure
5. For each experiment, we hold out one of the volume data as test-
ing data and perform meta-learning using the remaining datasets.
For every iteration of the meta-learning stage, we randomly sample
a volume data from the dataset pool and perform k gradient up-
dates on that sample before updating the initial parameters using
the update rule outlined in Algorithm 1. Here, k gradient updates
correspond to completing one full pass over the entire volume.

At testing time, we optimize a similar-sized network initial-
ized with meta-learned parameters to compress the test dataset.
For comparison, we also optimize another network with random
initialization for the same test dataset. The underlying MLP ar-
chitecture consists of 2 hidden layers with 64 neurons each, and
we apply multi-resolution hash encoding with L = 6,W = 4, and
T = 12. As seen in Figure 5, using the learned initial weights en-
ables faster convergence, which is particularly evident at the initial
training phase. While the random initialization approach eventually
achieves a similar PSNR to the meta-learned approach, the latter
surpasses random initialization after only a few gradient updates.

4.3.2. Inter-domain Weight Transfer

In the second experiment, we utilize the same set of medical vol-
ume datasets (datasets # 1 to 10 from Table 1) to generate meta-
learned parameters. Subsequently, during the testing phase, we use
these meta-learned parameters to optimize a coordinate-based net-
work for compressing different volume datasets that are not from
the medical domain. The comparison with random initialization for
these datasets is presented in Figure 6. We observe that, with the
exception of Tacc turbulence and Boston teapot datasets where the
benefits of meta-learned initialization were slight or insignificant,
our method typically resulted in faster convergence across the ma-
jority of the datasets. These two evaluations suggest that leveraging
domain-specific knowledge through meta-learned initialization can
bring significant improvements to the efficiency of volumetric data
compression and representation.

4.4. Comparison with State of the Art Volume Compression
Methods

In this section, we primarily benchmark our approach against Neur-
comp, which represents a state-of-the-art in neural compression
technique. Additionally, we perform comparisons with Tthresh, an
advanced CPU-based volume compression technique. To assess the
effectiveness of our volumetric neural representation in encoding
the ground truth volume data, we sequentially decode the volume
at its original resolution from the compressed representation, and
measure the similarity between the original volume data and the
volume predicted by our methodology, Neurcomp, and Tthresh.
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(a) MRI ventricles (b) Panoramix cropped (c) CT-chest (d) Foot (e) MRHead

Figure 5: Comparison of convergence speed between meta-learned initialization and random initialization for intra-domain weight transfer.
The reconstruction PSNR is reported for the first 100 iterations (top row) and 2500 iterations (bottom row) for each dataset. The number of
iterations corresponds to the number of gradient updates performed during the training process. The meta-learned approach exhibits faster
convergence, particularly evident at the initial training phase. While the random initialization approach eventually achieves a similar PSNR
to the meta-learned approach, the latter surpasses random initialization after only 100 iterations in terms of PSNR.

(a) Engine (b) Tacc turbulence (c) Csafe heptane (d) Vorticity mag (e) Boston teapot

Figure 6: Comparison of convergence speed between meta-learned initialization and random initialization for inter-domain weight transfer.
The reconstruction PSNR is reported for the first 100 iterations (top row) and 2500 iterations (bottom row) for each dataset. The number of
iterations corresponds to the number of gradient updates performed during the training process. The meta-learned approach demonstrates
slightly faster convergence for datasets a) engine, c) Csafe heptane, and d) Vorticity magnitude. However, it provides minimal to no advantage
for dataset e) Boston teapot and performs poorly for dataset b) Tacc turbulence.
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Figure 7: Comparative Compression Analysis - Our Approach vs Neurcomp. The first column presents the ground truth renderings of
four distinct datasets: a) Engine, b) Magnetic Reconnection, c) Foot, and d) Manix. The second column showcases the renderings using
Neurcomp, while the third column highlights the results achieved with our proposed method. This visual comparison shows the effectiveness
of our approach in compressing diverse datasets.

c) Ours
PSNR: 40.12

a) Ground Truth
Engine

b) Neurcomp
PSNR: 35.28

Figure 8: Visual comparison between Neurcomp and Ours for the
engine dataset.

For the comparisons we make with the two baselines: Neurcomp
and Tthresh, we opt to not use meta-learning. This decision is based
on our observations from sections 4.3.1 and 4.3.2, which indicated
that the benefits of meta-learned initialization might be minimal
or insignificant for certain scenarios, particularly for inter-domain
weight transfer. Since the datasets we use for evaluation in this sec-
tion come from different domains, we choose to make the compar-
isons without using meta-learning. Thus, the metric "TC" (time to
compress) solely represents the time required for the actual com-
pression process, excluding the meta-learning stage.

Furthermore, we use different transfer functions for different
datasets because the optimal transfer function for a particular
dataset may vary depending on the characteristics of the data. How-
ever, to ensure a fair comparison, we use the same transfer func-
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Table 2: Comparison of compression results for different datasets using Neurcomp, Tthresh and our method. (CR: Compression ratio, TC:
Time to compress in seconds, GT: Ground Truth, FPS: Frames per second). Here GT FPS means the frames per second we observe from
rendering the ground truth volume data.

Dataset Neurcomp Tthresh Ours GT
PSNR CR TC PSNR CR TC PSNR CR TC FPS FPS

Tooth 34.52 40:1 36.58 34.13 133:1 4.04 33.92 40:1 3.89 24 53
MRI ventricles 22.19 58:1 289.05 25.10 309:1 1.48 24.69 58:1 19.84 23 47

MRHead 22.78 61:1 302.72 26.21 230:1 1.53 25.75 61:1 21.02 19 46
Aneurism 31.64 121:1 596.20 38.83 35:1 3.43 39.46 121:1 40.43 21 52

Skull 30.43 121:1 593.18 34.41 80:1 3.33 34.88 121:1 40.27 19 40
Foot 29.36 121:1 592.78 31.43 56:1 3.30 31.53 121:1 34.70 17 50

Mrt-angio 27.39 172:1 850.60 31.16 64:1 5.90 31.80 172:1 48.04 17 51
Panoramix 27.35 220:1 1095.98 35.60 162:1 8.60 35.07 220:1 107.63 22 57
CT-chest 40.78 67:1 4849.20 40.10 75:1 8.52 39.95 67:1 95.02 13 42

CTA-cardio 35.99 208:1 5220.44 38.61 221:1 19.61 38.36 208:1 205.45 16 48
Manix 33.95 298:1 7434.43 39.69 341:1 20.446 39.38 298:1 293.02 18 53

Boston teapot 35.16 42:1 622.73 40.19 396:1 1.95 39.68 42:1 25.74 18 44
Backpack 36.62 55:1 12918.76 37.15 55:1 16.13 38.77 55:1 394.41 17 47

Engine 35.28 60:1 299.51 40.70 128:1 1.34 40.12 60:1 17.94 18 51
Tacc turbulence 37.72 528:1 421.91 44.37 464:1 2.59 45.73 528:1 10.93 19 49
Csafe-heptane 37.11 134:1 1199.07 40.78 203:1 5.5 40.83 134:1 60.77 18 55

Vorticity magnitude 29.10 152:1 2079.05 29.64 85:1 38.87 30.14 152:1 92.14 16 52
Magnetic reconnection 38.24 494:1 7350.26 43.25 470:1 20.91 43.3 494:1 303.38 31 55

tion for comparing our method with ground truth, neurcomp, and
tthresh. We also represent the ground truth data in single precision
floating point format for all comparisons. This guarantees that our
approach accurately reflects the performance compared to the base-
line techniques.

4.4.1. Comparison with Neurcomp

In order to provide a comprehensive comparison between our
method and Neurcomp [LJLB21], we execute our method on dif-
ferent datasets for varying compression ratios, as shown in Figure
7 and table 2. Both methods were run under the same conditions,
utilizing a batch size of 214 and the networks were trained for a to-
tal of 50 epochs, with each epoch representing a complete pass over
the entire volume of data.The underlying architecture we employed
for the comparison encompasses two hidden layers, each contain-
ing 64 neurons. For input encoding, we use multi-resolution hash
tables with parameters W=8, and T=12, and we vary L between
4 and 12 to reflect different compression ratios. To ensure equiv-
alent compression ratios across all datasets for both methods, we
use an 8-layer network for Neurcomp, while adjusting the number
of neurons accordingly. This adjustment ensured that both networks
achieved the same level of compression.

A qualitative analysis reveals that the rendered images produced
by both Neurcomp and our method look similar for the same com-
pression ratios. However, our approach outperforms Neurcomp in
terms of PSNR, indicating superior image quality. Upon closer ex-
amination, we observe that Neurcomp has a tendency to generate
smoother surfaces in the resulting renderings, which may at times
lead to an under-representation of the high-frequency noise inher-
ent in the original, ground truth data. This phenomenon is partic-
ularly noticeable in the case of the engine dataset, as depicted in

Figure 8. Our method, conversely, exhibits better capability to pre-
serve and represent this high-frequency noise, leading to a more
accurate representation of the ground truth data,

4.4.2. Comparison with Tthresh

In order to assess our method in comparison to Tthresh, we modify
the input parameters of Tthresh. As it accepts an error parameter
(for instance, PSNR) rather than a specific compression ratio, we
adjust the PSNR values for Tthresh roughly equivalent to those ob-
tained from our approach and compare the compression ratios.

The quantitative outcomes of our approach versus Tthresh are
presented in Table 2. Our analysis reveals that the performance of
the two methods is data-dependent: for certain datasets, our method
outperforms Tthresh, while for others, Tthresh achieves superior
results. While the PSNR values obtained with Tthresh are compa-
rable to those achieved by our method, a key distinction exists in
the post-compression handling of data. Unlike Tthresh, our method
does not require data decompression prior to rendering; instead, we
can directly perform ray-traced direct volume rendering from the
compressed representation. The observed frames per second (FPS)
for rendering different volume data with our method is shown in
Table 2. Our approach treats the neural representation of data as a
compressed version of the original dataset, which significantly re-
duces memory usage. Moreover, this method permits flexible sam-
pling without the necessity for explicit interpolation.

Figure 9 and Figure 10, present a comparison between Tthresh
and our method for the backpack and magnetic reconnection
datasets. In these examples, our approach demonstrates a slight ad-
vantage over Tthresh, achieving similar PSNR values but with bet-
ter compression ratios.
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c) Ours
CR: 55:1

PSNR: 38.77 dB
TC: 394.41 secs

a) Ground Truth
Backpack

(512x512x373)

b) Tthresh
CR: 55:1

PSNR: 37.15 dB
TC:  16.13 secs

Figure 9: Comparison with Thresh for lower compression ratio for
Backpack dataset

c) Ours
CR: 494:1

PSNR: 43.3 dB
TC: 303.38 secs

b) Tthresh
CR: 470:1

PSNR: 43.25 dB
TC: 20.91s

a) Ground Truth
Magnetic Reconnection

(512x512x512)

Figure 10: Comparison with Thresh for higher compression ratio
for Magnetic reconnection dataset

Table 3: Results for CTA-cardio dataset: with and without gradient
loss.

Without grad. loss With grad. loss
PSNR 38.36 dB 37.45 dB

Grad. loss 0.3517 0.3728

a) Ground Truth
CTA-cardio

b) Ours
PSNR:  38.36 dB
TC: 205.45 secs

Figure 11: Ground truth compared to ours for CTA cardio dataset.
Unwanted artifacts can be seen on the bone structure. Compression
ratio: 208:1

4.5. Limitations

While our approach shows promise, there are some limitations to
consider. For some datasets, particularly at higher compression ra-
tios, we observed the introduction of noise and artifacts in the com-
pressed volume. An example of this can be seen in Figure 11 for
the CTA cardio dataset at a high compression ratio of 208:1, where
visually undesirable surface roughness is present on the bone struc-
ture.

To address this issue, we explored the incorporation of a small
percentage of gradient mean squared error (MSE) loss in our to-
tal loss function, as gradient-based volume rendering techniques
play a crucial role in accurate visualization of complex structures.
In particular, we implement the central difference method to com-
pute the gradients for the predicted volume and the ground truth
volume. While we were able to notice an improvement in the over-
all gradient MSE loss, it came at the expense of lower PSNR, as
shown in Table 3. This also aligns with the findings reported by Lu
et al. [LJLB21]. Further exploration is needed to fully understand
and mitigate these trade-offs.

5. Discussion and Conclusion

In this work, we proposed a volume representation network based
on coordinate-based networks and multi-resolution hash encoding.
Our method achieved efficient and high-quality compression of vol-
umetric data by leveraging spatial encoding and trainable hash ta-
bles. Our comparison to the existing neural compression method
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showcased our method’s superior performance in terms of both
quality of representation and time to convergence.

We also introduced the concept of meta-learned initialization for
volume compression, which leverages domain-specific knowledge
to enhance the efficiency of neural volume representation. While
we found that the benefits of meta-learned initialization are highly
data-dependent, we observed consistent improvements across a
broad range of datasets, suggesting that our approach can bring
general benefits in a variety of contexts.

Looking ahead, there are several potential directions for future
work. While our current method treats the entire volume as a single
entity, future work could look into developing more sophisticated
models that are capable of recognizing and separately handling dif-
ferent regions within the volume data. This would allow for region-
specific compression that could potentially yield even better com-
pression ratios and visual quality. We hope our work will pave the
way for further research into the use of meta-learning for volume
data compression and opens new opportunities for efficient volume
data management.

Another interesting avenue for future work is the exploration
of hybrid compression techniques that combine the strengths of
neural network-based compression with traditional compression al-
gorithms. Integrating neural network-based methods with existing
compression techniques, such as lossless or lossy compression al-
gorithms, could potentially yield even better compression ratios
and preservation of fine details.

References
[Bar] BARTZ D.: Vcm, university of tübingen, germany. URL: http:
//www.volvis.org. 6

[BLL19] BERGER M., LI J., LEVINE J. A.: A generative model for
volume rendering. IEEE Transactions on Visualization and Computer
Graphics 25, 4 (2019), 1636–1650. 4

[BRLP20] BALLESTER-RIPOLL R., LINDSTROM P., PAJAROLA R.:
Tthresh: Tensor compression for multidimensional visual data. IEEE
Transactions on Visualization and Computer Graphics 26, 9 (2020),
2891–2903. doi:10.1109/TVCG.2019.2904063. 2

[BRP15] BALLESTER-RIPOLL R., PAJAROLA R.: Lossy volume com-
pression using tucker truncation and thresholding. The Visual Computer
32 (05 2015). doi:10.1007/s00371-015-1130-y. 2

[Cen] Center for simulation of accidental fires and explosions. URL:
http://uintah.utah.edu/. 6

[CLCM91] CHAN K. K., LAU C. C., CHUANG K.-S., MORIOKA C. A.:
Visualization and volumetric compression. In Medical Imaging (1991).
2

[DP22] DEVKOTA S., PATTANAIK S.: Deep learning based super-
resolution for medical volume visualization with direct volume render-
ing. In Advances in Visual Computing (Cham, 2022), Bebis G., Li B.,
Yao A., Liu Y., Duan Y., Lau M., Khadka R., Crisan A., Chang R., (Eds.),
Springer International Publishing, pp. 103–114. 4

[FAL17] FINN C., ABBEEL P., LEVINE S.: Model-agnostic meta-
learning for fast adaptation of deep networks, 2017. arXiv:1703.
03400. 2

[FM07] FOUT N., MA K.-L.: Transform coding for hardware-
accelerated volume rendering. IEEE Transactions on Visualization and
Computer Graphics 13, 6 (2007), 1600–1607. doi:10.1109/TVCG.
2007.70516. 2

[Gen] General electric. URL: http://www.volvis.org. 6

[GG16] GUTHE S., GOESELE M.: Variable length coding for gpu-based
direct volume rendering. In Vision, Modeling and Visualization (2016),
Hullin M., Stamminger M., Weinkauf T., (Eds.), The Eurographics As-
sociation. doi:10.2312/vmv.20161345. 2

[GLDL14] GUO F., LI H., DAUGHTON W., LIU Y.-H.: Formation of
hard power laws in the energetic particle spectra resulting from rela-
tivistic magnetic reconnection. Phys. Rev. Lett. 113 (oct 2014), 155005.
doi:10.1103/PhysRevLett.113.155005. 6

[Gür] GÜRVIT Ö.: Institute for neuroradiology, frankfurt. URL: http:
//www.volvis.org. 6

[HLY19] HONG F., LIU C., YUAN X.: Dnn-volvis: Interactive volume
visualization supported by deep neural network. In 2019 IEEE Pacific
Visualization Symposium (PacificVis) (2019), pp. 282–291. doi:10.
1109/PacificVis.2019.00041. 4

[HW20] HAN J., WANG C.: Tsr-tvd: Temporal super-resolution for
time-varying data analysis and visualization. IEEE Transactions on
Visualization and Computer Graphics 26, 1 (2020), 205–215. doi:
10.1109/TVCG.2019.2934255. 4

[HW22a] HAN J., WANG C.: Coordnet: Data generation and visualiza-
tion generation for time-varying volumes via a coordinate-based neural
network. IEEE Transactions on Visualization and Computer Graphics
(2022), 1–12. doi:10.1109/TVCG.2022.3197203. 4

[HW22b] HAN J., WANG C.: Ssr-tvd: Spatial super-resolution for time-
varying data analysis and visualization. IEEE Transactions on Visu-
alization and Computer Graphics 28, 6 (2022), 2445–2456. doi:
10.1109/TVCG.2020.3032123. 4

[HWG∗20] HE W., WANG J., GUO H., WANG K., SHEN H., RAJ M.,
NASHED Y. G., PETERKA T.: Insitunet: Deep image synthesis for
parameter space exploration of ensemble simulations. IEEE Transac-
tions on Visualization and Computer Graphics 26, 01 (jan 2020), 23–33.
doi:10.1109/TVCG.2019.2934312. 4

[IP99] IHM I., PARK S.: Wavelet-based 3d compression
scheme for interactive visualization of very large volume
data. Computer Graphics Forum 18, 1 (1999), 3–15. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/
1467-8659.00298, arXiv:https://onlinelibrary.
wiley.com/doi/pdf/10.1111/1467-8659.00298,
doi:https://doi.org/10.1111/1467-8659.00298.
2

[JSM∗20] JIANG C. M., SUD A., MAKADIA A., HUANG J., NIESSNER
M., FUNKHOUSER T. A.: Local implicit grid representations for 3d
scenes. CoRR abs/2003.08981 (2020). URL: https://arxiv.org/
abs/2003.08981, arXiv:2003.08981. 3, 4

[KLM22] KIM D., LEE M., MUSETH K.: Neuralvdb: High-resolution
sparse volume representation using hierarchical neural networks, 2022.
arXiv:2208.04448. 4

[Kre] KREEGER K.: Viatronix inc. URL: http://www.volvis.
org. 6

[Lev92] LEVOY M.: Volume rendering using the fourier projection-slice
theorem. In Proceedings of the Conference on Graphics Interface ’92
(San Francisco, CA, USA, 1992), Morgan Kaufmann Publishers Inc.,
p. 61–69. 2

[LGL∗20] LIU L., GU J., LIN K. Z., CHUA T., THEOBALT C.: Neural
sparse voxel fields. CoRR abs/2007.11571 (2020). URL: https://
arxiv.org/abs/2007.11571, arXiv:2007.11571. 3

[LH96] LEVOY M., HANRAHAN P.: Light field rendering. In Proceed-
ings of the 23rd Annual Conference on Computer Graphics and Interac-
tive Techniques (New York, NY, USA, 1996), SIGGRAPH ’96, Associa-
tion for Computing Machinery, p. 31–42. URL: https://doi.org/
10.1145/237170.237199, doi:10.1145/237170.237199.
2

[Lin14] LINDSTROM P.: Fixed-rate compressed floating-point arrays.
IEEE Transactions on Visualization and Computer Graphics 20, 12
(2014), 2674–2683. doi:10.1109/TVCG.2014.2346458. 2

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

http://www.volvis.org
http://www.volvis.org
https://doi.org/10.1109/TVCG.2019.2904063
https://doi.org/10.1007/s00371-015-1130-y
http://uintah.utah.edu/
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
https://doi.org/10.1109/TVCG.2007.70516
https://doi.org/10.1109/TVCG.2007.70516
http://www.volvis.org
https://doi.org/10.2312/vmv.20161345
https://doi.org/10.1103/PhysRevLett.113.155005
http://www.volvis.org
http://www.volvis.org
https://doi.org/10.1109/PacificVis.2019.00041
https://doi.org/10.1109/PacificVis.2019.00041
https://doi.org/10.1109/TVCG.2019.2934255
https://doi.org/10.1109/TVCG.2019.2934255
https://doi.org/10.1109/TVCG.2022.3197203
https://doi.org/10.1109/TVCG.2020.3032123
https://doi.org/10.1109/TVCG.2020.3032123
https://doi.org/10.1109/TVCG.2019.2934312
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00298
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00298
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00298
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00298
https://doi.org/https://doi.org/10.1111/1467-8659.00298
https://arxiv.org/abs/2003.08981
https://arxiv.org/abs/2003.08981
http://arxiv.org/abs/2003.08981
http://arxiv.org/abs/2208.04448
http://www.volvis.org
http://www.volvis.org
https://arxiv.org/abs/2007.11571
https://arxiv.org/abs/2007.11571
http://arxiv.org/abs/2007.11571
https://doi.org/10.1145/237170.237199
https://doi.org/10.1145/237170.237199
https://doi.org/10.1145/237170.237199
https://doi.org/10.1109/TVCG.2014.2346458


S. Devkota & S. Pattanaik / Neural Representation of Volumetric Data 13 of 14

[LJLB21] LU Y., JIANG K., LEVINE J. A., BERGER M.: Compressive
neural representations of volumetric scalar fields. Computer Graphics
Forum 40, 3 (2021), 135–146. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1111/cgf.14295, arXiv:https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.
14295, doi:https://doi.org/10.1111/cgf.14295. 2, 4,
10, 11

[Mal93] MALZBENDER T.: Fourier volume rendering. ACM Trans.
Graph. 12, 3 (jul 1993), 233–250. URL: https://doi.org/10.
1145/169711.169705, doi:10.1145/169711.169705. 2

[MESK22] MÜLLER T., EVANS A., SCHIED C., KELLER A.: Instant
neural graphics primitives with a multiresolution hash encoding. CoRR
abs/2201.05989 (2022). URL: https://arxiv.org/abs/2201.
05989, arXiv:2201.05989. 4, 6

[MLL∗21] MARTEL J. N. P., LINDELL D. B., LIN C. Z., CHAN E. R.,
MONTEIRO M., WETZSTEIN G.: ACORN: adaptive coordinate net-
works for neural scene representation. CoRR abs/2105.02788 (2021).
URL: https://arxiv.org/abs/2105.02788, arXiv:2105.
02788. 3

[MNA∗18] MICIKEVICIUS P., NARANG S., ALBEN J., DIAMOS G.,
ELSEN E., GARCIA D., GINSBURG B., HOUSTON M., KUCHAIEV O.,
VENKATESH G., WU H.: Mixed precision training, 2018. arXiv:
1710.03740. 5

[MON∗19] MESCHEDER L., OECHSLE M., NIEMEYER M., NOWOZIN
S., GEIGER A.: Occupancy networks: Learning 3d reconstruction in
function space, 2019. arXiv:1812.03828. 2

[MPJ∗19] MICHALKIEWICZ M., PONTES J. K., JACK D., BAKTASH-
MOTLAGH M., ERIKSSON A.: Implicit surface representations as lay-
ers in neural networks. In 2019 IEEE/CVF International Conference
on Computer Vision (ICCV) (2019), pp. 4742–4751. doi:10.1109/
ICCV.2019.00484. 3

[MRNK21] MÜLLER T., ROUSSELLE F., NOVÁK J., KELLER A.: Real-
time neural radiance caching for path tracing. ACM Trans. Graph.
40, 4 (jul 2021). URL: https://doi.org/10.1145/3450626.
3459812, doi:10.1145/3450626.3459812. 3

[MST∗20] MILDENHALL B., SRINIVASAN P. P., TANCIK M., BAR-
RON J. T., RAMAMOORTHI R., NG R.: Nerf: Representing scenes
as neural radiance fields for view synthesis. CoRR abs/2003.08934
(2020). URL: https://arxiv.org/abs/2003.08934, arXiv:
2003.08934. 2, 3

[Mur93] MURAKI S.: Volume data and wavelet transforms. IEEE Com-
puter Graphics and Applications 13, 4 (1993), 50–56. doi:10.1109/
38.219451. 2

[NAS18] NICHOL A., ACHIAM J., SCHULMAN J.: On first-order meta-
learning algorithms. CoRR abs/1803.02999 (2018). URL: http://
arxiv.org/abs/1803.02999, arXiv:1803.02999. 2, 5

[NH92] NING P., HESSELINK L.: Vector quantization for volume render-
ing. In Proceedings of the 1992 Workshop on Volume Visualization (New
York, NY, USA, 1992), VVS ’92, Association for Computing Machinery,
p. 69–74. URL: https://doi.org/10.1145/147130.147152,
doi:10.1145/147130.147152. 2

[Ope] Open scivis dataset. URL: https://klacansky.com/
open-scivis-datasets/. 6

[OSI] OSIRIX: Dicom image library. URL: https://www.
osirix-viewer.com/resources/dicomimage-library/.
6

[PFS∗19] PARK J. J., FLORENCE P., STRAUB J., NEWCOMBE R. A.,
LOVEGROVE S.: Deepsdf: Learning continuous signed distance
functions for shape representation. CoRR abs/1901.05103 (2019).
URL: http://arxiv.org/abs/1901.05103, arXiv:1901.
05103. 3

[Phi] Philips research. URL: https://www.philips.com/a-w/
research/locations/hamburg.cs. 6

[PNM∗20] PENG S., NIEMEYER M., MESCHEDER L., POLLEFEYS M.,
GEIGER A.: Convolutional occupancy networks. In Computer Vision –
ECCV 2020 (Cham, 2020), Vedaldi A., Bischof H., Brox T., Frahm J.-M.,
(Eds.), Springer International Publishing, pp. 523–540. 3

[SCT∗20] SITZMANN V., CHAN E. R., TUCKER R., SNAVELY N.,
WETZSTEIN G.: Metasdf: Meta-learning signed distance functions.
CoRR abs/2006.09662 (2020). URL: https://arxiv.org/abs/
2006.09662, arXiv:2006.09662. 2

[Sie] Siemens medical solutions. URL: http://www.volvis.org.
6

[SMP13] SUTER S., MAKHYNIA M., PAJAROLA R.: Tamresh –
tensor approximation multiresolution hierarchy for interactive volume
visualization. Computer Graphics Forum 32, 3pt2 (2013), 151–160.
URL: https://onlinelibrary.wiley.com/doi/abs/
10.1111/cgf.12102, arXiv:https://onlinelibrary.
wiley.com/doi/pdf/10.1111/cgf.12102, doi:https:
//doi.org/10.1111/cgf.12102. 2

[SPY∗22] STRÜMPLER Y., POSTELS J., YANG R., VAN GOOL L.,
TOMBARI F.: Implicit neural representations for image compression,
2022. arXiv:2112.04267. 2

[SSC22] SUN C., SUN M., CHEN H.-T.: Direct voxel grid optimiza-
tion: Super-fast convergence for radiance fields reconstruction, 2022.
arXiv:2111.11215. 3, 4

[SW03] SCHNEIDER J., WESTERMANN R.: Compression domain vol-
ume rendering. In IEEE Visualization, 2003. VIS 2003. (2003), pp. 293–
300. doi:10.1109/VISUAL.2003.1250385. 2

[TCRS00] TARINI M., CIGNONI P., ROCCHINI C., SCOPIGNO R.:
Real time, accurate, multi-featured rendering of bump mapped sur-
faces. Computer Graphics Forum 19, 3 (2000), 119–130. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/
1467-8659.00404, arXiv:https://onlinelibrary.
wiley.com/doi/pdf/10.1111/1467-8659.00404,
doi:https://doi.org/10.1111/1467-8659.00404.
2

[Ter] Terarecon inc, merl, brigham and women’s hospital. URL: http:
//www.volvis.org. 6

[TET∗22] TAKIKAWA T., EVANS A., TREMBLAY J., MÜLLER T.,
MCGUIRE M., JACOBSON A., FIDLER S.: Variable bitrate neural fields,
2022. arXiv:2206.07707. 2

[THM∗03] TESCHNER M., HEIDELBERGER B., MÜLLER M., POMER-
ANETS D., GROSS M.: Optimized spatial hashing for collision detection
of deformable objects. VMV’03: Proceedings of the Vision, Modeling,
Visualization 3 (12 2003). 5

[TL93] TOTSUKA T., LEVOY M.: Frequency domain volume
rendering. In Proceedings of the 20th Annual Conference on
Computer Graphics and Interactive Techniques (New York, NY,
USA, 1993), SIGGRAPH ’93, Association for Computing Machin-
ery, p. 271–278. URL: https://doi.org/10.1145/166117.
166152, doi:10.1145/166117.166152. 2

[TLY∗21] TAKIKAWA T., LITALIEN J., YIN K., KREIS K., LOOP C.,
NOWROUZEZAHRAI D., JACOBSON A., MCGUIRE M., FIDLER S.:
Neural geometric level of detail: Real-time rendering with implicit 3d
shapes, 2021. arXiv:2101.10994. 3

[TMW∗20] TANCIK M., MILDENHALL B., WANG T., SCHMIDT D.,
SRINIVASAN P. P., BARRON J. T., NG R.: Learned initializa-
tions for optimizing coordinate-based neural representations. CoRR
abs/2012.02189 (2020). URL: https://arxiv.org/abs/2012.
02189, arXiv:2012.02189. 2

[TSM∗20] TANCIK M., SRINIVASAN P. P., MILDENHALL B.,
FRIDOVICH-KEIL S., RAGHAVAN N., SINGHAL U., RAMAMOORTHI
R., BARRON J. T., NG R.: Fourier features let networks learn high fre-
quency functions in low dimensional domains. CoRR abs/2006.10739
(2020). URL: https://arxiv.org/abs/2006.10739, arXiv:
2006.10739. 3

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14295
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14295
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14295
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14295
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14295
https://doi.org/https://doi.org/10.1111/cgf.14295
https://doi.org/10.1145/169711.169705
https://doi.org/10.1145/169711.169705
https://doi.org/10.1145/169711.169705
https://arxiv.org/abs/2201.05989
https://arxiv.org/abs/2201.05989
http://arxiv.org/abs/2201.05989
https://arxiv.org/abs/2105.02788
http://arxiv.org/abs/2105.02788
http://arxiv.org/abs/2105.02788
http://arxiv.org/abs/1710.03740
http://arxiv.org/abs/1710.03740
http://arxiv.org/abs/1812.03828
https://doi.org/10.1109/ICCV.2019.00484
https://doi.org/10.1109/ICCV.2019.00484
https://doi.org/10.1145/3450626.3459812
https://doi.org/10.1145/3450626.3459812
https://doi.org/10.1145/3450626.3459812
https://arxiv.org/abs/2003.08934
http://arxiv.org/abs/2003.08934
http://arxiv.org/abs/2003.08934
https://doi.org/10.1109/38.219451
https://doi.org/10.1109/38.219451
http://arxiv.org/abs/1803.02999
http://arxiv.org/abs/1803.02999
http://arxiv.org/abs/1803.02999
https://doi.org/10.1145/147130.147152
https://doi.org/10.1145/147130.147152
https://klacansky.com/open-scivis-datasets/
https://klacansky.com/open-scivis-datasets/
https://www.osirix- viewer.com/resources/dicomimage-library/
https://www.osirix- viewer.com/resources/dicomimage-library/
http://arxiv.org/abs/1901.05103
http://arxiv.org/abs/1901.05103
http://arxiv.org/abs/1901.05103
https://www.philips.com/a-w/research/locations/hamburg.cs
https://www.philips.com/a-w/research/locations/hamburg.cs
https://arxiv.org/abs/2006.09662
https://arxiv.org/abs/2006.09662
http://arxiv.org/abs/2006.09662
http://www.volvis.org
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12102
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12102
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12102
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12102
https://doi.org/https://doi.org/10.1111/cgf.12102
https://doi.org/https://doi.org/10.1111/cgf.12102
http://arxiv.org/abs/2112.04267
http://arxiv.org/abs/2111.11215
https://doi.org/10.1109/VISUAL.2003.1250385
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00404
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00404
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00404
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-8659.00404
https://doi.org/https://doi.org/10.1111/1467-8659.00404
http://www.volvis.org
http://www.volvis.org
http://arxiv.org/abs/2206.07707
https://doi.org/10.1145/166117.166152
https://doi.org/10.1145/166117.166152
https://doi.org/10.1145/166117.166152
http://arxiv.org/abs/2101.10994
https://arxiv.org/abs/2012.02189
https://arxiv.org/abs/2012.02189
http://arxiv.org/abs/2012.02189
https://arxiv.org/abs/2006.10739
http://arxiv.org/abs/2006.10739
http://arxiv.org/abs/2006.10739


14 of 14 S. Devkota & S. Pattanaik / Neural Representation of Volumetric Data

[VGK96] VAN GELDER A., KIM K.: Direct volume rendering with
shading via three-dimensional textures. In Proceedings of 1996 Sym-
posium on Volume Visualization (1996), pp. 23–30. doi:10.1109/
SVV.1996.558039. 2

[Vor] Volume rendering. URL: https://www.cs.purdue.edu/
homes/cs530/projects/project3.html. 6

[WCTW21] WEISS S., CHU M., THUEREY N., WESTERMANN R.: Vol-
umetric isosurface rendering with deep learning-based super-resolution.
IEEE Transactions on Visualization and Computer Graphics 27, 6
(2021), 3064–3078. doi:10.1109/TVCG.2019.2956697. 4

[WHW21] WEISS S., HERMÜLLER P., WESTERMANN R.: Fast neu-
ral representations for direct volume rendering. CoRR abs/2112.01579
(2021). URL: https://arxiv.org/abs/2112.01579, arXiv:
2112.01579. 2, 4

[Wik] WIKI S.: Sampledata — slicer wiki,. [Online; accessed 5-
June-2023]. URL: https://www.slicer.org/w/index.php?
title=SampleData&oldid=62556. 6

[YFKT∗21] YU A., FRIDOVICH-KEIL S., TANCIK M., CHEN Q.,
RECHT B., KANAZAWA A.: Plenoxels: Radiance fields without neural
networks, 2021. arXiv:2112.05131. 3, 4

[YL95] YEO B.-L., LIU B.: Volume rendering of dct-based compressed
3d scalar data. IEEE Transactions on Visualization and Computer
Graphics 1, 1 (1995), 29–43. doi:10.1109/2945.468390. 2

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://doi.org/10.1109/SVV.1996.558039
https://doi.org/10.1109/SVV.1996.558039
https://www.cs.purdue.edu/homes/cs530/projects/project3.html
https://www.cs.purdue.edu/homes/cs530/projects/project3.html
https://doi.org/10.1109/TVCG.2019.2956697
https://arxiv.org/abs/2112.01579
http://arxiv.org/abs/2112.01579
http://arxiv.org/abs/2112.01579
https://www.slicer.org/w/index.php?title=SampleData&oldid=62556
https://www.slicer.org/w/index.php?title=SampleData&oldid=62556
http://arxiv.org/abs/2112.05131
https://doi.org/10.1109/2945.468390

